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OPEN Chaotic vibration control

of a composite cantilever beam

Xiaopei Liu & Lin Sun™

In this research, an adaptive control strategy adapted from fuzzy sliding mode control is established
and applied in chaotic vibration control of a multiple-dimension nonlinear dynamic system of a
laminated composite cantilever beam. The third order shearing effect on the vibration of the beam is
considered in the nonlinear dynamic model establishment, and the Hamilton principle as well as the
Galerkin method is employed. It is discovered that a multi-dimensional nonlinear dynamic system of
the cantilever beam needs to be considered for accurate vibration estimation. Therefore, the control
strategy appropriate for the chaotic vibration control of a multiple-dimension system of the laminated
composite beam is necessary, and then proves to be effective in chaotic vibration control in numerical
simulation.

Advanced composite materials, featuring high strength, corrosion resistance, fatigue resistance and other advan-
tages, are widely used in aerospace, civil engineering, mechanical engineering, and other engineering fields'.
Some laminated composite structures, which can be simplified as cantilever beam models?, are applied in engi-
neering components, such as aircraft wings, turbine engine blades, helicopter rotors and solar panels. However,
the cantilever beams are prone to large deformation under external excitation, leading to nonlinear vibration
problems that have negative impacts on the stability and safety of the system. Therefore, it is necessary to study
the nonlinear vibration control of laminated composite cantilever beams.

Over the past decades, many researchers have studied the linear and nonlinear dynamics of cantilever beams.
In general, linear structural models are constructed based on idealized engineering designs and they may not
accurately represent all the aspects of the corresponding structures in practice®. Younis and Nayfeh* proved
that an inaccurate dynamic modeling of the system nonlinearities may result in an erroneous prediction of the
dynamic behaviors. Particularly, nonlinear problems often occur in slender structures with large displacements,
large rotations, and small strains. Bahari® et al. have verified that the nonlinear analysis of a slender beam sub-
jected to point load is closer to the experimental results comparing with the linear analysis.

Laplace transform and Adomian decomposition method (LADM) was employed to investigate semi-analytical
solutions of Euler-Bernoulli beam equation in order to describe a uniform flexible cantilever beam®. Repka et al.®
applied the Timoshenko beam model in the analysis of the flexoelectric effect for a cantilever beam under large
deformations, and considered the geometric nonlinearity with von Karmdn strains. Meanwhile, some methods,
such as a homotopy analysis method’, a rational elliptic balance method?, an enriched multiple scales method®,
and an improved homotopy analysis method'®!}, etc., have been gradually developed to solve nonlinear dif-
ferential equations.

Naturally, researchers have also conducted a lot of research on nonlinear vibration of laminated composite
cantilever beams. Roeser'? et al. developed the governing equations of motion of composite SPM/SPL cantilever
beam based on the Euler-Bernoulli beam theory for transverse vibrations. Preethi et al."* established the model
of a nonuniform rotating laminated nano cantilever beam using the Timoshenko beam theory. Zhang et al.?
analyzed the nonlinear vibrations of laminated composite piezoelectric cantilever plates subjected to transverse
and in-plane excitations based on Reddy’s third-order plate theory and Hamilton’s principle. Guo et al."* consid-
ered Reddy’s third-order theory when conducting nonlinear dynamic analysis of macrofiber composite (MFC)
laminated shells. Daros' derived a fundamental solution for the harmonic vibration of asymmetrically laminated
composite plates based on Reddy’s third-order shear deformation theory. Amabili et al.'® developed a refined
third-order shear deformation theory to establish the model of a laminated composite beam and conducted an
experimental verification. The studies above contribute to the nonlinear vibration control of cantilever structures
considering 3rd order shearing effects.

