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Random forest method 
for estimation of brake specific fuel 
consumption
Qinsheng Yun 1,2*, Xiangjun Wang 1*, Chen Yao 2 & Haiyan Wang 3

The internal combustion engine is a widely used power equipment in various fields, and its energy 
utilization is measured using brake specific fuel consumption (BSFC). BSFC map plays a crucial role 
in the analysis, optimization, and assessment of internal combustion engines. However, due to cost 
constraints, some values on the BSFC map are estimated using techniques like K-nearest neighbor, 
inverse distance weighted interpolation, and multi-layer perceptron, which are recognized for 
their limited accuracy, particularly when dealing with distributed sampled data. To address this, an 
improved random forest method is proposed for the estimation of BSFC. Polynomial features are 
employed to increase higher dimensions of features for random forest by nonlinear transformation, 
and critical parameters are optimized by particle swarm optimization algorithms. The performance of 
different methods was compared on two datasets to estimate 20%, 30%, and 40% of BSFC data, and 
the results reveal that the method proposed in this paper outperforms other common methods and is 
suitable for estimating the BSFC map.

List of symbols
E	� (Effective) work potential
E0	� Exergy
E00	� Energy of a system
K	� Kelvin temperature scale
S	� Entropy
T	� Temperature or Celsius temperature scale
W	� Effective work

The internal combustion engine finds extensive application in automobiles, ships, agriculture, modern industry, 
and construction machinery. It operates by converting gas expansion into mechanical energy and is considered 
the most promising product for energy conservation and emission reduction. To measure its energy efficiency, 
the brake specific fuel consumption (BSFC) is used. This refers to the fuel consumption of the engine per kilo-
watt-hour of work and is crucial for improving the engine’s economy and thermal efficiency as a heat engine1,2. 
The BSFC map is generated by plotting the fuel consumption against the engine speed and load on the X and Y 
axes, respectively, over the engine’s operating range. The map serves as an important tool for evaluating engine 
performance and enhancing its design and efficiency3,4.

The BSFC map is a widely used tool in the analysis, optimization, and control of internal combustion engines. 
It serves multiple purposes, the first of which is to analyze engine performance and predict fuel consumption. 
This is exemplified by the analysis of a two-circuit bottom cycle system for a diesel engine5, where fine-grain fuel 
consumption is predicted using the BSFC map6. The BSFC map can also be used to optimize fuel consumption 
and reduce engine emissions. For instance, in the automotive industry, the BSFC map is utilized to control diesel 
engines for minimum fuel consumption7 and to obtain the optimal operating mode for the highest economic 
standard8. In addition, the BSFC map is helpful in studying the overall arrangement and system design of internal 
combustion engines, such as in the modeling and scheduling of fuel-efficient ships9.

The BSFC map is an essential tool for internal combustion engine research, and its accurate representation is 
crucial for further development in this field. Accurate mapping of the BSFC map requires precise measurement 
of the BSFC, but in practice, some values can only be estimated due to cost and other constraints. Common 
calculation methods include the K-nearest neighbor (KNN) method, polynomial regression, inverse distance 
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weighted (IDW) method, ordinary kriging (OK) method, and multi-layer perceptron (MLP) method. However, 
these methods are known to have large errors in estimating uniformly distributed data10. This is particularly 
problematic when drawing high-resolution prediction maps for weather data11, where accuracy is essential. 
Research has shown that these common methods are insufficient for data estimation, especially when the sam-
pled data is intimidatingly distributed, as reported in many fields such as agriculture and mining12–14. Recently, 
machine learning-based methods have become increasingly popular in various fields, including medical imaging 
and energy15. The random forest (RF) method, as an ensemble learning method, uses a decision tree classifier 
to achieve integrated decision-making16. Compared to other machine learning methods, this method has low 
computation requirements and high precision and is not sensitive to multicollinearity. It also demonstrates good 
robustness to missing and unbalanced data10–13. In this regard, an improved RF method has been introduced in 
this study to enhance the accuracy of BSFC estimation, marking the first application of this method in estimating 
the BSFC map. The results show that it outperforms other common methods on two different datasets. Therefore, 
it is a suitable method for estimating the BSFC map.

