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Application of multiple‑finding 
segmentation utilizing Mask 
R‑CNN‑based deep learning in a rat 
model of drug‑induced liver injury
Eun Bok Baek 1,5, Jaeku Lee 2,5, Ji‑Hee Hwang 3, Heejin Park 3, Byoung‑Seok Lee 3, 
Yong‑Bum Kim 4, Sang‑Yeop Jun 2, Jun Her 2, Hwa‑Young Son 1* & Jae‑Woo Cho 3*

Drug-induced liver injury (DILI) presents significant diagnostic challenges, and recently artificial 
intelligence-based deep learning technology has been used to predict various hepatic findings. In this 
study, we trained a set of Mask R-CNN-based deep algorithms to learn and quantify typical toxicant 
induced-histopathological lesions, portal area, and connective tissue in Sprague Dawley rats. We 
compared a set of single-finding models (SFMs) and a combined multiple-finding model (MFM) for 
their ability to simultaneously detect, classify, and quantify multiple hepatic findings on rat liver slide 
images. All of the SFMs yielded mean average precision (mAP) values above 85%, suggesting that 
the models had been successfully established. The MFM showed better performance than the SFMs, 
with a total mAP value of 92.46%. We compared the model predictions for slide images with ground-
truth annotations generated by an accredited pathologist. For the MFM, the overall and individual 
finding predictions were highly correlated with the annotated areas, with R-squared values of 0.852, 
0.952, 0.999, 0.990, and 0.958 being obtained for portal area, infiltration, necrosis, vacuolation, 
and connective tissue (including fibrosis), respectively. Our results indicate that the proposed MFM 
could be a useful tool for detecting and predicting multiple hepatic findings in basic non-clinical study 
settings.

Drug-induced liver injury (DILI) is the most frequent safety-related cause of drug withdrawn from the market1. 
The diverse histological findings of DILI can include inflammation, necrosis, cholestasis, fibrosis, nodular regen-
eration, vascular injury, and bile duct destruction. In a histological sample, these lesions may exist in combina-
tions that can be difficult to discriminate2,3. Therefore, pathologists must provide an expert interpretation of the 
tissue changes in light of the patient’s medical and pharmaceutical history when they evaluate a case of DILI. 
Because of the potential complexity of these cases, a systematic approach is recommended4. Examination of 
animal models is a critical step in the preclinical investigation of DILI5. Several animal models have been studied 
for predicting DILI, with acetaminophen (APAP) hepatotoxicity having been extensively investigated6. Although 
animal studies are useful, they can only predict about 70% of human hepatotoxicity outcomes5.

Digital pathology is a sub-field of pathology that uses tools and systems for digitizing, evaluating, and ana-
lyzing pathology slides and associated metadata7. Researchers have used deep-learning techniques for both 
clinical and non-clinical applications, particularly those for which classical imaging analysis methods cannot 
be automated8,9. In recent years, artificial intelligence (AI)-based digital pathology has shown great promise 
as a means to increase healthcare availability and accuracy in many aspects of medicine10–12. In addition to 
the importance of its growing sub-segments, such as digital molecular pathology and pathology informatics, 
digital pathology could potentially alter the traditional core functions of pathology and improve the workflow 
of pathologists10,13,14.

Medical imaging research has explored various machine-learning techniques, including many classifier and 
clustering algorithms15. A technique that has shown great promise is the mask region-based convolutional 
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neural network (Mask R-CNN), a detection-based segmentation model16,17 comprised of two main stages: (i) 
object detection and localization; and (ii) using the features of the detected regions to classify them, assign their 
final localization, and segment them16. Recently, Mask R-CNN-based approaches have been used in medical 
research17–19.

Most DILI-related liver lesions are complicated, and recognizing such complex lesions is critical to diagnos-
ing DILI and assessing its progression and/or severity. In the present study, we applied Mask R-CNN-based 
deep learning to develop a more efficient tool for screening and examining complex liver lesions in a rat model 
of liver injury. To test the real-world usefulness of our prediction method, we established a set of single-finding 
models (SFMs) and a multiple-finding model (MFM). We trained, validated, and tested the AI algorithms by 
comparing the SFM- and MFM-predicted findings with ground-truth annotations generated by an accredited 
toxicological pathologist.

