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Dynamic and rapid deep 
synthesis of chemical exchange 
saturation transfer and semisolid 
magnetization transfer MRI signals
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Model-driven analysis of biophysical phenomena is gaining increased attention and utility for medical 
imaging applications. In magnetic resonance imaging (MRI), the availability of well-established 
models for describing the relations between the nuclear magnetization, tissue properties, and the 
externally applied magnetic fields has enabled the prediction of image contrast and served as a 
powerful tool for designing the imaging protocols that are now routinely used in the clinic. Recently, 
various advanced imaging techniques have relied on these models for image reconstruction, 
quantitative tissue parameter extraction, and automatic optimization of acquisition protocols. In 
molecular MRI, however, the increased complexity of the imaging scenario, where the signals from 
various chemical compounds and multiple proton pools must be accounted for, results in exceedingly 
long model simulation times, severely hindering the progress of this approach and its dissemination 
for various clinical applications. Here, we show that a deep-learning-based system can capture the 
nonlinear relations embedded in the molecular MRI Bloch–McConnell model, enabling a rapid and 
accurate generation of biologically realistic synthetic data. The applicability of this simulated data 
for in-silico, in-vitro, and in-vivo imaging applications is then demonstrated for chemical exchange 
saturation transfer (CEST) and semisolid macromolecule magnetization transfer (MT) analysis and 
quantification. The proposed approach yielded 63–99% acceleration in data synthesis time while 
retaining excellent agreement with the ground truth (Pearson’s r > 0.99, p < 0.0001, normalized root 
mean square error < 3%).

Mathematical modeling of biophysical effects has played a key role in the establishment, development, and 
routine clinical interpretation of magnetic resonance imaging (MRI)1. While proton spins, the primary source 
of signal in MRI, are governed by non-intuitive and complex quantum mechanics2, their ensemble and net mag-
netization can be well described as a classical mechanic physics system, formulated as a set of coupled differential 
equations3. Based on these well-validated Bloch equations, imaging scientists were able to simulate offline the 
interactions between the tissue magnetic properties and the scanner-generated radio-frequency (RF) irradiation. 
This capability has enabled the development of new pulse sequences and image acquisition strategies aimed for 
enhancing a variety of clinically meaningful tissue characteristics4,5.

Chemical exchange saturation transfer (CEST) MRI is an increasingly studied molecular imaging technique, 
capable of detecting millimolar concentrations of mobile proteins, peptides, and metabolites, via the exchange 
mechanism between the compound of interest labile protons and the water protons6. CEST imaging has been 
demonstrated as a promising tool for a variety of biomedical tasks including early stroke characterization7, 
cancer detection and grading8–10, kidney disease evaluation11,12, reporter gene imaging13–15, and metabolism 
characterization in neurological disorders16. Semisolid magnetization transfer (MT) imaging is another molecu-
lar MRI approach, where the data is acquired very similarly to CEST, yet it provides information on semisolid 
components, such as membranes or myelin sheets17. The semisolid MT contrast has been used for characterizing 
white-matter disease (such as multiple sclerosis), assessing the treatment response to cancer18, and increasing 
the quality of magnetic resonance angiography (MRA) images19.
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Similar to conventional water-proton-based MRI, the progress of CEST and semisolid MT imaging was 
intertwined with the ability to formulate, explore, and solve the underlying mathematical model. Notably, such 
multi-proton-pool scenarios necessitate a substantial expansion of the Bloch model, which needs to account for 
the additional interplay between the exchangeable proton pools, the water pool, and the acquisition parameters. 
To meet these requirements, the expanded Bloch–McConnell (BM) model was developed20 and later served as 
a powerful tool for a variety of molecular imaging applications, such as optimizing the design of paramagnetic 
CEST contrast agents21, uncovering iopamidol’s multi-site exchange properties and pH sensitivity22, and the 
determination of the exchange parameters of various CEST compounds23,24.

By fitting experimentally acquired data to the BM equations, researchers were able to reconstruct quantita-
tive medical images and map clinically useful biophysical properties such as pH25 and temperature26. While in 
steady-state CEST cases, the parameter fitting can be performed via analytical solutions of the BM equations27, 
this approach mandates a lengthy acquisition, which requires the use of multiple saturation powers, potentially 
resulting in impractical scan times (e.g., more than an hour28). On the other hand, applying accurate BM fitting 
for a clinically relevant, non-steady-state, and faster acquisition scheme requires using the numerical model 
solution, leading to exceedingly long reconstruction times (on the order of hours29).