Methods for the estimation of BSFC
The aim of calculating BSFC is to predict the fuel consumption rate of an internal combustion engine under 
unknown operating conditions by learning the relationship between the fuel consumption rate and the known 
operating conditions. The relationship between the operating conditions and fuel consumption rate is usually 
determined through experiments. However, experimental limitations such as cost and conditions result in a 
limited amount of data. Accurately estimating fuel consumption under different operating conditions is crucial 
for fuel consumption control, which is a critical task in practical internal combustion engine work. Therefore, 
predicting fuel consumption under varying operating conditions is a fundamental task for optimizing internal 
combustion engines.

Consider the operating state of an internal combustion engine is represented by the combined measured 
state variables such as speed and power, denoted as x. The corresponding fuel consumption rate of the engine, 
denoted as y, and D = {(x1, y1), (x2, y2), ..., (xN , yN )} . The task of estimating BSFC involves determining the fuel 
consumption rate, denoted as y, that corresponds to the unmeasured state variables, denoted as x, based on the 
dataset D. This problem involves establishing a mapping between the input variable and the output variable, and 
then using this mapping to predict the output value y for a given input value x. This problem can be classified 
as either a regression problem or an interpolation problem. There are several methods commonly used to solve 
this problem, including the KNN method, IDW method, OK method, and MLP method. The introductions are 
provided for each of these methods below.

KNN method
The KNN method is a conventional and efficient machine learning technique that operates on a simple concept. 
It calculates the average values of the points located in close proximity to the estimated points in the known 
dataset. Due to its speed and simplicity, the KNN method has found its application in various interpolation 
scenarios, such as cloud edge computing17.

IDW method
The IDW method is a conventional and efficient technique for interpolation. Its fundamental concept involves 
assigning higher weights to the points in the training set closer to the interpolation points. Let the coordinates 
of n known points be ( Xi ,Yi ,Zi ), and i = 1, 2, 3, …, n, then the z value at the point (x, y, z) is given as

where d−2
i  is the inverse of the Euclidean distance from (x, y) to ( Xi ,Yi ) squared. The weight in this method fol-

lows a normalization condition, and it is evident that the closer a point is to the interpolation point, the higher 
the weight assigned to it.

OK method
The OK method is based on the assumption that the data space has uniform expectations and variance. It uses 
optimal estimation to obtain the data for unknown points. This geostatistical technique is widely applied in fields 
such as geographical sciences, environmental sciences, and atmospheric sciences. The OK method has been 
utilized for deposit Cu concentration14 and has been reported to provide high-fidelity uncertainty quantification 
in composite shell dynamics18.

MLP method
The MLP method employs cascaded neurons that use a sigmoid nonlinear function to map the input to output, 
enabling the approximation of any nonlinear function. Thus, the neural network can approximate any given 
multivariable continuous function, including drawing characteristic curves for power machines. This method 
is highly flexible and possesses a strong nonlinear mapping ability, making it a broadly applicable computational 
technique. It has found use in numerous applications, such as predicting macroclimate index runoff in atmos-
pheric science19 and assessing the sensitivity to flood temperature in geographical research20.

(1)z(x, y) =
{

Zi∑n
i=1 Zid
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i∑n
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Improved RF method for the estimation of BSFC
KNN method
RF is a regression method based on trees and has the benefits of strong prediction ability, low overfitting risk, and 
high interpretability8,9. This method is computationally efficient and exhibits superior speed and accuracy14,15. 
It has been widely applied in various fields, including environmental science, agriculture, and engineering. For 
instance, it has been utilized to classify medical images21 and predict indoor radon concentration22.

RF is one of the widely used ensemble learning methods. It employs a large number of regression trees for 
ensemble learning, with random attribute selection during the training process. The regression tree serves as the 
fundamental learner for RF regression. As with other machine learning techniques, in RF, features and labels, are 
referred to as X and Y, respectively, while N represents the sample number and D represents the training data set. The 
representation is as follows: X = {x1, x2, . . . , xN },Y = {y1, y2, . . . , yN },D = {

(
x1, y1

)
,
(
x2, y2

)
, . . . , (xN , yN )} . 

