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OPEN A novel bidirectional LSTM deep

learning approach for COVID-19
forecasting

Nway Nway Aung®*, Junxiong Pang?*, Matthew Chin Heng Chua? & Hui Xing Tan'*

COVID-19 has resulted in significant morbidity and mortality globally. We develop a model that uses
data from thirty days before a fixed time point to forecast the daily number of new COVID-19 cases
fourteen days later in the early stages of the pandemic. Various time-dependent factors including the
number of daily confirmed cases, reproduction number, policy measures, mobility and flight numbers
were collected. A deep-learning model using Bidirectional Long-Short Term Memory (Bi-LSTM)
architecture was trained on data from 22nd Jan 2020 to 8 Jan 2021 to forecast the new daily number of
COVID-19 cases 14 days in advance across 190 countries, from 9 to 31 Jan 2021. A second model with
fewer variables but similar architecture was developed. Results were summarised by mean absolute
error (MAE), root mean squared error (RMSE), mean absolute percentage error (MAPE), and total
absolute percentage error and compared against results from a classical ARIMA model. Median MAE
was 157 daily cases (IQR: 26-666) under the first model, and 150 (IQR: 26-716) under the second.
Countries with more accurate forecasts had more daily cases and experienced more waves of COVID-
19 infections. Among countries with over 10,000 cases over the prediction period, median total
absolute percentage error was 33% (IQR: 18-59%) and 34% (IQR: 16-66%) for the first and second
models respectively. Both models had comparable median total absolute percentage errors but lower
maximum total absolute percentage errors as compared to the classical ARIMA model. A deep-
learning approach using Bi-LSTM architecture and open-source data was validated on 190 countries to
forecast the daily number of cases in the early stages of the COVID-19 outbreak. Fewer variables could
potentially be used without impacting prediction accuracy.

Coronavirus disease 2019 (COVID-19) is a global public health crisis declared a pandemic by the World Health
Organization. As of March 2021, the virus had infected over 127.6 million people worldwide and the number of
deaths had totaled more than 2.7 million . Compared to other highly contagious previously identified coronavi-
rus-related diseases, such as Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome
(MERS), the SARS-CoV-2 virus that resulted in COVID-19 disease appears to be more infectious. It is critical to
explore novel approaches to monitor and forecast regional outbreaks in the early phase of the pandemic in order
to facilitate better allocation of resources and containment planning '~ by healthcare providers and policymakers.

A crucial part of planning in this scenario is forecasting the daily confirmed cases of COVID-19. In the
short-term, predictions can be performed by time series analysis 2. With the rapid spread of COVID-19, various
forecasting, estimation, and modelling approaches are introduced. For instance, to forecast the evolution of con-
firmed infected cases, both epidemiological models of SIR and SER were used. In the early stages of the epidemic,
a single individual can infect several people before isolation but raising public awareness, health, and stringency
control, as well as policy controls and movement restrictions, may help control the epidemic. Reproduction
Number (Rt), which is characterized by the number of people caused by a single individual at each stage of the
outbreak, can also determine the different stages of the infection outbreak. The effective reproduction number
of SIR model is used to assess the progress of the epidemic’. Using the forecast for the number of infected (I),
recovered (R), and dead (D) individuals, Rt and its temporal evolution are computed. The SIR computes the
theoretical number of individuals infected with a contagious illness in a closed population over time with three
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states: Susceptible people S(t), Infected I(t), and Recovered R(t)*. The susceptible exposed infectious recovered
model (SEIR) models population are classified into four categories: S (Susceptible), E (Exposed), I (Infected),
and R (Recovered) according to the states of individuals *°. In 7, the SIR model outperforms the SEIR model
in terms of Akaike Information Criteria (AIC) to forecast and predict the confirmed cases data information.