In order to control vibrations of various nonlinear/linear dynamic systems derived from engineering
different control strategies have been developed*'. Among those control strategies, one strategy, namely the slid-
ing mode control (SMC), was proposed in 1992 by Utkin?, and has been wildly applied in engineering vibration
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control along with other SMC based strategies. In 2019, Mobki et al.?* applied the SMC in a closed-loop control of
a one-dimensional nonlinear dynamic system of a capacitive micro structure subjected to electrostatic forces; in
2020, Azizi** used the SMC to reduce the unwanted vibrations of buildings subjected to earthquakes; in the next
year, Azizi and Mobki*® employed the SMC for active control of car suspension systems. Based on the existing
SMC, Mobki et al.* designed an adaptive control scheme to control the vibration of a one-dimensional nonlinear
dynamic system of a micro capacitor in 2020; in 2022, Azizi et al.”’ also developed a nonsingular terminal SMC
strategy to control the vibration of a one-dimensional nonlinear dynamic system of a micro structure. In order
to mitigate the effects of uncertainties in dynamic systems, fuzzy rules were introduced into the traditional SMC
in 2006, and hence a new control strategy namely the fuzzy sliding mode control (FSMC) was developed for
Duffing-Holmes chaos synchronization with uncertainties®; in 2011, Yau et al.*® used the FSMC approach to
control the chaotic vibration of a one-dimensional nonlinear dynamic system of a micro resonator; in 2022, Wu
et al.** applied the FSMC to stabilize Makovian jump nonlinear systems; in the same year, Ramakrishnan et al.’!
also applied the FSMC to synchronize a chaotic oscillator in a fractional-order circuit. Based on the FSMC,
Kuo*? proposed an adaptive FSMC for Sprott’s chaotic system synchronization in 2007; furthermore, Rajaei
et al.** developed an adaptive self-organizing FSMC scheme for a one-dimensional nonlinear dynamic system
of a continuum nanobeam in 2022.

It should be noticed that: in the last decade, the existing FSMC based schemes can only be applied in nonlinear
vibration control of one-dimensional dynamic systems of continuum structures, such as beams*-**>. However, in
the previous studies?, multi-dimensional nonlinear dynamic systems of continuum structures prove to be neces-
sary in the investigations demanding accurate vibration estimation, especially in chaotic vibration investigations.
Therefore, a control strategy is required, which can be applied in chaotic vibration control of multi-dimensional
nonlinear dynamic systems of continuum structures. The control strategy to be presented in this research will
contribute to the development of the FSMC based strategies by improving the previous application of the FSMC
related schemes in nonlinear vibration control of continuum engineering structures®**. Furthermore, the estab-
lishment of such control strategies may raise up a new research topic in nonlinear dynamics and control of con-
tinuum structures (i.e., strings, beams, plates, and shells). In this research, to control the nonlinear vibration of a
multi-dimensional nonlinear dynamic system of a laminated composite continuum cantilever beam, a modified
control strategy is proposed based on the FSMC. The governing equation of a laminated composite cantilever
beam subjected to evenly distributed sinusoidal excitation is developed based on the Hamilton’s principle, and
non-dimensional variables are then introduced into the governing equation. The Galerkin method is applied
to derive a multi-dimensional nonlinear dynamic system of the cantilever beam. Then, based on the obtained
multi-dimensional nonlinear dynamic system, numerical simulation is conducted to investigate the influence
of higher vibration modes on the nonlinear dynamic behavior of the cantilever beam. Finally, the modified
control strategy is established in response to the multi-dimensional nonlinear dynamic system, and then applied
in controlling the chaotic vibration of the dynamic system to achieve vibration reduction in engineering fields.

Model establishment
In Fig. 1, the sketch of the 3-layer laminated composite cantilever beam is given. The beam features a uniform
rectangular cross section; I, b, and h represent its length, breadth, and thickness; 1 and wy denote the displace-
ments of any point in the middle plane of the cantilever beam along the x- and z- axes; a Cartesian coordinate
is placed at the fixed end of the beam.

Before deformation, the position vector of a point (x, z) of the beam is given as follows,

r = xi+ zk,

where i and k represent the unit vectors of the Cartesian coordinate system.
Based on Reddy’s 3rd order shear deformation theory, the displacement of the beam is as follows,

3 8W() .
R=(x+uy+zod.—2°c ¢X+§ i+ (z+ wok,

wherec; =4 / (3h2), ug and wy represent the displacements along the x- and z- axes of any point on the mid-
plane (z = 0), and ¢y is the slope of the deflection curve due to bending.
Therefore, the kinetic energy of the laminated composite beam is derived as,
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Figure 1. The sketch of the laminated composite cantilever beam.
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where p is the density of the beam.

The von Karmén deformation associated with r is given as,
dug 1 [/dwm\? ¢ 2 ddx 8w
ST X +2(8x> T T G T )

d
ei3=(1— 3c122) <¢x + %)

Then, the strain energy of the beam can be obtained as,
1
U= / E(Q11811811 + Quze13€13)dV, )
14

where Q1 and Q13 are the stiffness coeflicients along the x- and z- axes.
The virtual work due to the external evenly distributed excitation g and the damping effects is expressed as,

= b/ qwo(x,t)dx—b/ c—wodx, (3)

where g = g sin wt, qp and w represent the amplitude and the frequency of the sinusoidal excitation, and c is
the damping coefficient.
Following the Hamilton’s principle, it can be derived,

