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Chaotic vibration control 
of a composite cantilever beam
Xiaopei Liu  & Lin Sun *

In this research, an adaptive control strategy adapted from fuzzy sliding mode control is established 
and applied in chaotic vibration control of a multiple-dimension nonlinear dynamic system of a 
laminated composite cantilever beam. The third order shearing effect on the vibration of the beam is 
considered in the nonlinear dynamic model establishment, and the Hamilton principle as well as the 
Galerkin method is employed. It is discovered that a multi-dimensional nonlinear dynamic system of 
the cantilever beam needs to be considered for accurate vibration estimation. Therefore, the control 
strategy appropriate for the chaotic vibration control of a multiple-dimension system of the laminated 
composite beam is necessary, and then proves to be effective in chaotic vibration control in numerical 
simulation.

Advanced composite materials, featuring high strength, corrosion resistance, fatigue resistance and other advan-
tages, are widely used in aerospace, civil engineering, mechanical engineering, and other engineering fields1. 
Some laminated composite structures, which can be simplified as cantilever beam models2, are applied in engi-
neering components, such as aircraft wings, turbine engine blades, helicopter rotors and solar panels. However, 
the cantilever beams are prone to large deformation under external excitation, leading to nonlinear vibration 
problems that have negative impacts on the stability and safety of the system. Therefore, it is necessary to study 
the nonlinear vibration control of laminated composite cantilever beams.

Over the past decades, many researchers have studied the linear and nonlinear dynamics of cantilever beams. 
In general, linear structural models are constructed based on idealized engineering designs and they may not 
accurately represent all the aspects of the corresponding structures in practice3. Younis and Nayfeh4 proved 
that an inaccurate dynamic modeling of the system nonlinearities may result in an erroneous prediction of the 
dynamic behaviors. Particularly, nonlinear problems often occur in slender structures with large displacements, 
large rotations, and small strains. Bahari3 et al. have verified that the nonlinear analysis of a slender beam sub-
jected to point load is closer to the experimental results comparing with the linear analysis.

Laplace transform and Adomian decomposition method (LADM) was employed to investigate semi-analytical 
solutions of Euler–Bernoulli beam equation in order to describe a uniform flexible cantilever beam5. Repka et al.6 
applied the Timoshenko beam model in the analysis of the flexoelectric effect for a cantilever beam under large 
deformations, and considered the geometric nonlinearity with von Kármán strains. Meanwhile, some methods, 
such as a homotopy analysis method7, a rational elliptic balance method8, an enriched multiple scales method9, 
and an improved homotopy analysis method10,11, etc., have been gradually developed to solve nonlinear dif-
ferential equations.

Naturally, researchers have also conducted a lot of research on nonlinear vibration of laminated composite 
cantilever beams. Roeser12 et al. developed the governing equations of motion of composite SPM/SPL cantilever 
beam based on the Euler–Bernoulli beam theory for transverse vibrations. Preethi et al.13  established the model 
of a nonuniform rotating laminated nano cantilever beam using the Timoshenko beam theory. Zhang  et al.2 
analyzed the nonlinear vibrations of laminated composite piezoelectric cantilever plates subjected to transverse 
and in-plane excitations based on Reddy’s third-order plate theory and Hamilton’s principle. Guo et al.14 consid-
ered Reddy’s third-order theory when conducting nonlinear dynamic analysis of macrofiber composite (MFC) 
laminated shells. Daros15 derived a fundamental solution for the harmonic vibration of asymmetrically laminated 
composite plates based on Reddy’s third-order shear deformation theory. Amabili et al.16 developed a refined 
third-order shear deformation theory to establish the model of a laminated composite beam and conducted an 
experimental verification. The studies above contribute to the nonlinear vibration control of cantilever structures 
considering 3rd order shearing effects.

