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Random forest method
for estimation of brake specific fuel
consumption

Qinsheng Yun2*, Xiangjun Wang'*?, Chen Yao? & Haiyan Wang?

The internal combustion engine is a widely used power equipment in various fields, and its energy
utilization is measured using brake specific fuel consumption (BSFC). BSFC map plays a crucial role

in the analysis, optimization, and assessment of internal combustion engines. However, due to cost
constraints, some values on the BSFC map are estimated using techniques like K-nearest neighbor,
inverse distance weighted interpolation, and multi-layer perceptron, which are recognized for

their limited accuracy, particularly when dealing with distributed sampled data. To address this, an
improved random forest method is proposed for the estimation of BSFC. Polynomial features are
employed to increase higher dimensions of features for random forest by nonlinear transformation,
and critical parameters are optimized by particle swarm optimization algorithms. The performance of
different methods was compared on two datasets to estimate 20%, 30%, and 40% of BSFC data, and
the results reveal that the method proposed in this paper outperforms other common methods and is
suitable for estimating the BSFC map.

List of symbols
E (Effective) work potential
E, Exergy

Ey Energy of a system

K  Kelvin temperature scale

S Entropy

T Temperature or Celsius temperature scale
W Effective work

The internal combustion engine finds extensive application in automobiles, ships, agriculture, modern industry,
and construction machinery. It operates by converting gas expansion into mechanical energy and is considered
the most promising product for energy conservation and emission reduction. To measure its energy efficiency,
the brake specific fuel consumption (BSFC) is used. This refers to the fuel consumption of the engine per kilo-
watt-hour of work and is crucial for improving the engine’s economy and thermal efficiency as a heat engine'?.
The BSFC mayp is generated by plotting the fuel consumption against the engine speed and load on the X and Y
axes, respectively, over the engine’s operating range. The map serves as an important tool for evaluating engine
performance and enhancing its design and efficiency®*.

The BSFC map is a widely used tool in the analysis, optimization, and control of internal combustion engines.
It serves multiple purposes, the first of which is to analyze engine performance and predict fuel consumption.
This is exemplified by the analysis of a two-circuit bottom cycle system for a diesel engine®, where fine-grain fuel
consumption is predicted using the BSFC map®. The BSFC map can also be used to optimize fuel consumption
and reduce engine emissions. For instance, in the automotive industry, the BSFC map is utilized to control diesel
engines for minimum fuel consumption’ and to obtain the optimal operating mode for the highest economic
standard®. In addition, the BSFC map is helpful in studying the overall arrangement and system design of internal
combustion engines, such as in the modeling and scheduling of fuel-efficient ships’.

The BSFC map is an essential tool for internal combustion engine research, and its accurate representation is
crucial for further development in this field. Accurate mapping of the BSFC map requires precise measurement
of the BSFC, but in practice, some values can only be estimated due to cost and other constraints. Common
calculation methods include the K-nearest neighbor (KNN) method, polynomial regression, inverse distance
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weighted (IDW) method, ordinary kriging (OK) method, and multi-layer perceptron (MLP) method. However,
these methods are known to have large errors in estimating uniformly distributed data'®. This is particularly
problematic when drawing high-resolution prediction maps for weather data'!, where accuracy is essential.
Research has shown that these common methods are insufficient for data estimation, especially when the sam-
pled data is intimidatingly distributed, as reported in many fields such as agriculture and mining'*"'%. Recently,
machine learning-based methods have become increasingly popular in various fields, including medical imaging
and energy'®. The random forest (RF) method, as an ensemble learning method, uses a decision tree classifier
to achieve integrated decision-making'é. Compared to other machine learning methods, this method has low
computation requirements and high precision and is not sensitive to multicollinearity. It also demonstrates good
robustness to missing and unbalanced data!®-"3. In this regard, an improved RF method has been introduced in
this study to enhance the accuracy of BSFC estimation, marking the first application of this method in estimating
the BSFC map. The results show that it outperforms other common methods on two different datasets. Therefore,
it is a suitable method for estimating the BSFC map.