[5
/ ’ (BL+8W)dt =0, (4)
t

where L=T — U.
Substitute Eq. (1), Eq. (2), and Eq. (3) into Eq. (4), it is derived as follows,
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where Eq. (5) can be presented as,

LY = —b/ / / pd (x +ug+ 2oy — 2201 (d)x M)) dxdzdt (6a)
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The equations in Eq. (6) can be further processed based on the features of the ortho-symmetric three-layer
beam in the following,
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Therefore, the equations of motion for the beam subject to external excitation is derived as,
32uo 3W0 32Wo dzl d2u0
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where A1y, K2, D11, Fi1, Hi1, Ass, Dss,Fss, In, Is, and Ig are provided in the Supplementary Appendix, and

Ji=1li— Iz, K= (L —2La + i), )

andi = (0,1,2,...,6); Q,(]l), Ql(jz) and Q(3) are the stiffness coefficients for the lower layer, the middle layer, and the
upper layer of the beam, and oM, p(z) and p® are the densities for the corresponding layers.

Based on Eq. (8a) and Eq. (8b), it is obtained that,
Buo 8W0 2 1 /l 8W0 2 I() dzx )
o — ) a4+~ (x— =), 10
ox (8x> Yoo \x ) T A e B2 (10a)
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Substitute Eq. (10) into Eq. (8¢), it can be obtained as follows,
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Fiic1 — Dny 3w

+c1(F11 — c1Hi1)
(A55 — 6Ds5¢1 + 9F55C%) a%x

+q=0. (11)

Non-dimensionalization

To be concise>!', introduce the non-dimensional variables below into Eq. (11),
2)
< Q! __ X 5 _ wo
f= t=rtt, ==, I=-] = —,
Lot T YT ne M7 h

dwg 1 dwy dZW() 1 dZW() _ ngl) )
— =——, —=———+, C=c -1,
& thdt® g2 h ht (12)

where,

2 bh? o oy
I=|[|zdA,)y=—, Ip= z.
/ 751 0 Zéﬂp
Q k=1 -
Substitute the non-dimensional variables above into Eq. (11), it is derived,

AdZW() +B 92 (d2W0> c 94 <d2W0) DdWo
dr x>\ df? axt \ g7 dt

\F BZW() /1 owo 2d G 84W0 LH 86W0 1720 13
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%2 | ), oz %t axe 1 (13)

where, A, B,C, D, E, F, G, and H are provided in the Supplementary Appendix. In the following sections, w1,
Wa, t, and q will be substituted with wy, w, t and q for convenience.

Series solutions
Wy is expanded in terms of comparison functions as follows,

wo =Y du(x)wa(t), (14)

n=1
According to the boundary conditions of the cantilever beam, ¢, (x) is given as follows,

(ch)y, + coshy) , .
Pn(x) = [ch(Ayx) — cos (Ayx)] — m[sh(ﬂnx) — sin (Ayx)].
where, 41 and 4, are given as 1.875 and 4.694 if a 2nd order Galerkin method is applied.
Substitute the series solution in Eq. (14) in the case of n = 2 into Eq. (13), Eq. (14) at a specified point P of the
beam (x = xp = 0.75) and the governing equation with the 2" order Galerkin method is obtained as,

2

wp =Y dulxp)w(t) = 1.315382461w; (£) + 0.27008056w, (), (15)
n=1
W1,1 = w12
wiz = Tuwiz + Tiawii + Tiswao + Tuawa; + T15W‘13,1 + T16W'12)1W2,1 + T17W‘22,1W1)1 + Tlswfl + Thog
Wa1 = Wa2
Wwap = Toywip + Toawri + Tazwao + Toawa 1 + Tzswfl + Tzswflwz,l + T27W‘22,1W1)1 + Tzswfl + Trq
(16)

where T1;, T2 (i = 1,2,...,9), are provided in the Supplementary Appendix.

Chaotic motion

In this section, the vibration of the point P on the laminated composite cantilever beam is studied with the

employment of the software Matlab. Through the numerical simulations, a chaotic vibration is discovered.
Given the geometric parameters,

lb=05m, b=002m, h=00lm (17)
and the excitation,

g = 5500sin (207rt) Pa, ¢ = 0.01 N/((m/s)m?) (18)
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and the nondimensional initial conditions,

dw1(0) dw;(0)

w1(0) =0, I =0, wy(0)=0, w0

(19)

the nonlinear vibration derived from Egs. (15, 16) at the selected point are shown in Fig. 2.

From Fig. 2, one can discover a chaotic vibration in the two-dimensional nonlinear dynamic system of the
cantilever beam. The chaotic vibration features a large amplitude increasing up to 2, which means the maximum
amplitude of the chaotic response can be twice the thickness of the cantilever beam. The chaotic vibrations of
wy and w; are given in Fig. 3.