In order to control vibrations of various nonlinear/linear dynamic systems derived from engineering2,14,17–20, 
different control strategies have been developed21. Among those control strategies, one strategy, namely the slid-
ing mode control (SMC), was proposed in 1992 by Utkin22, and has been wildly applied in engineering vibration 
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control along with other SMC based strategies. In 2019, Mobki et al.23 applied the SMC in a closed-loop control of 
a one-dimensional nonlinear dynamic system of a capacitive micro structure subjected to electrostatic forces; in 
2020, Azizi24 used the SMC to reduce the unwanted vibrations of buildings subjected to earthquakes; in the next 
year, Azizi and Mobki25 employed the SMC for active control of car suspension systems. Based on the existing 
SMC, Mobki et al.26 designed an adaptive control scheme to control the vibration of a one-dimensional nonlinear 
dynamic system of a micro capacitor in 2020; in 2022, Azizi et al.27 also developed a nonsingular terminal SMC 
strategy to control the vibration of a one-dimensional nonlinear dynamic system of a micro structure. In order 
to mitigate the effects of uncertainties in dynamic systems, fuzzy rules were introduced into the traditional SMC 
in 2006, and hence a new control strategy namely the fuzzy sliding mode control (FSMC) was developed for 
Duffing-Holmes chaos synchronization with uncertainties28; in 2011, Yau et al.29 used the FSMC approach to 
control the chaotic vibration of a one-dimensional nonlinear dynamic system of a micro resonator; in 2022, Wu 
et al.30 applied the FSMC to stabilize Makovian jump nonlinear systems; in the same year, Ramakrishnan et al.31 
also applied the FSMC to synchronize a chaotic oscillator in a fractional-order circuit. Based on the FSMC, 
Kuo32 proposed an adaptive FSMC for Sprott’s chaotic system synchronization in 2007; furthermore, Rajaei 
et al.33 developed an adaptive self-organizing FSMC scheme for a one-dimensional nonlinear dynamic system 
of a continuum nanobeam in 2022.

It should be noticed that: in the last decade, the existing FSMC based schemes can only be applied in nonlinear 
vibration control of one-dimensional dynamic systems of continuum structures, such as beams29,33. However, in 
the previous studies2, multi-dimensional nonlinear dynamic systems of continuum structures prove to be neces-
sary in the investigations demanding accurate vibration estimation, especially in chaotic vibration investigations. 
Therefore, a control strategy is required, which can be applied in chaotic vibration control of multi-dimensional 
nonlinear dynamic systems of continuum structures. The control strategy to be presented in this research will 
contribute to the development of the FSMC based strategies by improving the previous application of the FSMC 
related schemes in nonlinear vibration control of continuum engineering structures29,33. Furthermore, the estab-
lishment of such control strategies may raise up a new research topic in nonlinear dynamics and control of con-
tinuum structures (i.e., strings, beams, plates, and shells). In this research, to control the nonlinear vibration of a 
multi-dimensional nonlinear dynamic system of a laminated composite continuum cantilever beam, a modified 
control strategy is proposed based on the FSMC. The governing equation of a laminated composite cantilever 
beam subjected to evenly distributed sinusoidal excitation is developed based on the Hamilton’s principle, and 
non-dimensional variables are then introduced into the governing equation. The Galerkin method is applied 
to derive a multi-dimensional nonlinear dynamic system of the cantilever beam. Then, based on the obtained 
multi-dimensional nonlinear dynamic system, numerical simulation is conducted to investigate the influence 
of higher vibration modes on the nonlinear dynamic behavior of the cantilever beam. Finally, the modified 
control strategy is established in response to the multi-dimensional nonlinear dynamic system, and then applied 
in controlling the chaotic vibration of the dynamic system to achieve vibration reduction in engineering fields.

Model establishment
In Fig. 1, the sketch of the 3-layer laminated composite cantilever beam is given. The beam features a uniform 
rectangular cross section; l  , b , and h represent its length, breadth, and thickness; u0 and w0 denote the displace-
ments of any point in the middle plane of the cantilever beam along the x- and z- axes; a Cartesian coordinate 
is placed at the fixed end of the beam.