A regression tree corresponds to a partition of the feature space and labels on the partitioned units. Dividing 
the feature space into M units R1, R2, . . . , RM , each unit RM with a fixed label Cm, the regression tree model can 
be represented as

The square error (E) is used to express the prediction error of the regression tree for the training data in the 
feature space whose partitioning method has been determined.

This error is used to determine the optimal output value on each unit. In the RF method, the following algo-
rithm is used to generate a regression tree.

Step 1: Select the j-th variable and its value s as the segmentation variable and segmentation point, respectively. 
The two regions are defined as follows:

Step 2: Solve the following problem to obtain the optimal j and s values. These values divide the input space 
into two regions, R1 and R2.

It is easy to understand that the optimal value ĉm of cm on a unit Rm is the mean of the outputs yi correspond-
ing to all input instances xi in the unit, which can be expressed as

Step 3: Repeat steps 1 and 2 for R1 and R2, respectively, until the termination condition is reached. The ter-
mination condition can be that each interval contains one sample, all samples have been used, or the number 
of units has reached a specified number.

The RF method involves creating a training subset by randomly sampling D and evaluating the error of the 
remaining samples. Multiple random trees are then generated using the same method for generating random 
trees, except that instead of using all features, a specified number of features are randomly selected. A total of NT 
regression trees were generated, denoted as {f1(x), f2(x), . . . , fNT (x)} . If the weight is set to W = {w1,w2, . . . ,wNT } 
and w1 = w2 = · · · = wNT = 1/NT , the regression prediction result for feature x is

It is evident that the diversity in RF integration arises not only from sample disturbances but also from 
attribute disturbances. This results in a greater variation between individuals, leading to strong adaptability and 
anti-interference ability toward the data.

(2)f (x) =
M∑

m=1

cmI(x ∈ Rm)

(3)I(x ∈ Rm) =
{
0(x /∈ Rm)

1(x ∈ Rm)

(4)E =
∑

xi∈Rm
(yi − f (xi))

2

(5)
R1(j, s) =

{
x|x(j) ≤ s

}
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{
x|x(j) > s

}
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Improved RF method
In the RF algorithm, decision trees are generated directly from the features. In machine learning, adding some 
nonlinear features of input data can be an effective way to increase the complexity of the model. Therefore, this 
study introduces polynomial features that can generate higher dimensions of features and terms related to each 
other. Polynomial features are a method of increasing dimensionality and performing nonlinear transforma-
tions in machine learning. It combines and expands the original features, which improves the model’s expression 
ability and fitting effect.

Let the feature vector be x = [x1, x2, . . . , xm] , and define the feature of a polynomial of degree 0 as φ0(x) = 1 . 
The d-th polynomial feature can be represented by the following iterative formula.

φ′
d(x) is the row vector, that contains one or more variables from all possible x1, x2, . . . , xm variables, with a 

degree of d as a monomial expression.
When the RF method is used to estimate BSFC, the d-degree polynomial feature φd(x) of feature x serves as 

the input feature of the RF regression model. This can incorporate more combinations of original features into 
the consideration of generating decision trees, enhancing their fitting and expression abilities.

The polynomial feature φd(xi) of each feature xi is used to form a new training set 
�d(D) = {(φd(x1), y1), (φd(x2), y2), . . . , (φd(xN ), yN )} . The RF model F is trained with �d(D) , and the features 
with a proportion of p in all features are employed when the nodes split.

For a given feature vector x , and its polynomial feature, denoted by φd(x) , the predicted result value 
ŷ = F(φd(x)) is obtained using model F. The map from feature vector x to ŷ is called a polynomial feature RF 
model f(d,p)(x) with hyperparameters (d, p).

Parameter optimization based on particle swarm algorithm
When polynomial features are introduced, the feature dimension for the feature vector x = [x1, x2, . . . , xm] and 
polynomial feature φd(x) increases from m to Cd

m+d = (m+ d)!
/
(d!m!) . However, too many polynomial features 

can cause slow training due to a large number of feature dimensions and may lead to overfitting, while too few 
features can result in underfitting. Thus, the degree d of the polynomial feature needs to be selected carefully.