From Fig. 3a, b, the maximum amplitude of w; is around 1.5, and the maximum amplitude of w, is around
0.2. Therefore, the contribution of w, cannot be neglected, and a multi-dimensional nonlinear dynamic system
of the cantilever beam should be considered if an accurate vibration estimation of the beam is required.

In response to the large-amplitude chaotic motion shown in Fig. 2, a modified control strategy based on the
FSMC is needed to stabilize and reduce the nonlinear vibration.

Control strategy
In the previous works??*, the target system to be synchronized, can be generalized as,
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Figure 2. The vibration of the cantilever beam at xp = 0.75 without applying the control strategy.
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Figure 3. The vibration of the cantilever beam for the first two vibration mode: (a) wy; (b) w».
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_ Vi = Vi1
In=fX, ) +dX,t) +u, (20)
Y=
and the corresponding system as a reference is,
X = Xjt1
iy = g(X, 1) , (21)
X0 = X

wherel <j<n—1Y= [)’1}’2---}’1«] Te R, X = [x1x0..54]T € R", f(Y, t)is the specified expression of y,,,d(Y, t)
represents the uncertain external disturbance applied to the system and is defined as|d(Y, )| < Byoundary € RT,

u € Rdenotes the control input, Y° = [x{ xJ ... x| T (k < j)isthe output selected in Y,and X° = [x¢ x§ ... x¢] T

represents the reference vibration corresponding to Y°.

However, it should be noticed that: the control strategy shown in Egs. (20, 21) will not be available for a
multi-dimensional nonlinear dynamic system of a continuum beam structure, such as the one in Eq. (16). The
numerical simulation shown in Fig. 3 in the previous section, along with the published works*>'¥, demonstrates
that a multi-dimensional nonlinear dynamic system of a continuum structure such as a cantilever beam is neces-
sary for chaotic vibration analysis. Therefore, a modified control strategy based on the existing FSMC has been
proposed to control the chaotic vibration of the multi-dimensional nonlinear dynamic system of a continuum
cantilever beam structure.

Corresponding to a nonlinear equation in the form below (such as Eq. 13)

w = ®(w,w,t), (22)

if U represents the control input and AF(w, #w) is given as the unknown external disturbance imposed on the
cantilever beam, the equation in Eq. (22) will be,

i = ®(w, w, 1) + U + AF(w, W). (23)

If the nth-order Galerkin method is implemented in discretizing the governing equation in Eq. (23), a series
of second-order ordinary differential equations including U and AF (w, w) can be obtained in the following,

) Wil = Wi
Wiy = ¢1(W, 1) +u1 + Afi(W, 1)
Wa1 = Wa2

W2 = g2(W, 1) +uz + AL (W, 1)

) Wil = Wi
Wiz = ¢i(W,t) + u; + Af;i(W, 1)

. Wn,l = Wpn2
W2 = Gn(W, 1) + up + Afi(W, 1)

where, ¢;(W, t), u;, and Af;(W, ) are the specific form of & (w, w, t), U, and AF (w, w) after applying the Galerkin
method.
Then, the column vector W in Eq. (24) can be obtained below,

T
W = [wi wipwag Wap o0 Wil Wiz o Wl Wao)
According to Eq. (13) and Eq. (24), the nonlinear response of the specified point wy is expressed as

Wwp =Y bn(xp)wall), (25)

n=1

where xp is the position of the specified point.
In the case of a desired reference vibration given below,

wr = W(t), (26)
U is expressed as,
U="Uyq—U, (27)
where Uy and U, are provided below,
Ueg = —((Wp — W) + & (wp — V), Uy = kg Up. (28)

In Eq. (28), « is the control parameter governing the sliding surface, kfs is expressed as| AF(w, w)| < kfs e RT,
and U; is defined based on the fuzzy rule given in Table 1°!.
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Uey
Uss PB |PM |PS ZE |NS |NM |NB
PB NB |[NB |NB |NB |NM |NS |ZE
PM |NB |NB |NB |NM |NS ZE PS
PS NB |NB |NM |NS ZE PS PM
dgt"”’ ZE NB |NM |NS ZE PS PM | PB
NS NM |NS |ZE PS PM | PB PB
NM [ NS ZE PS PM | PB PB PB
NB |ZE PS PM |PB PB PB PB

Table 1. The fuzzy rule of Uy,

In addition to the fuzzy rules provided in Table 1, the detailed membership functions of the input-out-

put fuzzy variables, Ue, %, and Uy; have been described in Fig. 4a, b respectively, based on the previous
research!”2%2%31,

With the application of the control strategy in Eqs. (23-28), the nonlinear vibration control of the governing
equation in Eq. (22) will be realized.