Before deformation, the position vector of a point (x, z) of the beam is given as follows,

where i and k represent the unit vectors of the Cartesian coordinate system.
Based on Reddy’s 3rd order shear deformation theory, the displacement of the beam is as follows,

where c1 = 4
/(

3h2
)

 , u0 and w0 represent the displacements along the x- and z- axes of any point on the mid-
plane ( z = 0 ), and φx is the slope of the deflection curve due to bending.

Therefore, the kinetic energy of the laminated composite beam is derived as,
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Figure 1.   The sketch of the laminated composite cantilever beam.
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where ρ is the density of the beam.
The von Kármán deformation associated with r is given as,

Then, the strain energy of the beam can be obtained as,

where Q11 and Q13 are the stiffness coefficients along the x- and z- axes.
The virtual work due to the external evenly distributed excitation q and the damping effects is expressed as,

where q = q0 sinωt , q0 and ω represent the amplitude and the frequency of the sinusoidal excitation, and c is 
the damping coefficient.

Following the Hamilton’s principle, it can be derived,

where L = T − U .
Substitute Eq. (1), Eq. (2), and Eq. (3) into Eq. (4), it is derived as follows,

where Eq. (5) can be presented as,
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The equations in Eq. (6) can be further processed based on the features of the ortho-symmetric three-layer 
beam in the following,
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Therefore, the equations of motion for the beam subject to external excitation is derived as,

where A11 , K2 , D11 , F11 , H11 , A55 , D55,F55 , I0 , I4 , and I6 are provided in the Supplementary Appendix, and

and i = (0, 1, 2, ..., 6) ; Q(1)
ij  , Q(2)

ij  and Q(3)
ij  are the stiffness coefficients for the lower layer, the middle layer, and the 

upper layer of the beam, and ρ(1) , ρ(2) and ρ(3) are the densities for the corresponding layers.
Based on Eq. (8a) and Eq. (8b), it is obtained that,

Substitute Eq. (10) into Eq. (8c), it can be obtained as follows,

(7d)

L∗∗4 = −b

∫ t2

t1

∫ h
2

− h
2

∫ l

0

Q13δ
(

1− 3c1z
2
)

(

∂w0

∂x
+ φx

)

ε13dxdzdt

= −b

∫ t2

t1

∫ h
2

− h
2

∫ l

0

Q13

(

1− 3c1z
2
)

ε13
∂δw0

∂x
dxdzdt − b

∫ t2

t1

∫ h
2

− h
2

∫ l

0

Q13

(

1− 3c1z
2
)

ε13δφxdxdzdt

= 0+ b

∫ t2

t1

∫ h
2

− h
2

∫ l

0

Q13

(

1− 3c1z
2
)∂ε13

∂x
δw0dxdzdt − b

∫ t2

t1

∫ h
2

− h
2

∫ l

0

Q13

(

1− 3c1z
2
)

ε13δφxdxdzdt

= b

∫ t2

t1

∫ h
2

− h
2

∫ l

0

Q13

(

1− 3c1z
2
)2
(

∂2w0

∂x
+

∂φx

∂x

)

δw0dxdzdt

− b

∫ t2

t1

∫ h
2

− h
2

∫ l

0

Q13

(

1− 3c1z
2
)2
(

∂w0

∂x
+ φx

)

δφxdxdzdt,

(8a)A11

∂2u0

∂x2
+ A11

∂w0

∂x

∂2w0

∂x2
− I0

d2l

dt2
− I0

d2u0

dt2
= 0,

(

−A55 + 6D55c1 − 9F55c
2
1

)

φx +
(

D11 − 2F11c1 +H11c
2
1

)∂2φx

∂x2

+
(

−A55 + 6D55c1 − 9F55c
2
1

)∂w0

∂x
+

(

−F11c1 +H11c
2
1

)∂3w0

∂x3

(8b)−K2

d2φx

dt2
+ c1J4

∂

∂x

(

d2w0

dt2

)