Methods for the estimation of BSFC

The aim of calculating BSFC is to predict the fuel consumption rate of an internal combustion engine under
unknown operating conditions by learning the relationship between the fuel consumption rate and the known
operating conditions. The relationship between the operating conditions and fuel consumption rate is usually
determined through experiments. However, experimental limitations such as cost and conditions result in a
limited amount of data. Accurately estimating fuel consumption under different operating conditions is crucial
for fuel consumption control, which is a critical task in practical internal combustion engine work. Therefore,
predicting fuel consumption under varying operating conditions is a fundamental task for optimizing internal
combustion engines.

Consider the operating state of an internal combustion engine is represented by the combined measured
state variables such as speed and power, denoted as x. The corresponding fuel consumption rate of the engine,
denoted as y, and D = {(x1, 1), (%2, ¥2), ..., (XN, ¥~)}. The task of estimating BSFC involves determining the fuel
consumption rate, denoted as y, that corresponds to the unmeasured state variables, denoted as x, based on the
dataset D. This problem involves establishing a mapping between the input variable and the output variable, and
then using this mapping to predict the output value y for a given input value x. This problem can be classified
as either a regression problem or an interpolation problem. There are several methods commonly used to solve
this problem, including the KNN method, IDW method, OK method, and MLP method. The introductions are
provided for each of these methods below.

KNN method

The KNN method is a conventional and efficient machine learning technique that operates on a simple concept.
It calculates the average values of the points located in close proximity to the estimated points in the known
dataset. Due to its speed and simplicity, the KNN method has found its application in various interpolation
scenarios, such as cloud edge computing'’.

IDW method

The IDW method is a conventional and efficient technique for interpolation. Its fundamental concept involves
assigning higher weights to the points in the training set closer to the interpolation points. Let the coordinates
of n known points be (X;, Y, Z;), and i=1, 2, 3, ..., n, then the z value at the point (x, y, z) is given as

7 x=Xpy=Y;
z(x,y) = { S Zid? (1)

) .
Y1 d; otherwise

where d;” 2is the inverse of the Euclidean distance from (x, y) to (X;, Y;) squared. The weight in this method fol-
lows a normalization condition, and it is evident that the closer a point is to the interpolation point, the higher
the weight assigned to it.

OK method

The OK method is based on the assumption that the data space has uniform expectations and variance. It uses
optimal estimation to obtain the data for unknown points. This geostatistical technique is widely applied in fields
such as geographical sciences, environmental sciences, and atmospheric sciences. The OK method has been
utilized for deposit Cu concentration'* and has been reported to provide high-fidelity uncertainty quantification
in composite shell dynamics'®.

MLP method

The MLP method employs cascaded neurons that use a sigmoid nonlinear function to map the input to output,
enabling the approximation of any nonlinear function. Thus, the neural network can approximate any given
multivariable continuous function, including drawing characteristic curves for power machines. This method
is highly flexible and possesses a strong nonlinear mapping ability, making it a broadly applicable computational
technique. It has found use in numerous applications, such as predicting macroclimate index runoff in atmos-
pheric science!? and assessing the sensitivity to flood temperature in geographical research?.
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Improved RF method for the estimation of BSFC

KNN method

RF is a regression method based on trees and has the benefits of strong prediction ability, low overfitting risk, and
high interpretability®®. This method is computationally efficient and exhibits superior speed and accuracy**">.
It has been widely applied in various fields, including environmental science, agriculture, and engineering. For
instance, it has been utilized to classify medical images®' and predict indoor radon concentration®?.

RF is one of the widely used ensemble learning methods. It employs a large number of regression trees for
ensemble learning, with random attribute selection during the training process. The regression tree serves as the
fundamental learner for RF regression. As with other machine learning techniques, in RF, features and labels, are
referred to as X and Y, respectively, while N represents the sample number and D represents the training data set. The
representation is as follows: X = {x1,x2,..., 248}, Y = {y1,52,..., 8L D = {(xl,yl), (xz,yz), oo (oL YN 1
A regression tree corresponds to a partition of the feature space and labels on the partitioned units. Dividing
the feature space into M units Ry, R», ..., Ru, each unit Ry, with a fixed label C,,, the regression tree model can
be represented as

M
f@) =" cml(x € Rp) @)
m=1
[0 & Ry
I(x € Ry) = { lx € R,y) (3)

The square error (E) is used to express the prediction error of the regression tree for the training data in the
feature space whose partitioning method has been determined.