Some preliminary studies for COVID-19 time series forecasting using Autoregressive Integrated Moving
Average (ARIMA) methods have also been done #1°. Many types of research based on traditional time series
forecasting models have been explored to forecast future COVID cases ''"!*. Machine learning and deep learning
have developed as promising research '*'¢ in accurately predicting the number of confirmed COVID-19 cases.
In China, a stacked auto-encoder model is designed to fit the epidemic’s dynamical propagation and real-time
forecasting of confirmed cases 7. For forecasting using time series analysis, deep-learning using recurrent neu-
ral networks, or RNN, are proposed as promising methods to predict the risk category trend predictions '**°.
Overall, there have been many developments in the prediction of COVID-19 cases, including the use of LSTM
approaches 14182021 However the analyses are limited to a number of countries (China, India, US, Canada, Aus-
tralia, and European Countries) and no data on external factors such as containment measures are used in the
forecasts. Furthermore, most of the studies use mean squared error (MSE) or mean absolute error (MAE) as a
way to evaluate the performance of the models in a single country, which may not be applicable when comparing
model performance across multiple countries.

Objectives

The US CDC has adopted an ensemble forecasting method ?? to generate 4-week forecasts for the number of
deaths and confirmed cases and evaluated that accuracy of the model deteriorated at longer prediction horizons
of up to four weeks. According to the US CDC 23 the number of deaths and confirmed cases is seen to fall within
30 days after containment measures are taken. We aim to use data from thirty days before a fixed time point
to forecast the number of daily cases fourteen days later, which would be a reasonable time frame to facilitate
planning dictions (Fig. 1). As various time-dependent factors including the number of daily confirmed cases,
reproduction number, containment, and governmental policy measures, mobility and flight data could affect the
daily number of cases in the future, these data, where available, were included in the analyses.

Methods
Datasets
Data on daily new cases from the earliest date to 22 Jan 2020 to 31 Jan 2021 were collected from the Johns Hop-
kins University research databases (https://github.com/CSSEGISandData/COVID-19) ?*. Numerical data on
twenty-four time-dependent variables of 190 countries were collected from various sources such as the website
ourworldindata.com ». Flight data, where available, were collected from the Official Airline Guide (OAG) .
Effective Rt is a well-known parameter to evaluate the propagation of the outbreak and is thus used as one of
the input variables to predict the daily confirmed cases in this study. The computation of effective Rt is adopted
from *. The details of these variables are listed in Table 1.

The dataset is updated daily with new information. For this experiment, all data from 22 January 2020 to 31
January 2021 were used. Time series points with a missing numbers were replaced with 0.

Overview of approach
This study proposes a deep-learning framework for COVID-19 time-series prediction. The framework is illus-
trated in Fig. 2.

Feature engineering

Data pre-processing is one of the crucial steps in machine learning. The time-series data of 190 countries were
collected, pre-processed, and analysed for each country. Standard scaling was applied using StandardScaler() in
Python 3.7 to scale each of the 24 variables to zero mean and unit variance. As the model requires a sequence of
past observations as input and maps it to the output observation, thirty days of time steps up till the current day
are used as input, and a one-time step of the target variable fourteen days later is used as output for the one-step
prediction that is being learned.
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Figure 1. Use of 30 days prior data to predict the number of new cases 14 days later.
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Description

Frequency of refresh

Data source

Infected covid cases

Dead covid cases

Recovered covid cases

Daily

COVID tracking data from Johns Hopkins Coronavirus Resource Center

Derived data on the effective reproduction number, Rt

Daily

"Country-wise forecast model for the effective reproduction number Rt of

coronavirus disease," Frontiers in Physics, vol. 8, p. 304, 2020

Flight data for 12 countries
-United states
-United Kingdom
-UAE

-Germany

-Spain

-France

-Japan

-Korea South
-China

-Brazil

-Sweden
-Singapore

Weekly

Flight Data from Official Airline guide (OAG) website

Covid test data, total tests, and per thousand population

Daily

Testing data from ourworldindata.com

Level of containment policies (international travel controls, contact tracing,
facial coverings, stay-home requirements) adopted by each country across
the time

Daily

Containment policies from ourworldindata.com

Mobility data - This new dataset from Google measures visitor numbers

to specific categories of location (e.g. grocery stores; parks; train stations)
every day and compares this change relative to the baseline day before the
pandemic outbreak. Baseline days represent a normal value for that day of the
week, given as the median value over the five-week period from January 3rd
to February 6th, 2020. Measuring it relative to a normal value for that day of
the week is helpful because people obviously often have different routines on
weekends versus weekdays

Daily

Google mobility data from ourworldindata.com

Table 1. Variables collected for timeseries analysis and their sources.
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Figure 2. Conceptual framework of the proposed forecasting methods.