Similarly, in decision tree generation, the parameter p represents the proportion of features considered to the 
total number of features. Too many features can lead to model complexity, which can be affected by noise and 
randomness, while too few features may cause under-fitting, making it difficult to capture complex relationships 
in the data. Therefore, when polynomial features are introduced, p needs to be selected more carefully.

Since both p and d are critical parameters, particle swarm optimization algorithms can be considered to 
optimize their combination. The object function is as follows.

The optimization process begins with initialization, where the total number of particles and the number of 
iterations are specified. Each particle is randomly assigned a position pi = {pi, di} and a velocity vi = {vpi, vdi}. The 
objective function of each particle is then calculated to obtain the individual optimal solution of that particle, 
and the position of the particle with the smallest objective function is considered the global optimal solution.

In each iteration, the following calculations are performed.
For the i-th particle, the objective function of its particle is calculated. If the objective function result is less 

than the objective function at the position gbesti = {gbestpi , gbestdi } of the individual optimal solution, update the 
individual optimal solution to the current position. If the objective function result is less than the objective 
function at the global optimal solution position gbest = {gbestp , gbestd } , update the global optimal solution to the 
current position. The velocity and position of the particles are updated as

In the above equation, ω is the inertia weight, generally set to 0.9. c1 and c2 are the acceleration coefficients, 
generally set to 2.0. r1 and r2 are randomly selected from [0, 1] at each update.

When the maximum number of iterations is reached, gbest is the optimal parameter of p and d.

Experiments and results
Experimental data
The data sets used in this paper were obtained from references23,24, The data sets actual measurements of two 
gasoline internal combustion engines, including speed, power and fuel consumption rate. The two engines 

(9)
φd(x) = [ φd−1(x) x

n
1
x
n−1

1
x2 · · · x

n
2
· · · xm−1x

n−1
m x

n
m

]
= [ φd−1(x) φ′

d
(x) ]

(10)L(d, p) = 1

N

N∑

i=1

(yi − f(d,p)(xi))
2

(11)vpi ← ωvpi + c1r1(p
best
pi − pi)+ c2r2(g

best
p − pi)

(12)vdi ← ωvdi + c1r1(p
best
di − di)+ c2r2(g

best
d − di)

(13)pi ← pi + vpi

(14)di ← di + vdi
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produced a total of 52 and 80 measured data points, respectively. Tables 1 and 2 show the Speed, power and fuel 
consumption rate of the engines.

Figures 1 and 2 show the distribution of the first fuel engine in the speed-power plane and the distribution 
of the speed-power-fuel consumption in the three-dimensional space.

Figures 3 and 4 show the distribution of the second fuel engine in the speed-power plane and the distribution 
of the speed-power-fuel consumption in the three-dimensional space.

Evaluation index
In this paper, the following indicators are used for evaluation: root mean square error (RMSE), normalized mean 
square error (NMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and R-squared (R2). 
Each indicator is calculated as follows.

The RMSE is defined as:

where n is the total number of the data to be estimated, yi is the real value to be estimated, and yl is the 
estimated value.

To compare the accuracy and degree of variation of different datasets, the NMSE) is proposed to compare 
the methods on different datasets. The calculation of NMSE is as follows.

(15)RMSE =
√
MSE

(16)MSE = 1

n

n∑

i=1

(
yi − ŷi

)2

(17)
NMSE = MSE

1
n

n∑
i=1

y2i

Table 1.   Speed, power and fuel consumption rate of first engines23.

Rpm (r/min)

P(kW) be (g/kW h) P(kW) be (g/kW h) P(kW) be (g/kW h)

1200 1400 1600

 11.0 214.0 12.0 219.0 13.0 227.0

 15.0 191.0 15.0 201.5 15.0 214.0

 20.0 177.0 20.0 183.0 20.0 192.0

 25.0 168.5 25.0 172.0 25.0 178.0

 30.0 167.5 30.0 165.5 30.0 169.5

 36.0 171.0 35.0 162.5 35.0 165.5

41.0 163.5 40.0 165.0

47.0 171.0

1800 2000 2200

 15.0 223.5 20.0 207.0 18.0 248.5

 20.0 195.5 30.0 182.5 25.0 214.5

 30.0 174.5 35.0 175.0 35.0 189.5

 35.0 170.5 40.0 171.5 45.0 176.5

 40.0 169.0 45.0 172.5 50.0 173.0

 45.0 169.0 50.0 176.5 55.0 172.5

 50.0 171.0 58.0 187.0 60.0 174.5

 53.0 174.0 65.0 180.0

2500 / /

 20.0 254.5

 30.0 211.0

 40.0 188.0

 50.0 177.0

 55.0 175.0

 60.0 175.5

 65.0 178.5

 70.0 185.0

 20.0 254.5

 30.0 211.0



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:17741  | https://doi.org/10.1038/s41598-023-45026-1