= 0,

A11

∂w0

∂x

∂2u0

∂x2
+ A11

∂u0

∂x

∂2w0

∂x2
+

3

2
A11

(

∂w0

∂x

)2
∂2w0

∂x2
+ c1(F11 − c1H11)

∂3φx

∂x3
− c21H11

∂4w0

∂x4
−

(

4qdγ

VM∞

+ c

)

dw0

dt

+
(

A55 − 6c1D55 + 9c21F55
)∂φx

∂x
+

(

A55 − 6c1D55 + 9c21F55
)∂2w0

∂2x

(8c)−I0
d2w0

dt2
+ c21I6

∂2

∂x2

(

d2w0

dt2

)

− c1J4
∂

∂x

(

d2φx

dt2

)

= 0,

(9)Ji = Ii − Ii+2c1, K2 =
(

I2 − 2I4c1 + I6c
2
1

)

,

(10a)
∂u0

∂x
= −

1

2

(

∂w0

∂x

)2

+
1

2l

∫ l

0

(

∂w0

∂x

)2

dx +
I0

A11

d2x

dt2

(

x −
l

2

)

,

(10b)φx = −
∂w0

∂x
+

F11c1 − D11
(

A55 − 6D55c1 + 9F55c
2
1

)

∂3w0

∂3x
.

−I0
d2w0

dt2
+ c1I4

∂2

∂x2

(

d2w0

dt2

)

− c1J4
F11c1 − D11

(

A55 − 6D55c1 + 9F55c
2
1

)

∂4

∂4x

(

d2w0

dt2

)

−c
dw0

dt
+

A11

2l0

∂2w0

∂x2

[

∫ l

0

(

∂w0

∂x

)2

dx

]

− D11

∂4w0

∂4x
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Non‑dimensionalization
To be concise2,14, introduce the non-dimensional variables below into Eq. (11),

where,

Substitute the non-dimensional variables above into Eq. (11), it is derived,

where, A , B , C , D , E , F , G , and H are provided in the Supplementary Appendix. In the following sections, w1 , 
w2 , t , and q will be substituted with w1 , w2 , t  and q for convenience.

Series solutions
W0 is expanded in terms of comparison functions as follows,

According to the boundary conditions of the cantilever beam, φn(x) is given as follows,

where, �1 and �2 are given as 1.875 and 4.694 if a 2nd order Galerkin method is applied.
Substitute the series solution in Eq. (14) in the case of n = 2 into Eq. (13), Eq. (14) at a specified point P of the 

beam ( x = xP = 0.75 ) and the governing equation with the 2nd order Galerkin method is obtained as,

where T1i , T2i ( i = 1, 2, ..., 9 ), are provided in the Supplementary Appendix.

Chaotic motion
In this section, the vibration of the point P on the laminated composite cantilever beam is studied with the 
employment of the software Matlab. Through the numerical simulations, a chaotic vibration is discovered.

Given the geometric parameters,

and the excitation,

(11)+c1(F11 − c1H11)
F11c1 − D11

(

A55 − 6D55c1 + 9F55c
2
1

)

∂6w0

∂6x
+ q = 0.

t =

√

Q
(2)
11 I

I0bl4
t = τ t, x =

x

l
, l =

1

h
l, w0 =

w0

h
,

(12)
dw0

dt
=

1

τh

dw0

dt
,

d2w0

dt
2

=
1

τ 2h

d2w0

dt2
, c = c

/(

Q
(2)
11

hτ

)

,

I =

∫

�

z2dAzy =
bh3

12
, I0 =

3
∑

k=1

∫ zk

zk−1

ρ(k)dz.