Modelling

Modelling is done individually for each country and has been done in two main stages: the training and testing
stage. Data for the training stage comprised data from 22 January 2020 to 8 Jan 2021 for a total of 353 days, and
data for the testing stage span the period from 9 Jan 2021 to 31 Jan 2021. The raw data is pre-processed, stand-
ardized, and then used to build the deep learning model.

BiLSTM

Time series of daily new confirmed COVID-19 cases were used for generating 14-day forecasts using Bidirec-
tional Long-short Term Memory models (BiLSTM). A BiLSTM is an enhanced version of the LSTM algorithm.
LSTMs were designed to process sequences of data and improved upon traditional RNN by using memory cells
that can store information in memory for long series and a set of gates to control the flow of this memory infor-
mation. These innovations allow LSTM to learn longer-term dependencies in sequential data. One of the limita-
tions of LSTM is that the current state can only be reconstructed through the backward context. The BiLSTM
algorithm fuses the ideal functions of bidirectional RNN and LSTM. This is done by combining two hidden states,
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Figure 3. Modelling with Bidirectional long short-term memory networks.
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which allow information to come from the backward layer and the forward layer. The BiLSTMs were trained on
varying sizes of input sequences—sequence sizes of 128, 64, and 20. Detailed modelling can be seen in Fig. 3.

Hyper-parameter tuning

Hyper-parameter tuning is conducted with trial and error during the training. In the experiments, rmsprop
optimizer with a learning rate of 0.1 was used for training the LSTM models, and the mean absolute error was
used as the loss function. After that, the models with the selected hyper-parameters were used to forecast the
number of COVID cases in the testing stage. The model’s accuracy was verified by comparing the measured data
with real data via different statistical indicators, including Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE) and total absolute percentage error (see evaluation metric).

Features used

Two sets of input features were used for each model as shown in Fig. 4. The first model (Model 1) used all features
except for the computed Rt moving average. The second model (Model 2) used all features except the confirmed
and recovered cases (as the information was partially captured in daily new cases), estimated Rt (as the informa-
tion was partially captured in Rt moving average), number of new tests done each day, as well as international
travel controls (as the information was partially captured in flight data).

Evaluation metric
In addition to RMSE, MAE and MAPE, total absolute percentage error was used for evaluating the performance
of the models as shown.

Total absolute percentage error = |TotalActual — TotalPredicted| = TotalActual x 100%

where TotalActual and TotalPredicted refer to the actual and predicted sum of total new cases over the testing
period, respectively. A sub-analysis was performed in 84 countries with more than 10,000 cases over the predicted
period (or an average of 434 new cases a day) as percentage error could be inflated for models with very few cases
and projections would be more useful for capacity planning for countries with a large number of cases. The top
five countries with the best and worst performance were analysed in terms of the number of cases per day, phase
of infection and number of infections waves experienced.

Comparison with classical ARIMA model

To test the effectiveness of the new method, an Autoregressive Integrated Moving Average (ARIMA) model was
used to generate predictions over the same period using only daily new cases as inputs. Results from the classical
model were summarised using the same evaluation metrics as the other two models.

Ethics approval
This study is supported by NUS-IRB-2020-812 under National University of Singapore.

Results

Summary by MAE, RMSE, MAPE, percentage error

Median MAE was 157 new daily cases (IQR: 26-666) under the first model, 150 (IQR: 26-716) under the second
model, and 130 (IQR: 22-475) under the ARIMA model (Table 2). The countries and their respective perfor-
mance with Models 1 and 2 are listed in Supplementary Material 1. However, the effectiveness of the model is
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Input Features for Prediction
Data Category Model - 1 Model - 2