E= 2; i = f (x)? @

This error is used to determine the optimal output value on each unit. In the RF method, the following algo-
rithm is used to generate a regression tree.

Step 1: Select the j-th variable and its value s as the segmentation variable and segmentation point, respectively.
The two regions are defined as follows:

Ri(j,s) = { xIx(i) < s}

Ry(j,s) = { x|x? > s} (5)

Step 2: Solve the following problem to obtain the optimal j and s values. These values divide the input space
into two regions, R; and R,.

min | min Z i —ca)? + ngn Z i — c2)? (6)

J»s c1 R X
x,'eRl (],S) xiERz (],S)

It is easy to understand that the optimal value ¢, of ¢,, on a unit Ry, is the mean of the outputs y; correspond-
ing to all input instances x; in the unit, which can be expressed as

K
N 1
Cn =1 kz_;)’k(xk € Ry) (7)

Step 3: Repeat steps 1 and 2 for R1 and R2, respectively, until the termination condition is reached. The ter-
mination condition can be that each interval contains one sample, all samples have been used, or the number
of units has reached a specified number.

The RF method involves creating a training subset by randomly sampling D and evaluating the error of the
remaining samples. Multiple random trees are then generated using the same method for generating random
trees, except that instead of using all features, a specified number of features are randomly selected. A total of NT

regression trees were generated, denoted as {f; (x), f2(x), . . ., fv, (%) }. If the weight is set to W = {wy1, w2, ..., wn, }
and w; = wp = --- = wn, = 1/NT, the regression prediction result for feature x is
Nr
fx) =) wifix) (®)

i=1

It is evident that the diversity in RF integration arises not only from sample disturbances but also from
attribute disturbances. This results in a greater variation between individuals, leading to strong adaptability and
anti-interference ability toward the data.
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Improved RF method
In the RF algorithm, decision trees are generated directly from the features. In machine learning, adding some
nonlinear features of input data can be an effective way to increase the complexity of the model. Therefore, this
study introduces polynomial features that can generate higher dimensions of features and terms related to each
other. Polynomial features are a method of increasing dimensionality and performing nonlinear transforma-
tions in machine learning. It combines and expands the original features, which improves the model’s expression
ability and fitting effect.

Let the feature vector be x = [x1, X2, . . ., X ], and define the feature of a polynomial of degree 0 as ¢ (x) = 1.
The d-th polynomial feature can be represented by the following iterative formula.

—1
Pa(x) = [pg_1(x) 2 x} 7'y o0 X o X0

=[¢a-1(x) ¢;(x)]

qﬁ; (x) is the row vector, that contains one or more variables from all possible x1, x2, . . . , X, variables, with a
degree of d as a monomial expression.

When the RF method is used to estimate BSFC, the d-degree polynomial feature ¢4 (x) of feature x serves as
the input feature of the RF regression model. This can incorporate more combinations of original features into
the consideration of generating decision trees, enhancing their fitting and expression abilities.

The polynomial feature ¢4(x;) of each feature x; is used to form a new training set
D4(D) = {(Pa(x1),¥1)> (Pa(x2),¥2), . . ., (Pa(xN), yn)}. The RF model F is trained with ®4(D), and the features
with a proportion of p in all features are employed when the nodes split.

For a given feature vector x, and its polynomial feature, denoted by ¢, (x), the predicted result value
y = F(¢4(x)) is obtained using model F. The map from feature vector x to y is called a polynomial feature RF
model f4 ) (x) with hyperparameters (d, p).

)

Parameter optimization based on particle swarm algorithm
When polynomial features are introduced, the feature dimension for the feature vector x = [x1,x2, ..., X, ]and
polynomial feature ¢4 (x) increases from m to cd g = (m+d)! / (d!m!). However, too many polynomial features
can cause slow training due to a large number of feature dimensions and may lead to overfitting, while too few
features can result in underfitting. Thus, the degree d of the polynomial feature needs to be selected carefully.
Similarly, in decision tree generation, the parameter p represents the proportion of features considered to the
total number of features. Too many features can lead to model complexity, which can be affected by noise and
randomness, while too few features may cause under-fitting, making it difficult to capture complex relationships
in the data. Therefore, when polynomial features are introduced, p needs to be selected more carefully.
Since both p and d are critical parameters, particle swarm optimization algorithms can be considered to
optimize their combination. The object function is as follows.