Results
Establishment of the Mask R‑CNN algorithms for hepatic lesion and normal feature prediction
The Mask R-CNN was trained to identify various hepatic injury lesions (infiltration, necrosis, fibrosis, vacuola-
tion) and normal features (portal area and connective tissue) to enable the algorithm to discriminate among these 
findings. To induce liver injury, N-nitrosodimethylamine (NDMA), APAP, or corn oil was applied for the periods 
listed in Table 1. Each model was established by training it on slide images from the control and drug-treated 
animals based on a given lesion or normal feature, regardless of treatment. The representative histopathological 
findings for NDMA-, APAP-, and corn oil-treated animals were fibrosis, necrosis and infiltration, and vacuola-
tion, respectively (Supplementary materials S1 and S2).

The procedures used to establish the SFMs and MFM for liver injury are shown schematically in Fig. 1A,B, 
respectively. For each SFM, the algorithm was trained for one lesion or normal feature. Therefore, a total of six 
SFMs were trained. In contrast, the MFM was trained to include all six findings in a single model. For the MFM 
and each SFM, the total loss decreased steadily during the training, indicating that training was accomplished in 
all cases (Fig. 2A,B). Figure 3A,B show representative comparisons of original tile images, labeled images and the 
identifications made by the trained single-finding models and multiple-finding model for portal area, connective 
tissue, infiltration, necrosis, fibrosis, and vacuolation. In all cases, the algorithm effectively distinguished among 
the trained lesions and normal features in the image tiles. The predicted and labeled hepatic findings showed 
good overlap (see Fig. 3A,B, middle and right panels). To validate the established model after training, we tested 
the model accuracy by generating mean average precision (mAP) values. For the SFMs, the mAP values were 
97.26%, 88.59%, 87.35%, 98.87%, 93.44%, and 88.32% for portal area, connective tissue, infiltration, necrosis, 
fibrotic lesion, and vacuolation, respectively. For the MFM, the overall mAP value was 92.46% and those for 
portal area, connective tissue, infiltration, necrosis, fibrosis, and vacuolation were 95.89%, 86.58%, 92.53%, 
98.88%, 90.16% and 91.97%, respectively.

Assessing SFM performance with respect to slide images
To perform real-world testing of the trained SFMs, we assessed their ability to predict hepatic lesions and normal 
features in a total of 100 slide images, each of which corresponded to one third of a whole-slide image. Each 
SFM was used to predict the corresponding findings (Fig. 4A, blue color). In the slide-image setting, the similar 
appearance of connective tissue and fibrosis made it difficult for the pathologist to discriminate between these two 
findings; therefore, connective tissue and fibrosis were combined for ground-truth annotation. The ground-truth 
annotation was performed at 20 × magnification, and regions of portal area, infiltration, necrosis, vacuolation, and 
connective tissue (including fibrosis) were determined and recorded as the number of pixels involved (Fig. 4A, 
lower panel, blue color). As shown in Fig. 4A, all lesions and normal features except for vacuolation showed 
considerable differences between the SFM predicted and ground-truth annotated areas. Correlation analysis 
revealed that the results of the vacuolation SFM were highly correlated with those of the ground-truth annotation, 
whereas the other SFM predictions did not show good correlation with the ground-truth annotations (Fig. 4B).

Several deficiencies were found in the SFM prediction results, as shown in supplementary material S3. Portal 
area was generally overestimated, with the overestimation being particularly marked in NDMA- or APAP-treated 
animals. Necrosis was widely confused with connective tissue, and infiltration was greatly overestimated in 
APAP-treated animals. Connective tissue was confused with fibrosis and vice versa, and the combined area of 

Table 1.   Animal study design for liver sample preparation.