Flight Data Flight data Flight data

deaths deaths
Daily Data conhimed

recovery

daily new cases daily new cases
R() EO0_movil

EO0_estimated

Covid Test Data

new_tests_smoothed
new_tests_smoothed_per_thousand

Mobility Data

retail_and_recreation
grocery_and_pharmacy
parks

transit_stations
workplaces

residential

retail_and_recreation
grocery_and_pharmacy
parks

transit_stations
workplaces

residential

Policy Control and Stringency Index

contact_tracing
restrictions_internal_movements
containment_index
stringency_index
international_travel_controls
facial_coverings
stay_home_requirements
cancel_public_events
school_closures

contact_tracing
restrictions_internal_movements
containment_index
stringency_index

facial_coverings
stay_home_requirements
cancel_public_events
school_closures

Figure 4. Input features used for prediction. Key: flights—daily number of flights; deaths—cumulative number
of COVID-19 deaths, confirmed—cumulative number of confirmed cases; recovery—cumulative number of
recovered cases; EO_movil—daily reproduction number, Rt, smoothed; E0_estimated—daily reproduction
number, Rt; new_tests_smoothed—daily test numbers; new_tests_smoothed_per_thousand—daily test
numbers per thousand population; retail_and_recreation, grocery_and_pharmacy, parks, transit_stations.
workplaces, residential —mobility data from Google contact_tracing—level of contact tracing (3 levels);
restrictions_internal_movements—restrictions on internal movement during the COVID-19 pandemic

(3 levels); containment_index—Containment and Health Index, a composite measure of eleven response
metrics; stringency index—Government Stringency Index, a composite measure of nine response metrics;

international_travel_controls—government policies on restrictions on international travel controls. (5 levels);
facial_coverings—use of face coverings outside-of-the-home; stay_home_requirements—government policies
on stay-at-home requirements or household lockdowns; cancel_public_events—government policies on the
cancellation of public events; school_closures—government policies on school closures.

Model 1 (more variables) Model 2 (fewer variables) Classical model (ARIMA)

MAPE MAE RMSE Percentage error (%) MAE RMSE Percentage error (%) MAE RMSE Percentage error (%)
Min o o 0 o o 0 o o o o
25P [ 26 35 22 26 37 24 22 32 15
Median 1 157 209 51 150 192 53 130 161 41
75P 4.47E+15 666 752 87 716 863 92 475 532 69
Max 1.81E+19 44,250 52,940 16,928 47,506 55,796 16,633 88,363 98,098 1296

Table 2. Summary by MAE, MSE, percentage error.

hard to gauge with MAE and RMSE alone as some countries may report thousands of daily infections, while some
others only a handful of cases a day. As seen in Table 3, the worst-performing countries are countries with large
numbers reported. For over half of the countries, the percentage error in terms of the total number of cases over
the predicted period was at most 51% for the first model, 53% for the second model, and 41% for the ARIMA
model However, the maximum error was higher under the ARIMA model as compared to models 1 and 2.

Scientific Reports |

(2023) 13:27953 |

https://doi.org/10.1038/s41598-023-44924-8 nature portfolio



www.nature.com/scientificreports/

1. Vanuatu 1. Vanuatu 1. Singapore
2. Marshall Islands | 2. Marshall Islands | 2. Montenegro
Best performance Model 1 | 3. Solomon Islands | 3. Solomon Islands | 3. Belgium
4. Western Sahara | 4. Western Sahara | 4. Congo Kinshasa
5. MS Zaandam 5. Micronesia 5. Slovakia
1. Solomon Islands | 1. Vanuatu 1. Pakistan
2. Vanuatu 2. Marshall Islands | 2. Germany
Best performance Model 2 | 3. Marshall Islands | 3. Western Sahara | 3. Bhutan
4. Western Sahara | 4. Solomon Islands | 4. Estonia
5. MS Zaandam 5. Micronesia 5. Slovakia
1. United States 1. United States s
2. Spain 2. United King- 1. Tajikistan . .
. . 2. Central African Republic
Wi 3. United King- dom
orst performance | Model 1 . 3. Uganda
dom 3. Spain
. . 4. Cyprus
4. Brazil 4. Brazil 5 Australia
5. France 5. Turkey .
1. UniFed States 1. Uni.ted States 1. Tajikistan
2. Spain 2. Spain o
3. Brazil 3. Brazil 2. Azerbaijan
Worst performance | Model 2 | ;"1 . i X 3. Trinidad and Tobago
4. United King- 4. United King- .
4. Switzerland
dom dom
5. Iceland
5. France 5. France

Table 3. Top 5 countries with best and worst performance for each model.