N
1
Ld,p) = > i — fuap ) (10)
i=1

The optimization process begins with initialization, where the total number of particles and the number of
iterations are specified. Each particle is randomly assigned a position pi={pi, di} and a velocity vi={v,; v;}. The
objective function of each particle is then calculated to obtain the individual optimal solution of that particle,
and the position of the particle with the smallest objective function is considered the global optimal solution.

In each iteration, the following calculations are performed.

For the i-th particle, the objective function of its particle is calculated. If the objective function result is less
than the objective function at the position g@*! = {gbest, gsf“} of the individual optimal solution, update the
individual optimal solution to the current posmon ff the objective function result is less than the objective
function at the global optimal solution position gt = {gbe“ be“} update the global optimal solution to the
current position. The velocity and position of the partlcles are updated as

Vpi <= WVpi + C11 (pb“t —pi)+ czrz(gb“t —pi) (11)
vai < ovgi + cir (phE — di) + cara (g5 — (12)
Di < pi + Vpi (13)
di < di +vg; (14)

In the above equation, w is the inertia weight, generally set to 0.9. ¢; and ¢, are the acceleration coefficients,
generally set to 2.0. r; and r, are randomly selected from [0 1] at each update.
When the maximum number of iterations is reached, g?¢ is the optimal parameter of p and d.

Experiments and results

Experimental data

The data sets used in this paper were obtained from references®*?, The data sets actual measurements of two
gasoline internal combustion engines, including speed, power and fuel consumption rate. The two engines
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produced a total of 52 and 80 measured data points, respectively. Tables 1 and 2 show the Speed, power and fuel
consumption rate of the engines.
Figures 1 and 2 show the distribution of the first fuel engine in the speed-power plane and the distribution
of the speed-power-fuel consumption in the three-dimensional space.
Figures 3 and 4 show the distribution of the second fuel engine in the speed-power plane and the distribution
of the speed-power-fuel consumption in the three-dimensional space.

Evaluation index

In this paper, the following indicators are used for evaluation: root mean square error (RMSE), normalized mean

square error (NMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and R-squared (R?).

Each indicator is calculated as follows.
The RMSE is defined as:

RMSE = +/MSE (15)

n

1 A
MSE= -3~ (i~ )’ (16)

i=1

where n is the total number of the data to be estimated, yi is the real value to be estimated, and yl is the

estimated value.

To compare the accuracy and degree of variation of different datasets, the NMSE) is proposed to compare
the methods on different datasets. The calculation of NMSE is as follows.

MSE

NMSE = —— )
D

Rpm (r/min)

P(kW) [be (g/kWh) [P(W) [be(gkWh) |P&W) [be(g/kW h)

1200 1400 1600

11.0 214.0 120 [2190 130 [227.0

15.0 191.0 150 2015 150 |214.0

20.0 177.0 20.0 183.0 20.0 192.0

25.0 168.5 25.0 172.0 25.0 178.0

30.0 167.5 30.0 165.5 30.0 169.5

36.0 171.0 35.0 162.5 35.0 165.5
41.0 163.5 40.0 165.0

47.0 171.0

1800 2000 2200

15.0 2235 200 |207.0 180 | 2485

20.0 195.5 30.0 182.5 250  |2145

30.0 174.5 35.0 175.0 35.0 189.5

35.0 170.5 40.0 171.5 45.0 176.5

40.0 169.0 45.0 172.5 50.0 173.0

45.0 169.0 50.0 176.5 55.0 172.5

50.0 171.0 58.0 187.0 60.0 174.5

53.0 174.0 65.0 180.0

2500 / /

20.0 254.5

30.0 211.0

40.0 188.0

50.0 177.0

55.0 175.0

60.0 175.5

65.0 178.5

70.0 185.0

20.0 2545

30.0 211.0

Table 1. Speed, power and fuel consumption rate of first engines®.
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Rpm (r/min)

