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The disulfidptosis-related signature
predicts prognosis and immune
features in glioma patients

Xiong Wang™*, Jijun Yang?®, Fengjie Yang® & Ketao Mu“**

Glioma is the most common primary malignant tumor in the central nervous system. Disulfidptosis

is a recently identified programmed cell death in tumor cells overexpressing SLC7A11 under glucose
starvation. Clinical prognostic significance of disulfidptosis has been reported in several tumors,

and in this study, we explored the correlation of disulfidptosis with clinical prognosis, immune cell
infiltration, and immunotherapy response in glioma. A total of 1592 glioma patients were included

in this study, including 691 glioma patients from The Cancer Genomic Atlas (TCGA), 300 patients
with from the Chinese Glioma Genomic Atlas (CGGA) array, 325 patients from CGGA sequencing,

and 276 patients from Gene Expression Omnibus (GEO) GSE16011. R software (V4.2.2) and several R
packages were applied to develop the risk score model and correlation calculation and visualization.
Three disulfidptosis-related genes, LRPPRC, RPN1, and GYS1, were screened out and applied to
establish the risk score model. Low-risk patients exhibit favorable prognosis, and the disulfidptosis-
related signature significantly correlated with clinicopathological properties, molecular subtypes, and
immunosuppressive microenvironment of glioma patients. We developed a disulfidptosis-related risk
model to predict the prognosis and immune features in glioma patients, and this risk model may be
applied as an independent prognostic factor for glioma.

Abbreviations

CNS Central nervous system

LGG Lower-grade gliomas

GBM Glioblastoma

IDH Isocitrate dehydrogenase

MGMT  O-6-methylguanine-DNA methyltransferase
PCD Programmed cell death

SLC7A11  Solute Carrier Family 7 Member 11

NADPH  Nicotinamide adenine dinucleotide phosphate hydrogen
TME Tumor microenvironment

TCGA The Cancer Genome Atlas

CGGA Chinese Glioma Genome Atlas

GEO Gene Expression Omnibus

oS Overall survival

Glioma is the most common primary malignant tumor in the central nervous system (CNS), accounting for
47.7% of all malignancies in the CNS'. Glioma is divided into lower-grade gliomas (LGG, WHO grade II and
III) and glioblastoma (GBM, WHO grade IV). GBM patients exhibit more unsatisfactory prognosis than LGG
patients. The general median survival time of GBM patients was 12 months after surgery and radiotherapy, while
the survival time of LGG patients varied from 1 to 15 years®. The current therapeutic interventions including
surgery, chemo- and radio- therapy, fails to improve the prognosis of glioma patients especially for the GBM
patients, indicating the need for early detection and novel intervention for glioma patients®. Previous cancer
genetics have revealed several molecular markers in glioma, such as isocitrate dehydrogenase (IDH) mutations,
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0-6-methylguanine-DNA methyltransferase (MGMT) promoter methylation, and 1p19q codeletion, and these
molecular markers were correlated with favorable prognosis of glioma patients*. However, many glioma patients
still have minimal responses to these molecular markers targeted therapies, suggesting the need to investigate
novel biomarkers for glioma prognosis and treatment prediction.

Programmed cell death (PCD) is induced intentionally accompanied by numerous controlled steps resulting
in well-programmed self-destruction during development, including apoptosis, cuproptosis, ferroptosis, pyrop-
tosis, and PANoptosis®. Dysregulation of PCD correlates with the development, metastasis, mortality, and recur-
rence of tumors®. Recently, Liu et al. reported a novel metabolic-related PCD, disulfidptosis, which is induced
by excessive accumulation of disulfide in glucose-starved tumor cells overexpressing Solute Carrier Family 7
Member 11 (SLC7A11)”. SLC7A11 (also known as xCT) is upregulated in multiple cancers, which imports cystine
for glutathione generation and antioxidant defense to block ferroptosis and necroptosis®. Under glucose starva-
tion, SLC7A11 overexpression mediated cystine uptake induces nicotinamide adenine dinucleotide phosphate
hydrogen (NADPH) depletion, intracellular disulfide accumulation, and ultimate disulfidptosis’. Disulfidptosis
is correlated with prognosis, the tumor microenvironment (TME) and anti-tumor immunity in several tumors,
including thyroid carcinoma, bladder cancer, and lung adenocarcinoma’®!!, however, the association between
disulfidptosis and prognosis, TME, and immune therapy response in glioma is unclear.