1 Singapore 30 Out NA 2
2 Montenegro 438 In Increasing 4
3 Belgium 2150 Out NA 2
4 Congo Kinhasa 165 In Declining 2
5 Slovakia 2120 In Declining 2

1 Tajikistan 0 Out NA 1
2 Central African Republic 1 Out NA 1
3 Uganda 99 In Declining 2
4 Cyprus 183 In Declining 2
5 Australia 10 Out NA 2

1 Pakistan 2,040 In Declining 2
2 Germany 13,914 In Declining 2
3 Slovakia 2120 In Declining 2
4 Estonia 507 In Declining 2
5 Bhutan 4 In Declining 3

1 Tajikistan 0 Out NA 1
2 Azerbaijan 296 In Declining 2
3 Trinidad and Tobago 15 Out NA 2
4 Switzerland 1884 In Declining 2
5 Iceland 6 Out NA 3
Table 4. Top 5 countries with the best and worst performance by percentage error with Models 1 and 2.
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Analysis of the countries with the best and worst results in terms of percentage error shows that countries with
better performing results typically had more cases per day and had witnessed more waves of COVID outbreaks
over the training period (Table 4). Countries that fared more poorly had fewer daily cases and were usually not
in the middle of any covid wave. This is because smaller daily cases would lead to larger percentage errors due
to low base effects.

Sub-analysis in countries with more than 10,000 cases

A sub-analysis was performed in 84 countries with more than 10,000 cases over the predicted period (or an
average of 434 new cases a day). The median percentage error in terms of the total number of cases over the
predicted period was lower when limited to these countries—at 33% for the first model with more variables,
and 34% for the second model with fewer variables (Table 5). The percentage error was 16% or less in a quarter
of cases in the first model, while the maximum error was 166% for the first model and 191% for the second.
While the median percentage error was similar in the ARIMA model (32%, IQR 11-53%), Model 1 (33%, IQR
18-59%), and Model 2 (34%, IQR 16-66%), the maximum error was greater under the classical ARIMA model
(462%) than under the other two models (166%, 192%).

Top 5 countries with best and worst model performance

Table 6 summarises the characteristics of the top 5 countries with the best and worst model performance. After
limiting the analysis to countries with more than 10,000 cases over the prediction period, both the sets of top-
performing and worst-performing models comprised countries from various regions, and most countries in
the declining phase of an infection wave. However, the countries which fared better under models 1 and 2 had
experienced a greater number of infection waves by the time of prediction and still had a slightly greater number
of cases per day. In addition, model 2 appeared to have better performance in countries with a greater number
of daily cases per day. As model 2 excluded the use of variables such as the number of tests done, it might appear
that such variables are less useful and could introduce noise when the number of cases was relatively high. Model
1 appeared to produce better predictions over a greater variety of trends in daily cases (increasing, out of COVID
wave, declining cases), which could suggest better generalizability across country profiles.

Figures 5 and 6 show the scatter plot of ranking in terms of percentage error, and absolute percentage error
respectively. There were some countries in which Model 1 performed better (Moldova, Jordan, Croatia, Switzer-
land), and which Model 2 performed better (Czechia, UK, Turkey, Germany). The charts showing the predictions
and actual cases for these seven countries are in Supplementary Material 2. In both cases, the poorer-performing
model tended to overpredict the number of cases. However, Models 1 and 2 performed more poorly under differ-
ent scenarios. Model 1 wrongly predicted that the rise in cases would continue when cases were at the peak and
about to decline (Czechia, UK), while Model 2 provided higher estimates during a declining phase of infections
(Moldovia, Jordan, Croatia, Switzerland).

Limitations and strengths
The models’ limitations are their restricted applicability only on some outbreak stages and with the availability
of enough data. During model development, it was assumed that the intensity and coverage of surveillance and
testing were consistent throughout the whole period as well as across the different countries, which realistically
may not be possible due to a potential shortage of resources. With the roll-out of vaccination programmes, daily
number of new cases is expected to decrease with the same input variables. Therefore, the validation was only
performed using data collected before 31 January 2021, when the vaccination campaign has just started globally.
On the other hand, the emergence of new virus variants with different transmissibility could also impact the
performance of the models. The Omicron variant had become the dominant strain of the virus and is known to
be more transmissible but less deadly. Nevertheless, the availability of open-source data and previous training
of the model developed may make it useful in forecasting for outbreaks of a similar nature, especially during
the early stages of an outbreak. The model with fewer inputs performed reasonably well compared to the model
with more inputs, suggesting that in the case of fewer data available, a reasonable forecast could still be obtained.
Nevertheless, given the varying results, it is recommended that individual models with individual sets of variables
be trained specifically in those countries, using all variables as a starting point.