www.nature.com/scientificreports/

Table 2.   Speed, power and fuel consumption rate of second engines24.

Rpm (r/min)

P(kW) be (g/kW h) P(kW) be (g/kW h) P(kW) be (g/kW h)

1400 1600 1800

 58.61 222.8 68.54 222.0 76.96 226.0

 51.51 220.4 61.27 221.7 69.42 225.3

 46.69 232.4 55.00 235.4 61.88 226.4

 40.77 228.5 47.60 226.5 54.47 233.9

 34.63 227.8 40.83 230.5 46.06 242.1

 29.85 232.6 34.04 236.8 39.35 283.3

 27.16 248.5 27.53 249.1 31.61 253.9

 23.05 245.9 20.76 276.1 24.90 271.4

 17.18 272.4 13.99 407.9 16.87 323.5

 11.85 329.7 6.65 487.0 8.69 468.6

2000 2200 2400

 89.13 206.5 96.92 234.7 101.68 174.2

 79.64 231.1 87.45 259.8 90.60 242.2

 69.68 231.1 77.08 235.5 81.10 252.1

 60.92 233.0 67.17 237.6 71.12 287.4

 51.18 242.0 56.30 242.8 61.14 253.6

 42.95 244.9 46.72 292.3 51.64 263.6

 33.55 265.0 36.28 277.9 40.74 290.6

 23.98 299.8 26.72 308.7 31.34 316.8

2600 2800 /

 102.91 256.9 92.53 257.9

 93.85 253.7 80.77 295.3

 84.48 253.5 71.10 282.4

 71.96 260.0 61.66 288.7

 61.56 303.8 52.34 301.9

 50.86 280.7 42.69 329.7

 41.98 300.6 34.77 357.0

 31.39 346.6 21.29 475.4

 20.77 435.6 15.48 580.3

 9.28 812.9 6.57 1080.1

Figure 1.   2D distribution of all collected data for the first BSFC.
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Figure 2.   3D view of all collected data for the first BSFC.

Figure 3.   2D distribution of all collected data for the second BSFC.

Figure 4.   3D view of all collected data for the second BSFC.
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The MAE is also used to compare estimation errors. The calculation of MAE is

To evaluate and compare the accuracy of different algorithms and data sets, the MAPE is utilized in this study. 
The MAPE is considered more robust than the MAE, as it normalizes the error of each data point and can be 
used as an evaluation indicator. It is defined as

R2 is also used to evaluate different estimation methods, representing the proportion of estimated data infor-
mation to original data information. The calculation of R2 is as follows.

where y represents the average value of all the data to be estimated. The value range of R2 is (− ∞, 1] . The closer 
R2 is to 1, the more accurate the estimation method’s results are. On the contrary, the farther R2 is from 1, the 
greater the result error of the estimation method. When R2 is less than 1, it indicates that the estimation error of 
the method is significant, even greater than using the mean as the estimation value.

In this paper, five indicators are used for evaluation, they are RMSE, NMSE, MAE, MAPE, and R2. RMSE 
represents the standard deviation between the estimated value and the true value error, while NMSE represents 
the percentage of error. MAE represents the average error between the estimated value and the true value, while 
MAPE represents the percentage of this error. R2 expresses the degree of fit between the data and the regression 
model. NMSE and MAPE can serve as the primary performance indicators, while other indicators can serve as 
secondary indicators.