Recently, several deep-learning-based strategies were developed to accelerate the molecular MRI pipeline. 
CEST Z-spectrum data were converted into phosphocreatine concentration maps using a neural network (NN) 
trained with BM-simulated signals29. The extraction of amide proton volume fraction and exchange rates, as 
well as semisolid MT parameters, was successfully performed in-vivo, using pseudo-random MR-fingerprinting 
(MRF) acquisition schemes, empowered by deep reconstruction strategies (typically trained using numerical 
dictionaries containing millions of entries)30–33.

However, all the above works rely on a computationally demanding generation of synthetic BM-based signals, 
requiring from hours to days, depending on the complexity of the imaging scenario addressed. This exhaustive 
and mandatory process must be repeated for every change in the acquisition protocol parameters or hardware 
available (e.g., modifying the recovery time, flip angle, duty cycle, or B 0 field strength), and for every new biologi-
cal scenario of interest (e.g., where the metabolite of interest or relaxation properties may vary). This restriction 
severely limits the generalizability and utilization of quantitative CEST/semisolid MT techniques for the broad 
spectrum of molecular imaging applications. In addition, the lengthy BM simulation times hinder the efficient 
optimization of any semisolid MT/CEST acquisition protocols, as such efforts mandate an accurate simulation 
of a huge number of BM signals, which become impractical for the Guassian saturation pulse trains typically 
required for clinical applications and for super-Lorentzian lineshapes.

Here, we designed a deep-learning-based system that can capture the nonlinear relations embedded in the 
molecular MRI Bloch–McConnell model, enabling a rapid and accurate generation of biologically realistic syn-
thetic data. The system was designed to allow robustness and flexibility for various hardware and biological 
conditions while accommodating any acquisition protocol length. Validation was performed in-silico, in-vitro, 
and in-vivo for both classical CEST-weighted imaging and quantitative semisolid MT/CEST MRF.

Results
Dynamic simulation of molecular MRI signals
A fully connected NN was designed to receive tissue and scanner parameters of interest and rapidly generate 
the corresponding semisolid-MT or CEST signal (Fig. 1a). Each inference cycle was designed to output a single 
time-evolution signal element, which was then stored and served as input for the next cycle. This configura-
tion enabled a synthesis unrestricted by acquisition protocol length. The accuracy of the rapid signal genera-
tor was initially examined in-silico, using six practical imaging scenarios34, involving the following molecular 
targets: L-arginine, semisolid MT, aliphatic relayed nuclear Overhauser enhancement (rNOE), amine, iohexol, 
and amide. Representative pairs of NN-predicted and ground truth signals (obtained via traditional numerical 
solution of the BM equations) are shown in Fig. 2. An excellent agreement between the NN-generated and the 
ground-truth signals was observed for the entire test set (Fig. 3), with a normalized root-mean-squared error 
(NRMSE) smaller than 3%, and a significant correlation across all cases (Pearson’s r > 0.99, p < 0.0001). The signal 
generation time was 63–92% shorter compared to the reference consensus signal generator31,35 when using the 
exact same desktop computer and CPUs, and 78–96% shorter when employing a GPU. Exact generation times 
for all imaging scenarios are availalble in Supplementary Information Table 1. To investigate the adaptive NN 
performance as a function of the signal element iteration, we calculated the NRMSE across different iteration 
steps for all imaging scenarios presented in Fig. 2 (see Supplementary Information Figure S1). No evident trend 
was obtained between the iteration step and the error.

In‑vitro CEST MRF based on NN‑generated signals
To further validate the applicability of deep signal generation for standard imaging applications, an in-vitro 
phantom study was conducted. A 50 mM L-arginine phantom, composed of three vials titrated to different pH 
levels (yielding different proton exchange rates), was scanned at 9.4T. A dictionary of 665,873 simulated signals 
(Fig. 3—top left), corresponding to various combinations of the water pool and the amine proton exchange 
parameters36,37 was generated using the NN-based and the standard reference method. A traditional dot-product-
based MRF reconstruction was then performed to quantify the L-arginine properties using the two dictionaries. 
The resulting proton exchange rate (Fig. 4b,f) and concentration (Fig. 4a,e) maps obtained using both methods 
were in excellent agreement (Supplementary Information Table 2), demonstrating an NRMSE < 2% and a struc-
tural similarity index (SSIM) > 0.90.
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In vivo semisolid MT MRF based on NN‑generated data
As another means to assess the NN-based signal generator under realistic settings, a semisolid MT brain imaging 
experiment was performed in a wild-type mouse scanned at 9.4T. A dictionary composed of 26,400 signals repre-
senting various tissue parameter combinations was generated using the same dynamic NN used in the L-arginine 
phantom study. The resulting dictionary was used for dot-product MRF reconstruction of the semisolid MT 
proton volume fraction and exchange rates across the mouse’s brain and compared to the corresponding images 
reconstructed using a traditional dictionary synthesis. The resulting exchange parameter maps generated using 
both methods (Fig. 4c,d,g,h) were in excellent agreement (Supplementary Information Fig. S2), demonstrating 
an NRMSE < 4% and a structural similarity index (SSIM) > 0.98.