P(kW) |be(g/kWh) | P(kW) |be(g/kWh) |P(kW) |be (g/kW h)
1400 1600 1800

58.61 222.8 68.54 222.0 76.96 | 226.0
51.51 220.4 61.27 221.7 69.42 | 2253
46.69 2324 55.00 235.4 61.88 226.4
40.77 2285 47.60 226.5 54.47 | 2339
34.63 227.8 40.83 230.5 46.06 | 242.1
29.85 232.6 34.04 236.8 39.35 |283.3
27.16 248.5 27.53 249.1 31.61 |2539
23.05 245.9 20.76 276.1 2490 |2714
17.18 2724 13.99 407.9 16.87 |323.5
11.85 329.7 6.65 487.0 8.69 |468.6
2000 2200 2400

89.13 206.5 96.92 234.7 101.68 |174.2
79.64 231.1 87.45 259.8 90.60 | 242.2
69.68 231.1 77.08 235.5 81.10 |252.1
60.92 233.0 67.17 237.6 71.12 | 287.4
51.18 242.0 56.30 242.8 61.14 | 253.6
42.95 2449 46.72 292.3 51.64 |263.6
33.55 265.0 36.28 2779 40.74 | 290.6
23.98 299.8 26.72 308.7 31.34 | 316.8
2600 2800 /

102.91 256.9 92.53 257.9

93.85 253.7 80.77 295.3

84.48 253.5 71.10 282.4

71.96 260.0 61.66 288.7

61.56 303.8 52.34 301.9

50.86 280.7 42.69 329.7

41.98 300.6 34.77 357.0

31.39 346.6 21.29 475.4

20.77 435.6 15.48 580.3

9.28 812.9 6.57 1080.1

Table 2. Speed, power and fuel consumption rate of second engines.

70 1 .
'Y .
60 'Y 'y
[ ]
'Y 'y
[ ]
50 . ° 'Y .
.
. . ' 'Y
2 40 * ° ° ° °
e o . ° . ° .
304 @ [ ] [ ] [ ] L ] ®
[ ] [ [ [ ]
204 @ [ [ ] L ] ®
[ ]
[ ] [ : [ ]
.
101 ®
1200 1400 1600 1800 2000 2200 2400
n(rpm}

Figure 1. 2D distribution of all collected data for the first BSFC.
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Figure 2. 3D view of all collected data for the first BSFC.
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Figure 3. 2D distribution of all collected data for the second BSFC.
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Figure 4. 3D view of all collected data for the second BSFC.
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The MAE is also used to compare estimation errors. The calculation of MAE is

1 n
MAE = =3 [yi =i (18)

i=1

To evaluate and compare the accuracy of different algorithms and data sets, the MAPE is utilized in this study.

The MAPE is considered more robust than the MAE, as it normalizes the error of each data point and can be
used as an evaluation indicator. It is defined as

yi—Ji

1 n
MAPE = ~ Z .

n (19)

R?is also used to evaluate different estimation methods, representing the proportion of estimated data infor-
mation to original data information. The calculation of R? is as follows.

S (i —31)’
(20)

where y represents the average value of all the data to be estimated. The value range of R? is (— 00, 1]. The closer
R?is to 1, the more accurate the estimation method’s results are. On the contrary, the farther R? is from 1, the
greater the result error of the estimation method. When RZis less than 1, it indicates that the estimation error of
the method is significant, even greater than using the mean as the estimation value.

In this paper, five indicators are used for evaluation, they are RMSE, NMSE, MAE, MAPE, and R%. RMSE
represents the standard deviation between the estimated value and the true value error, while NMSE represents
the percentage of error. MAE represents the average error between the estimated value and the true value, while
MAPE represents the percentage of this error. R? expresses the degree of fit between the data and the regression
model. NMSE and MAPE can serve as the primary performance indicators, while other indicators can serve as
secondary indicators.