In the study, we comprehensively explore the role of disulfidptosis-related genes in the prognosis, TME
landscapes, and immune therapy in glioma. We developed and validated a disulfidptosis-related prognostic
model with good performance in predicting prognosis and response to immunotherapy across four independ-
ent cohorts.

Materials and methods

Data collection

The Cancer Genome Atlas (TCGA) LGG and GBM datasets were downloaded using the TCGAbiolinks
(v2.26.0)'2. The Chinese Glioma Genome Atlas (CGGA) (mRNAseq_325) and CGGA_array datasets (mRNA-
array_301) were downloaded from CGGA website (http://www.cgga.org.cn)'*'”. The expression data of
GSE16011 was downloaded from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgitacc=GSE16011), and the clinical data was downloaded from the supplementary data of
their published work’®. These data were cleaned and combined using the tinyarray (v2.2.9) R package.

Immunofluorescence staining

The subcellular distribution of these three genes in glioma cell line U-251MG were analyzed using immunofluo-
rescence staining data from HPA database (http://www.proteinatlas.org), and the results showed that LRPPRC,
RPN1, and GYS1 were in mitochondria, cytosol, and microtubules, respectively.

Disulfidptosis-related risk signature construction and validation

A total of ten disulfidptosis-related genes were selected from previous studies, including GYS1, OXSM, NDUFS],
LRPPRC, NDUFA11, NUBPL, NCKAP1, RPN1, SLC3A2 and SLC7A11’. Univariate Cox regression and
Kaplan-Meier (KM) analyses were performed with survival (v3.5-3) R package to screen disulfidptosis-related
genes significantly correlated with the overall survival (OS). Genes with p values <0.05 in both analyses were
selected for multivariate Cox regression analysis, and TCGA dataset was used as the training cohort. The results
of multivariate Cox regression analysis and the KM plots were shown using the survminer (v0.4.9) R package.

Time dependent receiver operating characteristic (ROC) analysis
Time dependent receiver operating characteristic (ROC) curves were calculated using the timeROC (v.0.4) R
package to predict the 1-year, 3-year, and 5-year outcomes of glioma patients.

Functional enrichment analysis

The significantly different Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Gene Ontol-
ogy (GO) biological processes between high-risk and low-risk glioma patients were analyzed using the GSVA
(v1.46.0) R package'?, and the heatmap was shown with pheatmap (v1.0.12) R package.

Evaluation of immune cell fractions
Molecular marker genes of 28 types of immune cells were extracted from previous published work?. The immune
cell composition was calculated using the ssgsea method of the GSVA (v1.46.0) R package.

Immune subtype analysis

Tumor samples could be divided into six subtypes: C1 (Wound Healing), C2 (IFN-y Dominant), C3 (Inflam-
matory), C4 (Lymphocyte Depleted), C5 (Immunologically Quiet), and C6 (TGF- Dominant)*. The immune
subtype analysis was performed using the InmuneSubtypeClassifier (v0.1.0) R package.

Figure and plot generation

The venn plot was drawn by tinyarray (v2.2.9) R package. The forest plot and survival KM plot were drawn by
survminer (v0.4.9) R package. The timeROC curve was drawn by ggplot2 (v3.4.3) R package. The beeswarm
plot was drawn by ggbeeswarm (v0.7.2) R package. The box plot and scatter plot were drawn by ggpubr (v0.6.0)
R package.
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Results