−A
d2w0

dt
2

+ B
∂2

∂x2

(

d2w0

dt
2

)

− C
∂4

∂x4

(

d2w0

dt
2

)

− D
dw0

dt

(13)+F
∂2w0

∂x2

[

∫ 1

0

(

∂w0

∂x

)2

dx

]

− G
∂4w0

∂x4
+H

∂6w0

∂x6
+ q = 0,

(14)w0 =

∞
∑

n=1

φn(x)wn(t),

φn(x) = [ch(�nx)− cos (�nx)]−
(ch�n + cos �n)

(sh�n + sin �n)
[sh(�nx)− sin (�nx)].

(15)wP =

2
∑

n=1

φn(xP)wn(t) = 1.315382461w1(t)+ 0.27008056w2(t),

(16)















ẇ1,1 = w1,2

ẇ1,2 = T11w1,2 + T12w1,1 + T13w2,2 + T14w2,1 + T15w
.3
1,1 + T16w

.2
1,1w2,1 + T17w

.2
2,1w1,1 + T18w

.3
2,1 + T19q

ẇ2,1 = w2,2

ẇ2,2 = T21w1,2 + T22w1,1 + T23w2,2 + T24w2,1 + T25w
.3
1,1 + T26w

.2
1,1w2,1 + T27w

.2
2,1w1,1 + T28w

.3
2,1 + T29q

(17)l0 = 0.5 m, b = 0.02 m, h = 0.01 m

(18)q = 5500sin (20π t) Pa, c = 0.01 N/((m/s)m2)
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and the nondimensional initial conditions,

the nonlinear vibration derived from Eqs. (15, 16) at the selected point are shown in Fig. 2.
From Fig. 2, one can discover a chaotic vibration in the two-dimensional nonlinear dynamic system of the 

cantilever beam. The chaotic vibration features a large amplitude increasing up to 2, which means the maximum 
amplitude of the chaotic response can be twice the thickness of the cantilever beam. The chaotic vibrations of 
w1 and w2 are given in Fig. 3.

From Fig. 3a, b, the maximum amplitude of w1 is around 1.5, and the maximum amplitude of w2 is around 
0.2. Therefore, the contribution of w2 cannot be neglected, and a multi-dimensional nonlinear dynamic system 
of the cantilever beam should be considered if an accurate vibration estimation of the beam is required.

In response to the large-amplitude chaotic motion shown in Fig. 2, a modified control strategy based on the 
FSMC is needed to stabilize and reduce the nonlinear vibration.

Control strategy
In the previous works29,33, the target system to be synchronized, can be generalized as,

(19)w1(0) = 0,
dw1(0)

dt
= 0, w2(0) = 0,

dw2(0)

dt
= 0,

Figure 2.   The vibration of the cantilever beam at xP = 0.75 without applying the control strategy.

Figure 3.   The vibration of the cantilever beam for the first two vibration mode: (a) w1 ; (b) w2.
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and the corresponding system as a reference is,

where 1 ≤ j ≤ n− 1 , Y =
[

y1y2...yn
]T

∈ Rn , X = [x1x2...xn]
T ∈ Rn , f (Y, t) is the specified expression of ẏn , d(Y, t) 

represents the uncertain external disturbance applied to the system and is defined as |d(Y, t)| ≤ Bboundary ∈ R+ , 
u ∈ R denotes the control input, Yo =

[

xo1 xo2 ... xoκ
]T ( κ ≤ j ) is the output selected in Y , and Xo =

[

xo1 xo2 ... xoκ
]T 

represents the reference vibration corresponding to Yo.
However, it should be noticed that: the control strategy shown in Eqs. (20, 21) will not be available for a 

multi-dimensional nonlinear dynamic system of a continuum beam structure, such as the one in Eq. (16). The 
numerical simulation shown in Fig. 3 in the previous section, along with the published works2,14, demonstrates 
that a multi-dimensional nonlinear dynamic system of a continuum structure such as a cantilever beam is neces-
sary for chaotic vibration analysis. Therefore, a modified control strategy based on the existing FSMC has been 
proposed to control the chaotic vibration of the multi-dimensional nonlinear dynamic system of a continuum 
cantilever beam structure.