Group Control NDMA APAP Corn oil

Test material Distilled water NDMA APAP Corn oil

Dose 10 ml/kg 10 mg/kg 2500 or 1000 mg/kg mg/kg 10 ml/kg

No. of animals (male/female) 6/6 7/7 7/7 7/7

Duration of administration 4 weeks 4 weeks 3 or 7 days 4 weeks

Route of administration Oral gavage i.p Oral gavage Oral gavage

Dosing regimen Daily Three times per week Single or six times Daily

No. of slide images 1–25 26–50 51–75 76–100
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these features was greatly overestimated in NDMA-treated animals. Vacuolation, however, was effectively pre-
dicted overall relative to the annotation (Supplementary material S3 and Fig. 4B).

Next, we analyzed the correlation between each SFM-based prediction and the annotation area in each treat-
ment group (Supplementary material S4). Interestingly, for the SFM predicting connective tissue (including 
fibrosis), the results from NDMA-treated animals showed a high correlation (R2 = 0.914) with the annotated 
results; by contrast, the combined group (all treatment groups plus controls) showed a low correlation (R2 = 0.022) 
(Supplementary material S4A and Fig. 4B). For the SFM prediction of necrosis, the results from APAP-treated 
animals showed a higher correlation (R2 = 0.987) with the annotated results than did the combined group. For 
the SFM prediction of infiltration, no strong correlation was observed (Supplementary material S4B and Fig. 4B). 
For the SFM of vacuolation, the correlations between the prediction and annotation results were higher for the 
corn oil-treated group and combined group than for the other groups (Supplementary material S4C and Fig. 4B).

Assessing MFM performance with respect to slide images
Next, the MFM was used to predict liver lesions and normal features in the same slide images. In the predicted 
and annotated images, different colors were used to distinguish the type of feature: portal area (yellow), infiltra-
tion (green), necrosis (white), connective tissue plus fibrosis (blue), and vacuolation (red). The results obtained 

Figure 1.   Schematic of Mask R-CNN algorithm procedures for hepatic lesions and normal features in the 
single-finding models (A) and multiple-finding model (B).
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using the MFM showed patterns comparable to those of the ground-truth annotation (see representative pre-
diction-merge image in Fig. 5A). However, due to the high complexity of multiple findings, several lesions were 
observed together in the same areas. These overlapping areas were classified into relevant findings by prioritizing 
the findings in the order of necrosis, connective tissue (including fibrosis), infiltration, portal area, and vacu-
olation. Correlation analysis revealed that the predicted areas of portal area, infiltration, necrosis, vacuolation, 
and connective tissue (including fibrosis) were highly correlated with the annotated dimensions, with all R2 
values > 0.85 (Fig. 5B).

Comparison of SFMs with MFM
We compared the SFM and MFM predictions at the individual slide-image level. For the SFMs, only the vacuola-
tion SFM showed a pattern comparable with that of the ground-truth annotation, whereas the portal area, infil-
tration, and necrosis, and connective tissue (including fibrosis) SFMs generally overestimated or misestimated 
the areas of the features for which they were trained compared to the annotated areas (Fig. 6A). In contrast, the 
MFM exhibited patterns comparable to those of the annotated areas for all lesions and normal features (Fig. 6B). 
Thus, the results of the correlation analysis and individual slide-image analysis suggest that the MFM could be 
useful for predicting complicated lesions and normal features in a real-world setting.

Discussion
In the present study, we applied Mask R-CNN-based deep learning to assess several types of liver lesions and 
normal features in a non-clinical study setting. The models were established through training and validation for 
single or multiple hepatic findings and the performance was assessed by comparison with pathologist-annotated 
slide images. Additionally, we compared the set of SFMs with the MFM. Each SFM yielded a mAP value above 
85%, while the total mAP for the MFM was 92.46%, suggesting that the models had been successfully established. 
Compared to the SFMs, the MFM showed a higher correlation with the ground-truth annotation results assigned 
by an accredited toxicologic pathologist. Our results suggest that this new Mask R-CNN-based algorithm could 
be a useful tool that applies deep-learning to digital pathology, and that the MFM is more useful than individual 
SFMs in predicting different and complicated liver lesions and normal features.