Construction of risk model using three disulfidptosis-related genes

A total of ten disulfidptosis-related genes were selected from previous studies, including GYS1, OXSM, NDUFS],
LRPPRC, NDUFA11, NUBPL, NCKAP1, RPN1, SLC3A2 and SLC7A11’. Both univariable Cox regression and
KM survival analyses were performed to screen disulfidptosis-related genes significantly correlated to the prog-
nosis of glioma in all four datasets. A total of three significantly correlated disulfidptosis-related genes were
identified, including LRPPRC, RPN1, and GYS1 (Fig. 1A, Tables S1, 2). The AIC method of Cox Proportional
Hazards Model was used to construct the risk model (Fig. 1B, Table 1). The subcellular distribution of these three
genes in glioma cell line U-251MG were analyzed using immunofluorescence staining data from HPA database
(http://www.proteinatlas.org), and the results showed that LRPPRC, RPN1, and GYS1 were in mitochondria,
cytosol, and microtubules, respectively (Fig. 1C). We explored their expression in dataset from TCGA and found
that LRPPRC was downregulated, while RPN1 and GYS1 were upregulated in TCGA glioma dataset (Fig. 1D).
Furthermore, the KM survival plots showed that high expression of LRPPRC was positively correlated with good
prognosis, while high expression of RPN1 and GYS1 was positively correlated with poor prognosis (Fig. 1E).
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Figure 1. Construction of risk model using three disulfidptosis-related genes. (A) Intersected genes correlated
with prognosis of glioma in both univariable Cox regression and KM survival analyses from the TCGA, CGGA,
CGGA-array, and GSE16011 datasets. (B) The Cox Proportional Hazards Model was used to construct the

risk model using LRPPRC, RPN1, and GYS1 genes. (C) Immunofluorescence staining of LRPPRC (antibody:
HPA036409), RPN1 (antibody: HPA051520), and GYSI (antibody: HPA041598) in U-251MG glioma cells from
HPA database. (D) The expression levels of LRPPRC, RPN1, and GYSI between glioma (LGG + GBM) and
normal control from TCGA were compared and displayed using boxplot. LRPPRC was decreased in glioma,
while RPN1 and GYS1 were increased in glioma tissues. (E) K-M survival curves for LRPPRC, RPN1, and GYS1
genes showed that high expression of LRPPRC had better OS, while high expression of RPN1 and GYS1 had
worse OS.
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Gene coef exp(coef) | se(coef) |z p value
LRPPRC —-0.3358 | 0.7148 0.1634 —2.055 |0.0398
RPN1 1.4536 4.2785 0.1543 9.422 <2e-16
GYS1 0.5002 1.6491 0.1081 4.627 3.71e-06

Table 1. The Cox Proportional Hazards Model using three disulfidptosis-related genes.

These data suggest that these three disulfidptosis-related genes were dysregulated in glioma and were associated
with the prognosis of glioma.

Evaluation of the disulfidptosis-related risk signature

The TCGA glioma dataset was used to construct the risk model, and the risk score was calculated using the
following formula: risk score = (— 0.3358 x LRPPRC expression) + (1.4536 x RPN1 expression) + (0.5002 x GYS1
expression). The prognostic prediction potential of the disulfidptosis-related risk signature was examined with
time-dependent ROC curves. The results showed that this risk signature had better AUC values in 3- and 5-year
OS prediction and the CGGA dataset had the best prediction potential with an AUC value of 0.85 for 5-year OS
(Fig. 2A). Patients were grouped into high and low-risk groups using the cutoff of median risk score value, and
the KM survival plots showed that patients with low-risk had better OS in all four datasets (Fig. 2B). The risk
score distribution and outcome of patients showed that most alive patients were in the low-risk group, while most
dead patients had higher risk scores (Fig. 2C), suggesting the accurate prediction potential of the disulfidptosis-
related risk signature for glioma patients.

Correlation between the disulfidptosis-related signature and clinicopathological features
Since the disulfidptosis-related signature showed remarkable correlation with OS of glioma patients and harbored
accurate prediction potential, we further explored the correlation between the disulfidptosis-related signature
and clinicopathological features considering malignancy grade, IDH mutation, MGMT promoter methylation,
and 1p19q codeletion status. The KM survival plots showed that patients with low-risk had better OS of LGG
patients in TCGA, CGGA_array, CGGA datasets, while had better OS of GBM patients in GSE16011 dataset
(Fig. 3A). In all four datasets, we found that GBM patients, representing higher grade, had higher risk scores
than LGG patients (Fig. 3B). In TCGA dataset, we observed that IDH wildtype, MGMT promoter unmethylated,
and 1p19q non-codeletion patients had higher risk scores (Fig. 3C), and similar results were found in CGGA
dataset (Fig. 3D). These results indicate that the disulfidptosis-related signature is significantly correlated with
clinicopathological features of glioma patients.