Corresponding to a nonlinear equation in the form below (such as Eq. 13)

if U  represents the control input and �F(w, ẇ) is given as the unknown external disturbance imposed on the 
cantilever beam, the equation in Eq. (22) will be,

If the nth-order Galerkin method is implemented in discretizing the governing equation in Eq. (23), a series 
of second-order ordinary differential equations including U  and �F(w, ẇ) can be obtained in the following,

where, φi(W, t) , ui , and �fi(W, t) are the specific form of �(w, ẇ, t) , U , and �F(w, ẇ) after applying the Galerkin 
method.

Then, the column vector W in Eq. (24) can be obtained below,

According to Eq. (13) and Eq. (24), the nonlinear response of the specified point wP is expressed as

where xP is the position of the specified point.
In the case of a desired reference vibration given below,

U  is expressed as,

where Ueq and Ur are provided below,

In Eq. (28), κ is the control parameter governing the sliding surface, kfs is expressed as |�F(w, ẇ)| < kfs ∈ R+ , 
and Ufs is defined based on the fuzzy rule given in Table 131.

(20)







ẏj = yj+1

ẏn = f (Y, t)+ d(Y, t)+ u
yo = yκ

,

(21)







ẋj = xj+1

ẋn = g(X, t)
xoκ = xκ

,

(22)ẅ = �(w, ẇ, t),

(23)ẅ = �(w, ẇ, t)+ U +�F(w, ẇ).

(24)



































































ẇ1,1 = w1,2

ẇ1,2 = φ1(W, t)+ u1 +�f1(W, t)
ẇ2,1 = w2,2

ẇ2,2 = φ2(W, t)+ u2 +�f2(W, t)
.
.
.

ẇi,1 = wi,2

ẇi,2 = φi(W, t)+ ui +�fi(W, t)
.
.
.

ẇn,1 = wn,2

ẇn,2 = φn(W, t)+ un +�fi(W, t)

,

W =
[

w1,1 w1,2 w2,1 w2,2 · · · wi,1 wi,2 · · · wn,1 wn,2

]T
.

(25)wP =

∞
∑

n=1

φn(xP)wn(t),

(26)wr = �(t),

(27)U = Ueq − Ur ,

(28)Ueq = −
((

ẇp − �̇
)

+ κ
(

wp −�
))

, Ur = kfsUfs .
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In addition to the fuzzy rules provided in Table 1, the detailed membership functions of the input–out-
put fuzzy variables, Ueq , 

dUeq

dt  , and Ufs have been described in Fig. 4a, b respectively, based on the previous 
research17,28,29,31.

With the application of the control strategy in Eqs. (23–28), the nonlinear vibration control of the governing 
equation in Eq. (22) will be realized.

Take the cantilever beam governed by Eq. (13) as a case study. Implement the proposed modified control 
strategy and apply the control input given in Eq. (23), and the governing equation including the control input 
is obtained as follows,

Applying the second-order Galerkin method, Eq. (29) will become,

where, u1 and u2 are obtained through the second-order Galerkin method as follows,

−A
d2w0

dt
2

+ B
∂2

∂x2

(

d2w0

dt
2

)

− C
∂4

∂x4

(

d2w0

dt
2

)

− D
dw0

dt

(29)+F
∂2w0

∂x2

[

∫ 1

0

(

∂w0

∂x

)2

dx

]

− G
∂4w0

∂x4
+H

∂6w0

∂x6
+ q− U −�F(w, ẇ) = 0.

(30)



































ẇ1,1 = w1,2

ẇ1,2 = T11w1,2 + T12w1,1 + T13w2,2 + T14w2,1 + T15w
.3
1,1

+ T16w
.2
1,1w2,1 + T17w

.2
2,1w1,1 + T18w

.3
2,1 + T19q+ u1 +�f1(W, t)

ẇ2,1 = w2,2

ẇ2,2 = T21w1,2 + T22w1,1 + T23w2,2 + T24w2,1 + T25w
.3
1,1

+ T26w
.2
1,1w2,1 + T27w

.2
2,1w1,1 + T28w

.3
2,1 + T29q+ u2 +�f2(W, t)

,

Table 1.   The fuzzy rule of Ufs.