Experimental results

To compare different estimation methods, the known data in this study were randomly divided into two groups
at a ratio of 4:1, with 80% of the data being known and the remaining 20% being used for estimation. The data
estimation methods compared in this study include KNN, IDW, OK, MLP, RE, and the proposed RE. The per-
formance indicators compared in this study include RMSE, NMSE, MAE, MAPE, and R2 To reduce the impact
of grouping randomness on statistical results, the experiment was repeated 10 times, using the same ratio for
random grouping each time. After each grouping, the known sample dataset and the estimated dataset used for
testing have different data. The average of the performance metrics of the 10 experiments is used as the final
indicator for performance comparison.

Estimating 20% of BSFC data

Tables 3 and 4 present the performance metrics of various estimation methods on Dataset 1 and Dataset 2 for
estimating 20% of BSFC data, respectively. The reported values in these tables are the average results from ten
experiments. Figures 5 and 6 display the estimated values of different methods for the BSFC of Datasets 1 and
2, respectively. These figures show the actual estimated result data and real data of a single experiment in the
ten experiments.

The results of the experiment conducted on Dataset 1 indicate that the proposed RF method described in this
paper outperforms RF method with an RMSE of 0.46 lower, and it outperforms other methods with an RMSE
of 5.05 lower. And additionally, the other errors are similar, and the R2 value of RF is closest to 1. These indexes
show that the proposed RF has a minimal error and the highest accuracy. Similar results were observed on Dataset
2, the proposed method outperforms other methods with an RMSE of 9.71 lower.

Method RMSE | NMSE | MAE | MAPE |R2

KNN 15.28 0.0079 | 10.72 | 0.054 0.29
IDW 26.39 0.0228 | 10.01 | 0.105 -1.66
OK 19.38 0.0114 | 16.07 | 0.084 -0.22
MLP 13.69 0.0092 | 11.37 | 0.061 -0.24
RF 9.81 0.0032 7.00 | 0.036 0.68
Prposed RF 8.64 0.0025 6.35 |0.032 0.75

Table 3. Performance comparison of different methods on Dataset 1 for estimating 20% of BSFC data.
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Method RMSE |NMSE | MAE |MAPE |R?

KNN 84.19 | 0.0799 47.54 |0.124 0.23
IDW 159.67 | 0.4993 | 134.59 | 0.459 -5.16
OK 92.46 | 0.095 68.47 | 0.209 0.10
MLP 44.09 | 0.0248 36.00 |0.119 0.76
RF 57.68 |0.0388 35.12 | 0.097 0.64
Proposed RF 34.38 |0.0143 23.75 |0.073 0.87

Table 4. Performance comparison of different methods on Dataset 2 for estimating 20% of BSFC data.
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Figure 5. Results of different methods on Dataset 1 for estimating 20% of BSFC data.
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Figure 6. Results of different methods on Dataset 2 for estimating 20% of BSFC data.

Estimating 20% of BSFC data

Tables 5 and 6 present the average performance metrics of various estimation methods on Dataset 1 and Dataset
2 for estimating 30% of BSFC data after ten experiments, respectively. Figures 7 and 8 display the estimated val-
ues of different methods for the BSFC of Datasets 1 and 2 in a single experiment, respectively. The results of the
experiment conducted on Dataset 1 indicate that the proposed RF method described in this paper outperforms
other methods with an RMSE of 0.66 lower. The proposed method outperforms other methods with an RMSE
of 23.84 lower on Dataset 2. All the indexes show that the proposed RF method has a minimal error and the
highest accuracy.

Estimating 40% of BSFC data

Tables 7 and 8 present the average performance metrics of various estimation methods on Dataset 1 and Dataset
2 for estimating 40% of BSFC data after ten experiments, respectively. Figures 9 and 10 display the estimated
values of different methods for the BSFC of Datasets 1 and 2 in a single experimen, respectively. The proposed
RF method described in this paper outperforms other methods with an RMSE of 1.39 lower on Dataset 1. The
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Method RMSE |NMSE | MAE | MAPE |R?
KNN 15.81 0.0076 | 11.53 | 0.060 -0.01
IDW 27.38 0.0302 |22.98 |0.124 -2.75
OK 17.97 0.0097 | 15.42 | 0.083 -0.32
MLP 8.58 0.0026 7.00 | 0.037 0.64
RF 10.34 0.0034 7.89 | 0.042 0.38
Proposed RF 7.92 0.0021 6.30 | 0.033 0.64

Table 5. Performance comparison of different methods on Dataset 1 for estimating 30% of BSFC data.