Functional annotation of the disulfidptosis-related signature

We further investigated the functional annotation of the disulfidptosis-related signature concerning the KEGG
pathways and biological processes. The expression of the three disulfidptosis-related genes, LRPPRC, RPN1,
and GYSI, was examined, and the results showed that RPN1 and GYS1 were increased in high-risk group while
LRPPRC was decreased in high-risk group in all four datasets (Fig. 4A). The differences of KEGG pathways and
biological processes between low and high-risk groups were compared using the GSVA R package. The signifi-
cantly different KEGG pathways enriched in high-risk glioma patients involved sugar metabolisms, including
glycosaminoglycan, glycosphingolipid, amino and nucleotide sugar (Fig. 4B). The biological processes enriched in
high-risk glioma patients involved immune responses, including complement activation, mast cell degranulation,
and antigen processing and presentation (Fig. 4C). Disulfidptosis occurred under glucose starvation, and these
results suggest that the three disulfidptosis-related gene may regulate disulfidptosis through sugar metabolisms.

Correlation between the disulfidptosis-related signature and immune features
As immune response biological processes were differentially enriched in low and high-risk glioma patients
revealed above, we studied the correlation between the disulfidptosis-related signature and immune features.
Anti-cancer immune response consists of several stepwise events named the cancer-immunity cycle, involving
several immune cells and molecules. An inhibitory gene list of the cancer-immunity cycle was downloaded
TIP—Tracking Tumor Immunophenotype database?!, and most of these inhibitory genes were upregulated in
high-risk group from all four datasets (Fig. 5A). FGL2, IL10, TGFB1, and VEGFA were secreted immunosuppres-
sive molecules in glioma and were consistently upregulated in high-risk group from all four datasets (Fig. 5B).
The immune cell infiltration was analyzed between low and high-risk groups, most immune cells were enriched
in high-risk groups including both oncogenic and immunosuppressive cells (Fig. 5C). The glioma patients were
divided into six immune subtypes. C4 (Lymphocyte Depleted) and C5 (Immunologically Quiet) accounted for
the majority, and C4 subtype representing a high M2 response showed higher ratio in high-risk groups (Fig. 5D).
These data indicate that high disulfidptosis-related risk score represents immunosuppressive status in glioma.
Moreover, the expression of immune checkpoints indicates the response of immunotherapy, and we also
found that most immune checkpoint genes were upregulated in high-risk groups (Fig. 6A). PD-1 (PDCD1) and
PD-L1 (CD274) have been widely used in immune checkpoint inhibitor immunotherapy, and the results showed
that both PD-1 and PD-L1 were increased in high-risk groups, furthermore, disulfidptosis-related risk score was
positively correlated with the expression of PD-1 and PD-L1 (Fig. 6B). These results suggest that disulfidptosis-
related risk signature can predict the immune features of glioma.
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Figure 2. Evaluation of the disulfidptosis-related risk signature. (A) The 1-, 3-, and 5-year time-dependent OS
ROC curves of the disulfidptosis-related risk signature in the four datasets were calculated using the timeROC
R package. (B) The KM survival plots showed that patients with low-risk had better OS. (C) The risk score
distribution and outcome of glioma patients in all four datasets.

Discussion

Due to the metabolic imbalance and rapid proliferation, buffering reactive oxygen species (ROS), acidic extracel-
lular pH, hypoxia, and nutrient deprivation to thrive in the tumor microenvironment are the main challenges for
cancers. Metabolic reprogramming is an essential hallmark of cancer cells, which results in a high dependence of
specific nutrients or metabolites and promotes the survival of cancer cells*. For instance, to mitigating the dam-
aging effects of ROS, cancer cells upregulate the expression of SLC7A11, a cystine-glutamate antiporter, increase
the import of cystine to generate cysteine and glutathione. However, under the glucose starvation situation, the
cystine accumulates in cancer cells due to the disrupted conversion into cysteine caused by the insufficient supply
of NADPH produced from glucose. Eventually, the accumulation of cystine causes aberrant disulfide bonding
to the actin cytoskeleton, leading to disulfidptosis’. Liu et al. identified several genes remarkably associated with
disulfidptosis via whole-genome CRISPR-Cas9 screen, including SLC7A11 and its chaperone SLC3A2, and vari-
ous components of mitochondrial oxidative phosphorylation system (such as NDUFA11, NDUFS1, LRPPRC,
and NUBPL)’. In this study we comprehensively studied the diagnostic and immunologic potential of these
disulfidptosis-related genes using a risk score model. We established a 3-gene risk model which exhibited good
performance in predicting both prognosis and immunotherapeutic response.
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Figure 3. Correlation between the disulfidptosis-related signature and clinicopathological features. (A) The