The strength of the models is that they draw upon readily available data on a country’s national, healthcare,
social and economic status to generate predictions, and have been validated on 84 countries with more than

Model 1 (more variables) Model 2 (fewer variables) Classical Model (ARIMA)
MAPE MAE RMSE Percentage error (%) MAE RMSE Percentage error (%) MAE RMSE Percentage error (%)
Min o 56 68 0 66 78 o 50 65 o
25P o 422 486 18 403 478 16 290 363 11
Median 1 710 881 33 865 969 34 581 696 32
75P 1 2085 2580 59 2412 2786 66 2625 3423 53
Max 1.81E+19 44,250 52,940 166 47,506 55,796 191 88,363 98,098 462

Table 5. Summary by MAE, MSE, Percentage Error (countries with more than 10,000 total cases over
predicted period).
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Model 1
Average cases per day during prediction Number of infection
Top 5 countries with best results | period In or out of infection wave Part of infection wave waves
1 Montenegro 438 In Increasing 4
2 Belgium 2150 Out NA 3
3 Slovakia 2120 In Declining 2
4 Paraguay 836 In Increasing 2
5 Estonia 507 In Declining 2
Average cases per day during prediction Number of Infection
Top 5 countries with worst results | period In or out of infection wave Part of infection wave waves
1 Turkey 7386 Out NA 1
2 Denmark 869 In Declining 2
3 Malawi 697 In Increasing-peak-declining 1
4 Ghana 502 In Increasing 2
5 Mozambique 790 In Increasing 2
Model 2
Average cases per day during prediction Number of infection
Top 5 countries with best results | period In or out of infection wave Part of infection wave waves
1 Pakistan 2040 In Declining 2
2 Germany 13,914 In Declining 2
3 Estonia 507 In Declining 2
4 Slovakia 2120 In Declining 2
5 United Kingdom 37,476 In Declining 3
Average cases per day during prediction Number of infection
Top 5 countries with worst results | period In or out of infection wave Part of infection wave waves
1 Switzerland 1884 In Declining 2
2 Croatia 630 In Declining 1
3 Denmark 869 In Declining 2
4 Georgia 960 In Declining 1
5 Jordan 943 In Declining 1

Table 6. Top 5 countries (more than 10,000 total cases over prediction period) with best and worst
performance by percentage error with Models 1 and 2.

10,000 total cases over the prediction period that are different geographically, politically, and culturally. By run-
ning the model on 84 countries, an estimate of the maximum possible error is obtained, allowing for planning of
best and worst case scenarios. An additional strength of the models is the ability to generate predictions fourteen
days in advance, without knowledge of the number of cases or changes in the upcoming thirteen days. As such,
these predictions would be useful for facilitating the better allocation of resources and containment planning
by healthcare providers and policymakers over a longer time horizon.

Discussion
Previous work has been done on COVID-19 forecasting using both classical and machine learning methods.
Miralles-Pechudn et al. compared the performance of state-of-the-art machine learning algorithms, such as
long-short-term memory networks, against that of online incremental machine learning algorithms to predict
the coronavirus cases for the 50 countries with the most cases during 2020 ?’. Kasilingam et al. used exponential
growth modelling studies to understand the spreading patterns of SARS-CoV-2 and identify countries that
showed early signs of containment until March 26, 2020 %. Saba et al. applied time-series and machine learning
models to forecast daily confirmed infected cases and deaths due to COVID-19 for countries under various types
of lockdown (partial, herd, complete) ?°. While these studies used machine learning and acknowledged the impact
of containment measures on the daily case numbers, our study is novel in terms of the variates used and approach.

To our best knowledge, this study is the first that leverages open-source data including flight data to perform
COVID-19 time series forecasting on 190 countries using a machine learning approach. Only data up to 31
January 2021 could be accessed at the time the analysis was conducted. The model was able to predict the total
number of cases across a period of 14 days in advance from 9 Jan 2021 to 31 Jan 2021 with a median of 35%
error amongst countries with more than 10,000 cases over the predicted period, or an average of 434 new cases
per day. When tested on countries with more than 10,000 cases over the predicted period, maximum error was
much smaller for the Bi-LSTM model than a classical ARIMA model, suggesting that using more variables and
machine learning methods could help to minimise the maximum error.