Application optimized ultrafast signal generation
For applications focused on a single exchangeable proton pool or a particular pathology of interest, the optimiza-
tion of the signal-to-noise ratio, or parameter quantification ability is highly desirable, but the flexibility to accom-
modate a variety of imaging cases and various acquisition schedule lengths can be relaxed. To accommodate 
these situations, we have designed another NN-based molecular signal generation architecture (Fig. 1b), where 
the dynamic component is absent, and the entire signal trajectory (including all its time-evolution components) 
is generated simultaneously. While such architecture can only enable a fixed-size signal generation, it inherently 
offers increased acceleration compared to the dynamic NN (Fig. 1a), requiring only a single inference cycle. The 
system was validated using a challenging imaging scenario, where CEST signals from the human brain need to 
be synthesized while considering the simultaneous effects from seven proton pools (amide, guanidine, amine, 
OH, NOE, semisolid MT, and water)17. The simulation was performed using a clinically relevant saturation pulse 
train, which is particularly lengthy to simulate using standard signal generators. A comparison between a repre-
sentative NN-generated Z-spectrum from the above-described case and its traditionally simulated counterpart 
is shown in Fig. 5a. The excellent agreement between the entire test-set results obtained with both methods is 
shown in Fig. 5b (Pearson’s r > 0.99, p-value < 0.0001, NRMSE < 1%). Notably, the test-set generation time was 
shortened from 25.2 hr (90,719 s, Supporting Information Table 1) using the reference method to 1.6 s using the 
application optimized NN, implemented using the exact same (non-GPU) hardware.

Discussion
The BM equations have played a vital role in the progress of semisolid MT and CEST imaging. Their solution pro-
vides offline insights on protocol design, field strength dependencies38, and predicted compound-related effects, 
and is being routinely used in a variety of imaging tasks, such as traditional Bloch fitting39 and semisolid-MT/
CEST MRF32. While various deep-learning-based strategies were recently proposed for accelerating/quantifying 
molecular semisolid MT/CEST imaging29,30,34,40–44, most of these computational approaches require an exhaus-
tive simulation of the underlying BM model that needs to be repeated for millions of different tissue parameter 
combinations. The proposed NN-based signal generator is expected to complement these quantitative CEST 
efforts, providing a drastic acceleration at a different point in the imaging pipeline—the dictionary generation 
step. Moreover, the same signal generator could be used for accelerating classical Bloch-fitting of traditional 
CEST data. Notably, the dynamic nature of the suggested framework (Fig. 1a) offers a robust framework for 
accommodating any signal length and a wide variety of tissue and scanner parameters while circumventing the 
need to re-synthesize data for a newly examined imaging protocol and biological scenario. This characteristic 
is expected to enable rapid comparison between the encoding capability of various-length quantitative CEST 
protocols, assist in choosing the optimal field strength for a given application, and improve the contrast to noise-
ratio in semisolid MT or CEST-weighted imaging.

While analytical solutions for semisolid MT and CEST-weighted signals were previously derived27,38,45,46, they 
rely on several inherent assumptions that yield inaccuracy at particular exchange regimes and are incompatible 
with many saturation pulse trains and pulse shapes. As numerically solving the BM equations in such cases is 
extremely computationally demanding, the deep signal generator becomes particularly attractive, as its inference 
time is agnostic to the pulse shape, saturation pulse train characteristics, and the macromolecular Lorentzian/
super-Lorentzian absorption lineshape. Specifically, a 56,699-fold acceleration was demonstrated here (Fig. 5) 
to simulate a seven-pool CEST Z-spectrum acquisition using a sinc-Gaussian pulse trains (without a GPU).

The choice of the fully connected architecture for the deep signal generator was based on its previous success 
in capturing semisolid MT/CEST signal dynamics30 and as a means to minimize the model complexity, training, 
and inference time. Future work could nonetheless explore more sophisticated recurrent-based architectures47, 
which may further improve the system’s accuracy (though with a potential penalty in computational time).