KM survival plots showed the survival probability of the disulfidptosis-related signature risk score and OS of
GBM and LGG respectively. (B) The beeswarm plot showed the difference of risk scores between GBM and LGG
patients in all four datasets. (C) The boxplot showed the difference of risk scores between IDH wildtype (WT)
and mutant, MGMT promoter unmethylated and methylated, 1p19q non-codeletion and codeletion patients
from TCGA dataset. (D) The boxplot showed the difference of risk scores between IDH wildtype and mutant,
1p19q non-codeletion and codeletion patients from CGGA dataset. ***p <0.001.
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Figure 4. Functional annotation of the disulfidptosis-related signature. (A) The expression of LRPPRC, RPN1,
and GYS1 between low and high-risk glioma patients from all four datasets. (B) The top 20 KEGG pathways
enriched in the high-risk glioma patients from TCGA dataset. (C) The top 20 biological processes enriched in
the high-risk glioma patients from TCGA dataset. ***p <0.0001.

LRPPRC, RPN1, and GYS1 were identified as survival related disulfidptosis genes via univariable Cox regres-
sion and KM survival analyses among all the four datasets, and a risk score model was constructed using these
three disulfidptosis related genes. LRPPRC is involved in mitochondrial oxidative phosphorylation, RPN1 locates
in the endoplasmic reticulum, and GYSI is a glycogen synthase. Immunofluorescence staining revealed that
LRPPRC, RPN1, and GYS1 locate in mitochondria, cytosol, and microtubules, respectively. RPN1 and GYS1
were upregulated in glioma and were negatively correlated with favorable outcome, while LRPPRC1 was down-
regulated in glioma and positively correlated with favorable outcome. RPN1 encodes a type I integral membrane
protein located in endoplasmic reticulum and is involved in the regulation of dolichyl-diphosphooligosaccharide-
protein glycotransferase activity. Higher RPN1 somatic mutation was found in germline ALK variant glioma
patients compared with germline ALK wildtype patients IDH wildtype glioma?’. GYS1 is one of the main regula-
tors of glycogen synthesis, and GYS1 inhibition causes glycogen accumulation in glioblastoma cells, leading to
proliferation and migration suppression and formation of ROS, indicating GYSI inhibition may be a promising
therapeutic target for glioma®**°. These studies suggest that the three survival related disulfidptosis genes may
also contribute to the progression of glioma and become the potential therapeutic targets.

Risk score is a convenient and widely used method for the construction of meaningful signatures. Our model
was built with disulfidptosis-related risk scores which showed both accurate prediction of the prognosis of glioma
patients and excellent distinction for several glioma molecular subtypes including grade, IDH mutation, MGMT
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Figure 5. Correlation between the disulfidptosis-related signature and immune features. (A) Expression of
the cancer-immunity cycle inhibitory genes between low- and high-risk groups. (B) Expression of FGL2, IL10,
TGFB1, and VEGFA between low- and high-risk groups. (C) Immune cell ratio between low- and high-risk
groups from TCGA dataset. (D) Distribution of immune subtypes. **p <0.01, ***p <0.0001.

promoter methylation, and 1p19q codeletion status. The smallest AUC value of 3-year survival was 0.75 found
in CGGA_array dataset, indicating good performance for short-term prediction. The AUC values of long-term
(5-year) survival prediction were larger than 0.7 with the largest AUC of 0.85 in CGGA dataset. Patients were
further divided into high-risk and low-risk subgroups using the median risk score as cutoff value, and low-risk
patients showed better prognosis in all four datasets. Moreover, patient distribution also revealed that the alive
patients were mainly found in low-risk subgroup, while dead patients were mainly distributed in high-risk
subgroup. LGG is low grade glioma (WHO grade II and III), which may progress to the high grade (IV) GBM
glioma. Consistently, LGG patients had lower risk scores than GBM patients.