The model was developed in 190 countries but validated over 84 countries with more daily cases. Further
fine-tuning of the models to create a country-specific model is warranted given the varying results across dif-
ferent countries.
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Ranking scatter plot - countries with more than 10,000 total daily
new cases over prediction period
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Figure 5. Ranking scatterplot of 84 countries.

Percentage error scatter plot - countries with more than 10,000 total
daily new cases over prediction period
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Figure 6. Percentage error scatterplot of 84 countries.
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Upon analysis of the key characteristics of the top five countries with best and worst performance found that
countries with the best performance in terms of percentage error had experienced more waves of COVID-19
infections prior, such that the prediction method would be more suitable for countries who had more historical
data for training on. Cases were on the decline for most countries, and thus the model might be better in pre-
diction when the trend in daily cases is stable and less accurate in predicting sudden surges 14 days in advance.

The models in our study were trained and tested in isolation on each country, that is, model weights obtained
from training on one country were not used for prediction on another country. Given that the models performed
relatively well on countries which had experienced earlier of outbreaks, one area for future work would be to
investigate if pre-training the model on countries with more cases and fine-tuning it on another country with
fewer would produce better results. Model 1 appeared to generate more reliable estimates across a variety of
stages of COVID infections, suggesting that generally Model 1 should be used as a default model for all countries
first. However, Model 2 seemed to generate better predictions for countries with higher daily cases, suggesting
a more parsimonious model could be used instead to achieve better accuracy.

In addition, given the tendency of Model 1 to predict sharp increases when cases were on the decline, any
sharp increases predicted by Model 1 should be further substantiated with information on the current situation
in the country. As Model 2 tended to overpredict the number of cases during a decline, predictions from model
2 may be taken as an upper bound prediction, rather than the actual number when cases are starting to decline.

As discussed, there are some limitations of this study due to limitations in data availability. Underlying factors
may have been missed when data were obtained, adding a degree of uncertainty in the predictions. An example
of this is that daily case counts may be drastically high during the forecast phase with the ease of restrictive
measures, and these pieces of information may not be present in historical data. It is also unrealistic to fully
account for these potential uncertainties, which directly affect the performance of predictive models and cause
inaccurate predictions of future cases.

Forecasts can provide potentially useful information to facilitate better allocation of resources and contain-
ment planning by healthcare providers and help policymakers manage the consequences of COVID-19 over a
longer time horizon. For future work, an ensembling approach to combine both models and potentially other
time-series candidate models can be explored. This stems from our observation that a single model might not be
able to capture and predict the complex nature of the virus transmission, and a combination of different models
will be able to account for the inherent weaknesses of each candidate model. Additionally, for future pandemics
involving new variants or viruses, there is potential to apply transfer learning to model them, utilizing the pre-
trained bidirectional LSTM developed in this work. This may be able to speed up prediction efforts in a bid to
curb the viral spread effectively.

The approach of our study is both model-driven and data driven. While input variables had been selected
after literature review on the factors affecting COVID-19 transmission, the data-driven aspect came from the
daily data that were provided for each country that was used to fine-tune the model. We believe the data science
approach presented in this paper can be generalised for other time-series forecasting applications which use
multivariate data.

Conclusion

A deep-learning approach using Bi-LSTM architecture and open-source data was developed to forecast the new
daily number of COVID-19 cases 14 days in advance across 190 countries during the early phase of a pandemic
and evaluated using absolute percentage error. The model with fewer variables performed reasonably well com-
pared to the model with more inputs. A deep-learning approach using Bi-LSTM architecture and open-source
data can be used as a starting point for forecasting the new daily number of COVID-19 cases 14 days in advance
and fewer variables could potentially be used without impacting prediction accuracy.

Data availability

The datasets generated during and/or analysed during the current study are available from the Johns Hopkins
University research database (github.com/CSSEGISandData/COVID-19), Our World in Data (ourworldindata.
com) and OAG (oag.com).

Code availability
Software application or custom code: The code that support the findings of this study are available from the
corresponding author upon reasonable request.
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