A single dynamic model (with a fixed set of optimized neural network weights) was able to accurately generate 
semisolid MT/CEST signals (NRMSE < 3%, Pearson’s r > 0.99, p < 0.0001) for six different imaging scenarios 
(Figs. 2 and 3). The same model could be expanded and trained to accommodate additional pulse-sequence 
diagrams and various readout patterns used by the MRI community. This process is expected to be relatively 
straightforward via the use of the open-source pulseq standard format sequences31. Similarly, the same model 
could be used to generate traditional water pool T 1 and T 2 signal dictionaries for conventional MRF48 while 
taking into consideration the magnetization transfer effect on the measured relaxivity49,50.

This work has used a Pulseq-CEST-based rapid numerical solver of the Bloch–McConnell equations as 
the ground-truth reference31,32. While Pulseq-CEST has been used in various previous reports30,32,35, there is 
still an ongoing effort by the research community to compare different codes and reach a consensus on CEST 
simulation51,52. The deep learning approach described in the manuscript can easily be adapted and re-trained 
using any other simulator-based signals, to accommodate a future consensus.
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To assess if the network performance are dependent on the tissue and acquisition parameters, we have 
separately calculated the NRMSE as a function of water relaxivity, proton volume fraction and exchange rate, 
and the saturation pulse power, for a representative imaging scenario (L-arginine, Figs. 2 and 3). As shown in 
Supplementary Information Fig. S3, while a very mild dependency was demonstrated for the water relaxivity, 
an increased error was demonstrated for the slowest proton exchange rates, the close to zero saturation pulse 

Table 1.   Tissue and scanner parameter range used for dynamic NN training. A series of 10 acquisition 
parameters were used in all imaging scenarios34, except for the semisolid MT30 and L-arginine36 cases where a 
series of 30 elements was used. Notations are defined in the caption of Fig. 1.

Parameter Minimum value Maximum value

T1w (s) 1.3 3.4

T2w (s) 0.04 1.2

T1s (s) 1.3 3.4

T2s (s) 4 ·10−5 0.04

f s 20

110000

30000

110000

ksw (s−1) 5 1500

B1  ( µT) 0.25 6

T p (s) 1 10

Trec (s) 1 10

B0 (T) 3 11.7

FA (◦) 60 90

ωb (ppm) −3.5 4.3

ωrf  (ppm) −3.5 20

Figure 1.   Network architectures. (a) A dynamic fully connected NN receives tissue parameters, scanner 
parameters, and the previous inference cycle signal S i  . The output is the next time-evolution signal element 
S i+1 . The inference cycle continues according to the user’s desired signal acquisition length N. (b) Application 
Optimized network. The input of the network are tissue and scanner parameters. The output is the entire 
magnetic signal inferred at once, according to a particular value N used during the training. T 1w—water 
longitudinal relaxation, T 2w—water transverse relaxation, T 1s—solute longitudinal relaxation, T 2s—solute 
transverse relaxation, f si—proton volume fraction for solute i, k swi—proton exchange rate for solute i, ωb—
chemical shift, T p—saturation pulse duration, T rec—recovery time, B 0—main magnetic field, FA—flip angle, ωrf

—saturation pulse frequency offset, B 1—saturation pulse power, n p—number of pulses in the saturation pulse 
train.
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powers and the close to zero proton volume fractions. This can be explained by the relatively low CEST/semisolid 
MT signal associated with a very slow exchange, a highly diluted CEST compound, and inefficient saturation 
powers. This limitation could potentially be mitigated, by intentionally generating additional training signals 
from this challenging SNR regime.

As demonstrated in Figs. 3 and 5b, the application optimized NN has demonstrated increased correlation 
between the NN-predicted signals and the ground truth, compared to the adaptive NN and faster inference 
times (Supporting Information Table 1). To further compare the outputs for the two networks, we evaluated 
their performance on the same representative example, the amine imaging scenario described in Figs. 2 and 
3. As shown in Supplementary Information Fig. S4, while both networks demonstrate a significant agreement 
with the ground-truth reference (pearson’s r > 0.99, p < 0.0001) , the NRMSE obtained by the application opti-
mized network is lower (0.59% compared to 1.1%) and the inference time shorter (0.82 s compared to 1.42 s). 
However, the network is only suitable for a pre-determined acquisition protocol length, and is mostly relevant 
for a researcher/physician with a research focus on a particular imaging application (e.g., brain amide proton 
transfer CEST weighted imaging using a fixed full-length Z-spectrum). The adaptive NN, on the other hand, 
offers a wide applicability to a variety of imaging scenarios (Fig. 2), while retaining sufficiently low error rates 
and practically reasonable inference times.