IDH play essential roles in Krebs cycle and cellular homoeostasis via catalyzing the oxidative decarboxylation
of isocitrate to generate a-ketoglutarate (a-KG). Cancer genetics revealed that IDH mutation was observed in
several malignancies, including acute myeloid leukemia, chondrosarcoma, gliomas, and thyroid carcinoma. The
most frequent mutations of IDH such as IDH1***" mutation exhibits decreased affinity for isocitrate, converting
a-KG into D-2-hydroxyglutarate (D-2-HG)*. The accumulation of D-2-HG depletes carbohydrates from the
Krebs cycle, leading to metabolic alterations. Moreover, D-2-HG blocks the activity of Ten-eleven translocation
methyl cytosine dioxygenase (TET) and histone demethylases lysine-specific demethylase (KDM), resulting in
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Figure 6. Correlation between the disulfidptosis-related signature and immune checkpoint genes. (A)
Expression of immune checkpoint genes between low- and high-risk groups. (B) Expression of PD-1 (PDCD1)
and PD-L1 (CD274) between low- and high-risk groups. Correlation between disulfidptosis-related signature
risk score and the expression of PD-1 and PD-L1. **p <0.0001.

CpG island hypermethylation and chromosomal instability”’. IDH mutations are primarily detected in grade
IT and III gloma patients and serves as a favorable prognostic and therapeutic biomarker?. In both TCGA and
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CGGA datasets, we found that IDH mutant patients had lower risk scores than the wild type patients, indicating
a favorable prognosis.

MGMT promoter methylation, and 1p19q codeletion were other two epigenetic alterations occurred in glioma
patients. MGMT promoter methylation is associated with improved OS of GBM patients®. 1p19q codeletion is a
combination of loss of the short arm chromosome 1 (1p) and the long arm of chromosome 19 (19q), 1p19q code-
letion, MGMT promoter methylation and/or IDHI mutation signified a better prognosis for glioma patients®.
In this study, we found that patients with these molecular aberrations all had lower risk score than the wild type
glioma patients. These results suggest that disulfidptosis-related risk score model is positively correlated with
these molecular aberrations and represents a valuable prognostic marker for glioma patients.

We further investigated the affected KEGG pathways and GO terms by differentially expressed genes between
high-risk and low-risk glioma patients. Several sugar metabolism pathways and immune response biological
processes were significantly enriched in high-risk patients. Disulfidptosis occurred under glucose starvation,
and these results suggest that the three disulfidptosis-related gene may regulate disulfidptosis through sugar
metabolisms. We also explored the correlation between the disulfidptosis-related signature and immune features.
Several immunosuppressive molecules were consistently upregulated in high-risk group from all four datasets.
The immune subtype analysis revealed that the ratio of C4 (Lymphocyte Depleted) subtype, which displays
prominent M2 response, was higher in high-risk patients, and C4 immune subtype represents worse prognosis
than C5 subtype?, further confirming the accuracy of the disulfidptosis-related risk score model in predicting
the prognosis and immune subtypes of glioma patients.

Currently, the immune checkpoint inhibitor therapy has improved patients’ survival among several cancers,
and becomes one of the most promising cancer therapies®”. PD-1 and PD-L1have been widely used in immune
checkpoint inhibitor immunotherapy, and the results showed that both PD-1 and PD-L1 were increased in
high-risk groups, and positively correlated with the disulfidptosis-related risk scores. These results suggest that
disulfidptosis-related risk signature can also predict the immune therapy response of glioma.

In conclusion, we developed a disulfidptosis-related risk signature using LRPPRC, RPN1, and GYS1 genes.
This disulfidptosis-related risk signature is significantly correlated with prognosis, clinicopathological and
immune features, and immune therapy response of glioma patients. The disulfidptosis-related risk signature
may represent an independent prognostic factor for glioma patients.

Data availability

The datasets used during this study can be downloaded from public databases including TCGA, CGGA, and
GEO: TCGA-LGG: https://portal.gdc.cancer.gov/projects/TCGA-LGG, TCGA-GBM: https://portal.gdc.can-
cer.gov/projects/ TCGA-GBM. CGGA (mRNAseq_325): http://www.cgga.org.cn/download?file=download/
20220620/CGGA.mRNAseq_325.Read_Counts-genes.20220620.txt.zip&type=mRNAseq_325_counts&time=
20220620. CGGA_array (mRNA-array_301): http://www.cgga.org.cn/download?file=download/20200506/
CGGA.mRNA_array_301_gene_level.20200506.txt.zip&type=mRNA _array_301_gene_level&time=20200506.
GSE16011: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE16011.
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