Experimental results
To compare different estimation methods, the known data in this study were randomly divided into two groups 
at a ratio of 4:1, with 80% of the data being known and the remaining 20% being used for estimation. The data 
estimation methods compared in this study include KNN, IDW, OK, MLP, RF, and the proposed RF. The per-
formance indicators compared in this study include RMSE, NMSE, MAE, MAPE, and R2. To reduce the impact 
of grouping randomness on statistical results, the experiment was repeated 10 times, using the same ratio for 
random grouping each time. After each grouping, the known sample dataset and the estimated dataset used for 
testing have different data. The average of the performance metrics of the 10 experiments is used as the final 
indicator for performance comparison.

Estimating 20% of BSFC data
Tables 3 and 4 present the performance metrics of various estimation methods on Dataset 1 and Dataset 2 for 
estimating 20% of BSFC data, respectively. The reported values in these tables are the average results from ten 
experiments. Figures 5 and 6 display the estimated values of different methods for the BSFC of Datasets 1 and 
2, respectively. These figures show the actual estimated result data and real data of a single experiment in the 
ten experiments.

The results of the experiment conducted on Dataset 1 indicate that the proposed RF method described in this 
paper outperforms RF method with an RMSE of 0.46 lower, and it outperforms other methods with an RMSE 
of 5.05 lower. And additionally, the other errors are similar, and the R2 value of RF is closest to 1. These indexes 
show that the proposed RF has a minimal error and the highest accuracy. Similar results were observed on Dataset 
2, the proposed method outperforms other methods with an RMSE of 9.71 lower.

(18)MAE = 1

n

n∑

i=1

∣∣yi − ŷi
∣∣

(19)MAPE = 1

n

n∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣

(20)R2 = 1−

n∑
i=1

(
yi − ŷi

)2

n∑
i=1

(
yi − y

)2

Table 3.   Performance comparison of different methods on Dataset 1 for estimating 20% of BSFC data.

Method RMSE NMSE MAE MAPE R2

KNN 15.28 0.0079 10.72 0.054 0.29

IDW 26.39 0.0228 10.01 0.105 − 1.66

OK 19.38 0.0114 16.07 0.084 − 0.22

MLP 13.69 0.0092 11.37 0.061 − 0.24

RF 9.81 0.0032 7.00 0.036 0.68

Prposed RF 8.64 0.0025 6.35 0.032 0.75
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Estimating 20% of BSFC data
Tables 5 and 6 present the average performance metrics of various estimation methods on Dataset 1 and Dataset 
2 for estimating 30% of BSFC data after ten experiments, respectively. Figures 7 and 8 display the estimated val-
ues of different methods for the BSFC of Datasets 1 and 2 in a single experiment, respectively. The results of the 
experiment conducted on Dataset 1 indicate that the proposed RF method described in this paper outperforms 
other methods with an RMSE of 0.66 lower. The proposed method outperforms other methods with an RMSE 
of 23.84 lower on Dataset 2. All the indexes show that the proposed RF method has a minimal error and the 
highest accuracy.

Estimating 40% of BSFC data
Tables 7 and 8 present the average performance metrics of various estimation methods on Dataset 1 and Dataset 
2 for estimating 40% of BSFC data after ten experiments, respectively. Figures 9 and 10 display the estimated 
values of different methods for the BSFC of Datasets 1 and 2 in a single experimen, respectively. The proposed 
RF method described in this paper outperforms other methods with an RMSE of 1.39 lower on Dataset 1. The 

Table 4.   Performance comparison of different methods on Dataset 2 for estimating 20% of BSFC data.

Method RMSE NMSE MAE MAPE R2

KNN 84.19 0.0799 47.54 0.124 0.23

IDW 159.67 0.4993 134.59 0.459 − 5.16

OK 92.46 0.095 68.47 0.209 0.10

MLP 44.09 0.0248 36.00 0.119 0.76

RF 57.68 0.0388 35.12 0.097 0.64

Proposed RF 34.38 0.0143 23.75 0.073 0.87

Figure 5.   Results of different methods on Dataset 1 for estimating 20% of BSFC data.

Figure 6.   Results of different methods on Dataset 2 for estimating 20% of BSFC data.
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Table 5.   Performance comparison of different methods on Dataset 1 for estimating 30% of BSFC data.