Take the cantilever beam governed by Eq. (13) as a case study. Implement the proposed modified control
strategy and apply the control input given in Eq. (23), and the governing equation including the control input

is obtained as follows,
4% (dz,%) - ca—f(dz,%) —p
de* x>\ dr? ax* \ dr dt

32W0 1 B 2
F — | d
e UO ( af) x

Applying the second-order Galerkin method, Eq. (29) will become,

34W0 d 6W0

x4 dx°

-G +q—U— AF(w,w) = 0. (29)

Wil = W12
. 3
wip = Twiz + Tiewi + Tiswep + Tiawa + Tiswy,

+ Tigwiiwan + Tiywsywin + Tigwsy + Tiog + tr + AR (W, 1)

W1 = W22 (30)
W = Torwip + Toawi + Taswao + Togwa 1 + T25W'13,1
+ Tagwiiwan + Tarwsywiy + Tagws + Taoq + tr + A (W, 1)
where, u; and u, are obtained through the second-order Galerkin method as follows,
NB NM NS ZE PS PM PB
dUu,
Uy s 4
23 B3 0 13 23 1 dt
(a)
NB NM NS ZE PS PM PB
U,
-1 -2/3 -1/3 0 1/3 2/3 ’
(b)
Figure 4. The membership functions of the input-output variables: (a) the membership functions of U, and
dgfq; (b) the membership function of Ug.
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u; = 0.7849249756U u,; = 0.4319801434U.

Vibration control
With the employment of Matlab, the control strategy proposed in the previous section will be applied in syn-
chronizing the chaotic vibration of the cantilever beam at the selected point with a desired reference.

The control strategy is applied at t=173, and the control parameters are given below,

wy = 1.4sin (1.9862t), « =0.1, ki =0.1, AF(w,w)=0.01sin(wp). (31)

Following Eqgs. (24, 26, 27), the vibrations of the system after the implementation of the proposed control
strategy are shown in Figs. 5, 6, and 7.

From Fig. 5, the maximum amplitude of the vibration of the beam is significantly reduced by 30% from about
2 to 1.4, and the actual vibration at xp = 0.75 on the beam will finally be stabilized and synchronized with the
reference vibration. It should be noticed that the stabilization process takes about 50 non-dimensional time units
before the response finally gets synchronized. In Fig. 6, a comparison is provided to further examine the imple-
mentation of the control strategy, and the response at xp = 0.75 is well synchronized with the reference vibration,
despite some slight discrepancies existing in the regions where the vibration of the beam reaches its amplitude.

Figure 7 shows the responses of the first two vibration modes. Clearly, both wi and w; finally become periodic
motions with the implementation of the control strategy, and their amplitudes are reduced as well.

Figure 8 shows the control input. The control input dramatically reaches to the highest value the moment the
control strategy is applied, and its maximum value is about 20. In the stabilization process, which starts at t=173
and ends at about £ =225, the control input gradually decreases, and it stops decreasing once the actual response
at xp = 0.75is synchronized with the reference vibration. Compare the control inputs between the initial value
and the value at the end of the stabilization, it can be learned: once the vibration of the beam is stabilized, only
a small value of the control input is required to maintain the synchronization. Thus, the efficiency of the control
strategy for vibration reduction is demonstrated.

Conclusions

In this research, a control strategy modified based on the FSMC is implemented in the vibration control of a
laminated composite beam considering the 3' order shearing effect. In the study of the chaotic vibration of the
beam, it is discovered: a two-dimensional nonlinear dynamic system is necessary in the prediction of a cantilever
beam. However, the FSMC is not originally established for such multi-dimensional systems. Therefore, the exist-
ing FSMC has been modified, and then applied in the nonlinear vibration control of the dynamic behavior of the
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Figure 5. The vibration of the cantilever beam at xp = 0.75 with the application of the control strategy.
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Figure 6. The comparison between the response at xp = 0.75 and the response of the desired reference.
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Figure 7. The vibration of the cantilever beam for the first two vibration modes with the application of the
control strategy: (a) wi; (b) wa.
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Figure 8. The control input.

cantilever beam. The numerical results feature both the effectiveness in the vibration control and the efficiency
as shown in the control cost during the application process.

Future development
To enhance the applicability and improve the control efforts of the proposed modified FSMC, the realization of
the established control strategy involving sensors and actuators would be a promising research topic.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author on reason-
able request.
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