Conclusion
A deep learning-based framework for dynamic and rapid generation of semisolid molecular MT and CEST 
MRI signals was developed, demonstrating broad applicability with various imaging scenarios and acquisition 
protocols.

Methods
Deep molecular signal generator architecture
Two deep learning models were designed to receive a set input of tissue and scan parameters and rapidly gener-
ate the corresponding semisolid MT or CEST signals. Both architectures consisted of a four-layers fully con-
nected neural network, with 256 x 256 neurons in the two hidden layers and sigmoid activation functions. The 
dynamic network variant (Fig. 1a) was designed to accommodate a two-pool imaging scenario of various target 
compounds using a continuous wave saturation pulse scheme with a wide range of saturation and readout char-
acteristics (Table 1), and a variety of field strengths (B0 = 3T, 4.7T, 7T, 9.4T, and 11.7T). The network operated in 
an iterative manner, where each inference cycle i yielded a single time-evolution signal element (S i  = |Mxyi | ). In 
the next cycle, the last estimated signal served as additional input for generating S i+1 until reaching the required 
signal length N. Training was performed using 104,190,000 random signal trajectories from the tissue and scan-
ner parameter range described in Table 1. The data was split between training and validation sets in a ratio of 

Figure 2.   In-silico comparison between dynamic-NN-generated semisolid MT/CEST signals, and their 
ground-truth counterparts. Each subfigure describes a representative test-set signal trajectory taken from a 
different molecular imaging scenario34, all generated using a single NN (Fig. 1a). In all cases, a series of varied 
saturation pulse powers (B1 ) was applied, except for the In-vivo MT scenario where both the B 1 and the 
saturaion pulse frequency offset ( ωrf  ) were simultaneously varying. Note the excellent agreement between the 
reference ground-truth standard and the NN-generated trajectories.
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90/10%, employing an early-stopping approach to prevent over-fitting. A separate set of 1,694,183 signals from 
various imaging scenarios34 was synthesized as a test set.

The application-optimized network variant (Fig. 1b) was designed to obtain a further acceleration in signal 
generation time, with the cost of removing the flexibility for variable output signal acquisition lengths. The net-
work was oriented to address a seven-proton-pool human brain imaging scenario at a variety of field strengths 
(B0 = 3T, 4.7T, 7T, 9.4T, and 11.7T), with various tissue parameter values enabled, based on the baseline properties 
described in17,53. A flexible CEST protocol, consisting of Sinc-Gaussian pulses, variable pulse duration, variable 
number of saturation pulses, recovery time, and B 0 magnetic field was considered, and the output consisted 
of an N=34 long acquisition schedule, obtained in a single inference cycle. The training was performed using 
5,443,200 random signal trajectories from the tissue and scanner parameter range described in Table 2, with a 
90/10% split between training and validation data. A separate set of 259,200 signal trajectories (at B 0 = 4.7T) 
was synthesized for the test phase.

For both network variants, the training was performed using signal dictionaries generated via a numerical 
reference solution of the Bloch–McConnell equations (see next section), employing the adaptive moment estima-
tion (ADAM) optimizer, a mean square error loss, a learning rate of 0.0001, and a batch size of 2048. The NNs 
were realized using the TensorFlow framework, trained using a GeForce RTX 3060 TI graphic processor, and an 
Intel i5-11400 2.6 GHz 12-core CPU desktop. The total training time was 640 min and 35 min for the dynamic 
and application-optimized network variants, respectively. Inference times were calculated both with and without 
the use of the GPU (Supporting Information Table 1).

Reference standard molecular signal generator
Dictionaries of simulated signal intensity trajectories were generated using a state-of-the-art Bloch–McConnell 
equations numerical solver31,35, implemented in C ++ according to the open-source pulseq-based standard54,55. 
To provide a fair comparison for the MRF application, requiring the simultaneous and exhaustive generation 
of a huge number of signal trajectories, we have activated the pulseq-signal generator in a parallel execution 
manner32 (see the code availability section). The simulations were implemented on an Intel i5-11400 2.6 GHz 
12-core CPU desktop.