Method RMSE NMSE MAE MAPE R2

KNN 15.81 0.0076 11.53 0.060 − 0.01

IDW 27.38 0.0302 22.98 0.124 − 2.75

OK 17.97 0.0097 15.42 0.083 − 0.32

MLP 8.58 0.0026 7.00 0.037 0.64

RF 10.34 0.0034 7.89 0.042 0.38

Proposed RF 7.92 0.0021 6.30 0.033 0.64

Table 6.   Performance comparison of different methods on Dataset 2 for estimating 30% of BSFC data.

Method RMSE NMSE MAE MAPE R2

KNN 95.76 0.1048 51.53 0.133 0.06

IDW 143.36 0.2790 105.11 0.333 − 2.04

OK 102.06 0.1220 69.59 0.210 − 0.04

MLP 59.88 0.0450 45.53 0.148 0.55

RF 61.51 0.0465 33.97 0.094 0.56

Proposed RF 36.04 0.0178 21.16 0.064 0.86

Figure 7.   Results of different methods on Dataset 1 for estimating 30% of BSFC data.

Figure 8.   Results of different methods on Dataset 2 for estimating 30% of BSFC data.
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Table 7.   Performance comparison of different methods on Dataset 1 for estimating 40% of BSFC data.

Method RMSE NMSE MAE MAPE R2

KNN 19.95 0.0119 13.76 0.070 − 0.26

IDW 25.97 0.0226 20.89 0.111 − 1.37

OK 20.34 0.0121 15.96 0.083 − 0.31

MLP 17.24 0.0114 14.20 0.076 − 0.02

RF 10.93 0.0037 7.60 0.039 0.63

Proposed RF 9.54 0.0028 6.55 0.033 0.73

Table 8.   Performance comparison of different methods on Dataset 2 for estimating 40% of BSFC data.

Method RMSE NMSE MAE MAPE R2

KNN 92.66 0.0952 56.46 0.158 0.08

IDW 159.96 0.3705 127.32 0.429 − 3.23

OK 94.46 0.0988 69.50 0.214 0.04

MLP 59.27 0.0412 48.50 0.159 0.61

RF 72.29 0.0593 39.27 0.105 0.43

Proposed RF 41.02 0.0196 25.61 0.078 0.80

Figure 9.   Results of different methods on Dataset 1 for estimating 40% of BSFC data.

Figure 10.   Results of different methods on Dataset 2 for estimating 40% of BSFC data.
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proposed method outperforms other methods with an RMSE of 18.25 lower on Dataset 2. All the indexes show 
that the proposed RF has a minimal error and the highest accuracy.

The performance of different methods was compared on two datasets to estimate 20%, 30%, and 40% of BSFC 
data. All performance indicators indicate that the improved method proposed in this paper is the most accurate.

Figure 11.   Comparison of NMS and MAPE with standard deviation.
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Comparison of NMSE and MAPE
In order to analyze the distribution of performance indicators, the standard deviation of evaluation indicators 
is calculated. The two most important indicators, NMSE and MAPE, were selected to draw Fig. 11 and added 
to the paper. In this graph, bar charts with different methods, datasets, and estimated proportions of data were 
drawn, especially with standard deviations marked in the graph.

From Fig. 11, it can be seen that the improved random forest method proposed in this paper has the minimum 
average NMSE and MAPE on both dataset 1 and dataset 2. The sample standard deviations of NMSE and MAPE 
are also shown in the figure, indicating that the proposed method also has the smallest sample standard deviation. 
From Fig. 11, it can be seen that the improved random forest method proposed in this paper has the minimum 
average NMSE and MAPE on both dataset 1 and dataset 2. The sample standard deviations of NMSE and MAPE 
are also shown in the figure, indicating that the proposed method also has the smallest sample standard devia-
tion. This analysis result is consistent with the previous analysis results.

Conclusions
The random forest method was introduced as an alternative approach for estimating brake-specific fuel consump-
tion and was compared to commonly used calculation methods, such as the K-nearest neighbor method, inverse 
distance weighted method, ordinary kriging method, and multi-layer perceptron. The experimental results 
indicated that the proposed RF method outperformed the other methods in accuracy and precision. Therefore, 
it was concluded that the proposed RF method is more suitable for estimating the BSFC map compared to the 
other methods.

Data availability
All data generated or analyzed during this study are included in this published article.
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