All of the slide image results of the SFMs and MFM are shown in Supplementary material S1. The MFM, 
which predicted all trained lesions and normal features, showed a good correlation with the ground truth-
annotated area. Among the SFMs, however, only the SFM for vacuolation yielded good slide image predictions. 
During training, connective tissue was mainly trained with slides from control animals and fibrosis was mainly 

Figure 2.   Total training loss during training of single- and multiple-finding models. (A) Total loss of portal, 
connective tissue, infiltration, necrosis, fibrosis, and vacuolation in each single-finding model. (B) Total loss in 
the multiple-finding model.
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trained with the slides from NDMA-treated animals; therefore, the established models showed high accuracy 
values for these treatment groups. However, the model failed to accurately discriminate between these findings, 
and exhibited confusion between them in the other groups (Figs. 4 and 6A). We analyzed the correlation between 
each SFM-based prediction and the corresponding annotation area in each treatment group, as shown in Sup-
plementary material S4. These results suggest that each SFM could be useful for predicting toxicity under certain 
circumstances, but would not be appropriate in general or for more complex findings. Given that histopathologi-
cal lesions in acute and chronic liver injuries are complicated, with multiple lesions often observed together20–22, 
our results indicate that the MFM could be useful for predicting real-world histopathological liver lesions.

The histological spectrum of DILI is broad23 and image analysis of various hepatic lesions related to liver 
injury and liver toxicity is considered to be critical for the diagnosis and severity assessment of this disease24. 
Recently, deep learning based on deep neural networks has been applied to the assessment and diagnosis of 
various lesions in non-clinical and clinical studies25,26. The use of deep-learning algorithms in non-clinical 
studies can allow rapid, quantitative, and consistent histopathological assessment in novel drug development 
processes and toxicological studies with implications for clinical settings. Therefore, a classification network 
capable of detecting and discriminating particular lesions may be favored over object detection and/or segmen-
tation, which require high calculation loads and labor-intensive annotation procedures. Deep learning-based 
diagnosis or quantification of liver lesions has been attempted in several studies27–29. Puri tested the ability of 
automated machine-learning models to classify DILI injury patterns from whole-slide images, and obtained 
an average precision of 98.6%30. Xu et al. employed deep learning for DILI prediction in response to 198 drugs 
and observed good accuracy, sensitivity, and specificity2. In addition to these studies, there are several reports 
on the performance of the model in the dataset environment; however, AI-based pathological analysis has not 
yet been sufficiently studied using real-world slide images31. In the present study, we confirmed the possibility 
of applying AI-assisted image analysis in a drug-induced liver injury rat model. The results suggested that the 
proposed trial has potential for use in clinical applications. However, the proposed approach was not validated 

Figure 3.   Comparison of original, labeled, and algorithm-predicted images in the single-finding models (A) 
and multiple-finding model (B). Left: original image tiles. Middle: labeled images for training of portal area, 
connective tissue, infiltration, necrosis, fibrosis, and vacuolation. Right: predicted area for each algorithm-
determined lesion or normal feature.
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in human samples, untrained complex lesions, severity scoring, or various real-world settings. Moreover, in the 
present study we compared the number of pixels, not the actual concordance of pixel location between ground 
truth annotation and model prediction. Therefore, further studies will be needed before the method can be 
applied to human diagnosis.

Figure 4.   Comparison of original, annotated, and algorithm-predicted images in the single-finding models. 
(A) Portal area, connective tissue, infiltration, necrosis, fibrosis, and vacuolation in each algorithm prediction 
and ground-truth annotation. (B) Linear regression was used to compare the number of pixels annotated by an 
accredited toxicologic pathologist against those predicted by the established single-finding models for portal 
area, infiltration, necrosis, vacuolation, and connective tissue (including fibrosis).