Figure 3.   Statistical analysis of the in-silico signal generation experiment performed using the dynamic NN. 
An excellent agreement was obtained between the NN-predicted signal trajectories and their ground truth 
counterparts (Pearson’s r > 0.99, p < 0.0001, normalized root mean square error (NRMSE) < 3%) for all six 
examined imaging scenarios.
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CEST phantom imaging
An in-vitro MRF imaging study was performed using an L-arginine phantom composed of three different vials 
with a 50 mM concentration and a pH titrated to 5.0, 5.5, and 6.0 pH (affecting the amine proton exchange 
rate)36,37. Imaging was conducted using a 9.4T MRI scanner (Bruker Biospin, Billerica, MA), a transmit/receive 
volume coil (Bruker Biospin, Billerica, MA), a field of view (FOV) of 32 x 32 mm2 , a matrix of 64 x 64 pixels, 

Table 2.   Tissue and scanner parameter range used for application-optimized NN training. The fixed tissue 
parameters are available at the pulseq-CEST simulation repository53, based on the values described in17. The 
fixed acquisition protocol parameters are defined at the pulseq sequence library57, as described in the CEST 
APT consensus paper, sequence APTw00235. T 1w—water longitudinal relaxation, T 2w—water transverse 
relaxation, f si—proton volume fraction for solute i, k swi—proton exchange rate for solute i, T p—saturation 
pulse duration, T rec—recovery time, B 0—main magnetic field, n p—number of pulses in the saturation pulse 
train.

Parameter Minimum value Maximum value

T1w (s) 0.8 1.6

T2w (s) 0.04 0.12

f s  amide 0.0005 0.0045

ksw amide (s−1) 30 90

f s  guanidine 0.0005 0.0014

f s  amine 0.0005 0.0045

f s  OH 0.0005 0.0045

f s  NOE 0.0022 0.0067

fss MT (Lorentzian) 0.018 0.216

T p (s) 0.05 0.1

Trec (s) 2.5 4

B0 (T) 3 11.7

n p 10 30

Figure 4.   Magnetic resonance fingerprinting quantitative reconstruction of in-vitro CEST and in-vivo 
semisolid MT data using dynamic-NN-generated signals. (a,b,e,f) L-arginine concentration and proton 
exchange rate maps were obtained using dynamic-NN-generated signals (top) and traditional numerical 
solutions of the BM equations (bottom). (c,d,g,h) In vivo semisolid MT proton volume fraction and exchange 
rate maps from a wild-type mouse, obtained using dynamic-NN-based signals (top) and traditional numerical 
solution of the BM equations (bottom).
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and a 5 mm slice thickness. An in-house programmed, flexible semisolid MT/CEST-EPI protocol was used, 
employing a pseudo-random varied series of saturation pulse parameters, as described in36,37.

In vivo semisolid MT mouse imaging
All animal experiments and procedures were performed in accordance with the NIH Guide for the Care and 
Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee of the 
Massachusetts General Hospital. The study is reported in accordance with ARRIVE guidelines. A single adult 
C57/BL6 wild-type male mouse (28 gr), was purchased from Jackson Laboratory for a proof of concept imaging 
experiment. It was anesthetized using 1–2% isoflurane and placed on an MRI cradle with ear and bite bars to 
secure the head. The respiration rate was monitored with a small animal physiological monitoring system (SA 
Instruments, Stony Brook, NY), and the temperature was maintained by blowing warm air in the bore of the 
magnet. A quadrature volume coil was used for RF transmission, and a mouse brain phased array surface coil 
was used for receive (Bruker Biospin, Billerica, MA). A field of view (FOV) of 19 x 19 mm2 , a matrix of 64x64 
pixels, and a 1 mm slice thickness were used. A pseudo-random semisolid-MT MRF protocol was implemented, 
where the saturation pulse power and frequency offset were varied between differently acquired raw images, as 
described in30.

Statistical analysis
Pearson’s correlation coefficients were calculated using the open-source SciPy scientific computing library for 
Python56. The structural similarity index (SSIM) was computed using the SSIM-python imaging library (PIL). 
Differences were considered significant at p < 0.05.

Data availability
The in-vitro and in-vivo datasets used in this study are available in Figshare repository: https://​doi.​org/​10.​6084/​
m9.​figsh​are.​23289​800.

Code availability
CEST and semisolid MT Z-spectra, as well as MR fingerprinting reference dictionaries can be generated using 
the code available in: https://​github.​com/​operl​man/​cest-​mrf. The deep-learning models and source code are 
available at: https://​github.​com/​Dinor​Nagar/​Molec​ular-​MRI-​Gener​ator.
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