Ufs

Ueq

PB PM PS ZE NS NM NB

dUeq

dt

PB NB NB NB NB NM NS ZE

PM NB NB NB NM NS ZE PS

PS NB NB NM NS ZE PS PM

ZE NB NM NS ZE PS PM PB

NS NM NS ZE PS PM PB PB

NM NS ZE PS PM PB PB PB

NB ZE PS PM PB PB PB PB

(a)

(b)

-1 -2/3 -1/3 0 1/3 2/3 1

NB NM NS ZE PS PM PB

-1 -2/3 -1/3 0 1/3 2/3 1

NB NM NS ZE PS PM PB

eqU , 
dt

dUeq

fsU

Figure 4.   The membership functions of the input–output variables: (a) the membership functions of Ueq and 
dUeq

dt  ; (b) the membership function of Ufs.
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Vibration control
With the employment of Matlab, the control strategy proposed in the previous section will be applied in syn-
chronizing the chaotic vibration of the cantilever beam at the selected point with a desired reference.

The control strategy is applied at t = 173, and the control parameters are given below,

Following Eqs. (24, 26, 27), the vibrations of the system after the implementation of the proposed control 
strategy are shown in Figs. 5, 6, and 7.

From Fig. 5, the maximum amplitude of the vibration of the beam is significantly reduced by 30% from about 
2 to 1.4, and the actual vibration at xP = 0.75 on the beam will finally be stabilized and synchronized with the 
reference vibration. It should be noticed that the stabilization process takes about 50 non-dimensional time units 
before the response finally gets synchronized. In Fig. 6, a comparison is provided to further examine the imple-
mentation of the control strategy, and the response at xP = 0.75 is well synchronized with the reference vibration, 
despite some slight discrepancies existing in the regions where the vibration of the beam reaches its amplitude.

Figure 7 shows the responses of the first two vibration modes. Clearly, both w1 and w2 finally become periodic 
motions with the implementation of the control strategy, and their amplitudes are reduced as well.

Figure 8 shows the control input. The control input dramatically reaches to the highest value the moment the 
control strategy is applied, and its maximum value is about 20. In the stabilization process, which starts at t = 173 
and ends at about t = 225, the control input gradually decreases, and it stops decreasing once the actual response 
at xP = 0.75 is synchronized with the reference vibration. Compare the control inputs between the initial value 
and the value at the end of the stabilization, it can be learned: once the vibration of the beam is stabilized, only 
a small value of the control input is required to maintain the synchronization. Thus, the efficiency of the control 
strategy for vibration reduction is demonstrated.

Conclusions
In this research, a control strategy modified based on the FSMC is implemented in the vibration control of a 
laminated composite beam considering the 3rd order shearing effect. In the study of the chaotic vibration of the 
beam, it is discovered: a two-dimensional nonlinear dynamic system is necessary in the prediction of a cantilever 
beam. However, the FSMC is not originally established for such multi-dimensional systems. Therefore, the exist-
ing FSMC has been modified, and then applied in the nonlinear vibration control of the dynamic behavior of the 

u1 = 0.7849249756U u2 = 0.4319801434U .

(31)wr = 1.4 sin (1.9862t), κ = 0.1, kfs = 0.1, �F(w, ẇ) = 0.01 sin(wp).

Figure 5.   The vibration of the cantilever beam at xP = 0.75 with the application of the control strategy.

Figure 6.   The comparison between the response at xP = 0.75 and the response of the desired reference.
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cantilever beam. The numerical results feature both the effectiveness in the vibration control and the efficiency 
as shown in the control cost during the application process.

Future development
To enhance the applicability and improve the control efforts of the proposed modified FSMC, the realization of 
the established control strategy involving sensors and actuators would be a promising research topic.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author on reason-
able request.
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