Figure 5.   Comparison of original, annotated, and algorithm-predicted images in the multiple-finding model. 
(A) Portal area, connective tissue, infiltration, necrosis, fibrosis, and vacuolation in the algorithm prediction and 
ground-truth annotation. Representative slide images include portal area, connective tissue (including fibrosis), 
infiltration, necrosis, and vacuolation. Colors are as follows: portal area (yellow), connective tissue (blue), 
infiltration (green), and vacuolation (red). (B) Linear regression was used to compare the number of pixels 
annotated by an accredited toxicologic pathologist with those predicted by the established multiple-finding 
model for portal area, infiltration, necrosis, vacuolation, and connective tissue (including fibrosis).
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Here, we used a Mask R-CNN algorithm to assess hepatic lesions induced by NDMA, APAP or corn oil in rats. 
The study results suggest that the Mask R-CNN-based MFM could be a useful tool for detecting and predicting 
multiple and complicated toxic liver lesions in basic non-clinical study settings.

Materials and methods
Animal study
Sprague–Dawley (SD) rats (7 weeks of age, males and females) were obtained from Orient Bio, Inc. (Republic 
of Korea). The rats were maintained at a temperature of 23 ± 3 °C and a relative humidity of 30–70% under a 
12 h light/dark cycle, and allowed to acclimate for 7 days prior to the first administration of drug or vehicle. All 
experimental procedures involving animals were approved by the Assessment and Accreditation of Laboratory 
Animal Care International (AAALAC) and Institutional Animal Care and Use Committee (IACUC). All animal 
experiments were conducted in accordance with the ARRIVE guidelines and all methods were carried out in 
accordance with the principles and procedures outlined in the National Institutes of Health (NIH) Guide for the 
Care and Use of Laboratory Animals. The rats were randomly assigned to four groups: control (distilled water), 
N-nitrosodimethylamine (NDMA)-treated, acetaminophen (APAP)-treated, and corn oil-treated. The animal 
study design and liver tissue slide preparation procedure are detailed in Table 1. Necropsy was performed at 24 h 
after the last dosing, and liver tissues were collected and fixed in 10% neutral buffered formalin. Each collected 
liver was divided into pieces, which were paraffin-embedded and used to prepare slides.

Slide image preparation
A total of 100 liver samples representing 25 sections per group were H&E-stained and digitized into slide images 
using an Aperio XT slide scanner (Leica Biosystems, Wetzlar, Germany). Slide images of liver sections were 
scanned using an Aperio ScanScope XT (Leica Microsystems, USA) with a 20 × objective and bright-field illu-
mination. The scan resolution was 0.4993 μm per pixel and the images were saved as JPEG image-compression 
files. The data were prepared for detection of portal area, connective tissue, vacuolation, infiltration, necrosis, 
and fibrosis, as previously described19. Briefly, the slide images (20×-magnified) were cropped into 448 × 448 
pixel tiles, and VGG Image annotator 2.0.1.0 (Visual Geometry Group, Oxford University, UK) was used to label 
all lesions and normal features. An accredited toxicologic pathologist assessed the annotated lesions and normal 
features, and verified findings were labeled and used to first train and then test the Mask R-CNN algorithm. To 
distribute the annotated image tiles into training, validation, and test datasets (approximately 7:2:1), we used 
the train_test split function of the scikit-learn package. To improve the training dataset, we used data augmenta-
tion: eight-fold augmentation was enabled using image-augmentation techniques such as reversal, rotation, and 
brightening. For SFM and MFM, total datasets of 46,284 and 48,772 image tiles, respectively, were used to train, 
validate, and test the algorithm on liver injury lesions and normal features. The numbers of image tiles used for 
each training, validation, and testing set are presented in Supplementary material S5.