Method RMSE | NMSE | MAE MAPE | R?

KNN 95.76 | 0.1048 51.53 |0.133 0.06
IDW 143.36 | 0.2790 | 105.11 |0.333 -2.04
OK 102.06 | 0.1220 69.59 |0.210 -0.04
MLP 59.88 | 0.0450 45.53 | 0.148 0.55
RF 61.51 | 0.0465 33.97 |0.094 0.56
Proposed RF 36.04 | 0.0178 21.16 | 0.064 0.86

Table 6. Performance comparison of different methods on Dataset 2 for estimating 30% of BSFC data.
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Figure 7. Results of different methods on Dataset 1 for estimating 30% of BSFC data.
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Figure 8. Results of different methods on Dataset 2 for estimating 30% of BSFC data.
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Method RMSE |NMSE | MAE | MAPE |R?
KNN 19.95 0.0119 | 13.76 | 0.070 -0.26
IDW 25.97 0.0226 |20.89 |0.111 -1.37
OK 20.34 0.0121 | 15.96 | 0.083 -0.31
MLP 17.24 0.0114 | 14.20 | 0.076 -0.02
RF 10.93 0.0037 7.60 | 0.039 0.63
Proposed RF 9.54 0.0028 6.55 | 0.033 0.73

Table 7. Performance comparison of different methods on Dataset 1 for estimating 40% of BSFC data.

Method RMSE | NMSE | MAE MAPE | R?

KNN 92.66 | 0.0952 56.46 |0.158 0.08
IDW 159.96 | 0.3705 | 127.32 | 0.429 -3.23
OK 94.46 | 0.0988 69.50 |0.214 0.04
MLP 59.27 |0.0412 48.50 | 0.159 0.61
RF 72.29 | 0.0593 39.27 |0.105 0.43
Proposed RF 41.02 | 0.0196 25.61 |0.078 0.80

Table 8. Performance comparison of different methods on Dataset 2 for estimating 40% of BSFC data.
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Figure 9. Results of different methods on Dataset 1 for estimating 40% of BSFC data.
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Figure 10. Results of different methods on Dataset 2 for estimating 40% of BSFC data.
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proposed method outperforms other methods with an RMSE of 18.25 lower on Dataset 2. All the indexes show
that the proposed RF has a minimal error and the highest accuracy.

The performance of different methods was compared on two datasets to estimate 20%, 30%, and 40% of BSFC
data. All performance indicators indicate that the improved method proposed in this paper is the most accurate.
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Figure 11. Comparison of NMS and MAPE with standard deviation.
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Comparison of NMSE and MAPE

In order to analyze the distribution of performance indicators, the standard deviation of evaluation indicators
is calculated. The two most important indicators, NMSE and MAPE, were selected to draw Fig. 11 and added
to the paper. In this graph, bar charts with different methods, datasets, and estimated proportions of data were
drawn, especially with standard deviations marked in the graph.

From Fig. 11, it can be seen that the improved random forest method proposed in this paper has the minimum
average NMSE and MAPE on both dataset 1 and dataset 2. The sample standard deviations of NMSE and MAPE
are also shown in the figure, indicating that the proposed method also has the smallest sample standard deviation.
From Fig. 11, it can be seen that the improved random forest method proposed in this paper has the minimum
average NMSE and MAPE on both dataset 1 and dataset 2. The sample standard deviations of NMSE and MAPE
are also shown in the figure, indicating that the proposed method also has the smallest sample standard devia-
tion. This analysis result is consistent with the previous analysis results.

Conclusions

The random forest method was introduced as an alternative approach for estimating brake-specific fuel consump-
tion and was compared to commonly used calculation methods, such as the K-nearest neighbor method, inverse
distance weighted method, ordinary kriging method, and multi-layer perceptron. The experimental results
indicated that the proposed RF method outperformed the other methods in accuracy and precision. Therefore,
it was concluded that the proposed RF method is more suitable for estimating the BSFC map compared to the
other methods.
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