Mask R‑CNN algorithm
All algorithm-training procedures, including the distribution of data, were undertaken as previously described19. 
Briefly, an open-source framework for machine learning (Tensorflow 2.1.0 with a Keras 2.4.14 backend) pow-
ered using an NVIDIA RTX 3090 24G GPU was used for training, along with Matterport Mask R-CNN 2.1 

Figure 6.   Comparison of the annotated and algorithm-predicted areas in the single- and multiple-finding 
models. (A) Blue lines indicate the ground truth-annotated area while red lines represent the algorithm-
predicted area for portal area, infiltration, necrosis, vacuolation, and connective tissue (including fibrosis) in 
each single-finding model. (B) Blue lines indicate the ground truth-annotated area while red lines indicate the 
algorithm-predicted area for portal area, infiltration, necrosis, vacuolation, and connective tissue (including 
fibrosis) in the multiple-finding model.
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(Sunnyvale, CA, USA). The Mask R-CNN algorithm (https://​github.​com/​matte​rport/​Mask_​RCNN) consisted 
of two stages: first, a region proposal network (RPN) proposed candidate object-bounding boxes; and second, 
RoIAlign extracted features that would be used to predict pixel-accurate masks. In RoIAlign, bi-linear interpola-
tion is applied to determine the exact values of input features at four regularly sampled locations for each RoI 
bin, and the results are aggregated using max pooling.

Model training, validation, and testing
In the SFMs, four lesions and two normal features were trained on separate Mask R-CNNs to create a model 
for each lesion and normal feature. The MFM was created as a single model by learning all four lesions and two 
normal features in one Mask R-CNN. The hyperparameters applied for training are presented in Table 2. The 
default settings of the Matterport package were used for all configurations, except for five parameters that were 
customized to fit the hepatic injury dataset. IMAGE_PER_GPU was used to simultaneously analyze four images, 
and the training utilized four GPUs. The 448 × 448 image size was determined from IMAGE_MAX_DIM and 
IMAGE_MIN_DIM based on the size of the slide image. The instance classification accuracy threshold, which 
was called DETECTION_MIN_CONFIDENCE, was set at 0.5. For determination of the Mask R-CNN loss 
(total loss), we summed the losses (including the smooth L1 loss for the bounding box, the sparse softmax cross-
entropy loss for the label, and the binary cross-entropy loss for the mask). To verify the model performance, the 
mAP was calculated based on the intersection of the precision, union (IoU), and recall values. The IoU value, 
which was calculated according to a previous report19, reflects the ratio of the area overlaid by the union of the 
predictions to that overlaid by the ground truth. The mAP value, which reflects model accuracy, was generated. 
We used the transformed mAP, which goes to 0 when an image is identified as containing a misprediction. This 
transformation was used to analyze the error cases in more detail, investigate the basis for correct and incorrect 
predictions, and evaluate the model performance more strictly.

Slide image confirmation
One-hundred slide images were used as the confirmation set. Each slide image, which was 10,752 × 10,752 pixels 
and had not been used during the training, was cropped by Aperio Image Scope version 12.4.0 (Leica Biosystems, 
USA) from whole-slide images that were scanned by an Aperio ScanScope XT (Leica Biosystems, USA) using a 
20 × objective and bright-field illumination. Before being submitted for confirmation, each hepatic lesion, nor-
mal feature, and tissue type was annotated by an accredited toxicologic pathologist; this was used as the ground 
truth that would later be compared with the algorithm-based prediction. The ground-truth annotations for all 
lesions and normal features were applied using VGG Image annotator 2.0.1.0 (Visual Geometry Group, Oxford 
University, UK), as described for the annotation of findings used in model training. The annotated areas were 
calculated based on pixel counting. Each cropped slide image was divided into tile images of 448 × 448 pixels. The 
trained algorithm was used to predict each hepatic lesion and normal feature, and the prediction mask-bearing 
cropped images were merged into an overall slide image. Linear regression was used to compare the calculated 
prediction mask areas with the ground truth annotated areas. The histopathological annotations used to label 
the images are shown in Supplementary material S6.

Data availability
The image datasets generated during the current study were deposited into public repository (https://​doi.​org/​
10.​5281/​zenodo.​84237​42).
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