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Dynamic and rapid deep

synthesis of chemical exchange
saturation transfer and semisolid
magnetization transfer MRI signals
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Model-driven analysis of biophysical phenomena is gaining increased attention and utility for medical
imaging applications. In magnetic resonance imaging (MRI), the availability of well-established
models for describing the relations between the nuclear magnetization, tissue properties, and the
externally applied magnetic fields has enabled the prediction of image contrast and served as a
powerful tool for designing the imaging protocols that are now routinely used in the clinic. Recently,
various advanced imaging techniques have relied on these models for image reconstruction,
quantitative tissue parameter extraction, and automatic optimization of acquisition protocols. In
molecular MRI, however, the increased complexity of the imaging scenario, where the signals from
various chemical compounds and multiple proton pools must be accounted for, results in exceedingly
long model simulation times, severely hindering the progress of this approach and its dissemination
for various clinical applications. Here, we show that a deep-learning-based system can capture the
nonlinear relations embedded in the molecular MRI Bloch-McConnell model, enabling a rapid and
accurate generation of biologically realistic synthetic data. The applicability of this simulated data
for in-silico, in-vitro, and in-vivo imaging applications is then demonstrated for chemical exchange
saturation transfer (CEST) and semisolid macromolecule magnetization transfer (MT) analysis and
quantification. The proposed approach yielded 63-99% acceleration in data synthesis time while
retaining excellent agreement with the ground truth (Pearson’s r > 0.99, p < 0.0001, normalized root
mean square error < 3%).

Mathematical modeling of biophysical effects has played a key role in the establishment, development, and
routine clinical interpretation of magnetic resonance imaging (MRI)!. While proton spins, the primary source
of signal in MRI, are governed by non-intuitive and complex quantum mechanics?, their ensemble and net mag-
netization can be well described as a classical mechanic physics system, formulated as a set of coupled differential
equations®. Based on these well-validated Bloch equations, imaging scientists were able to simulate offline the
interactions between the tissue magnetic properties and the scanner-generated radio-frequency (RF) irradiation.
This capability has enabled the development of new pulse sequences and image acquisition strategies aimed for
enhancing a variety of clinically meaningful tissue characteristics**.

Chemical exchange saturation transfer (CEST) MRI is an increasingly studied molecular imaging technique,
capable of detecting millimolar concentrations of mobile proteins, peptides, and metabolites, via the exchange
mechanism between the compound of interest labile protons and the water protons®. CEST imaging has been
demonstrated as a promising tool for a variety of biomedical tasks including early stroke characterization’,
cancer detection and grading®'°, kidney disease evaluation''?, reporter gene imaging'*-'%, and metabolism
characterization in neurological disorders'®. Semisolid magnetization transfer (MT) imaging is another molecu-
lar MRI approach, where the data is acquired very similarly to CEST, yet it provides information on semisolid
components, such as membranes or myelin sheets!”. The semisolid MT contrast has been used for characterizing
white-matter disease (such as multiple sclerosis), assessing the treatment response to cancer'®, and increasing
the quality of magnetic resonance angiography (MRA) images'®.
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Similar to conventional water-proton-based MRI, the progress of CEST and semisolid MT imaging was
intertwined with the ability to formulate, explore, and solve the underlying mathematical model. Notably, such
multi-proton-pool scenarios necessitate a substantial expansion of the Bloch model, which needs to account for
the additional interplay between the exchangeable proton pools, the water pool, and the acquisition parameters.
To meet these requirements, the expanded Bloch-McConnell (BM) model was developed®® and later served as
a powerful tool for a variety of molecular imaging applications, such as optimizing the design of paramagnetic
CEST contrast agents®!, uncovering iopamidol’s multi-site exchange properties and pH sensitivity??, and the
determination of the exchange parameters of various CEST compounds*?.

By fitting experimentally acquired data to the BM equations, researchers were able to reconstruct quantita-
tive medical images and map clinically useful biophysical properties such as pH*® and temperature?®. While in
steady-state CEST cases, the parameter fitting can be performed via analytical solutions of the BM equations?,
this approach mandates a lengthy acquisition, which requires the use of multiple saturation powers, potentially
resulting in impractical scan times (e.g., more than an hour®®). On the other hand, applying accurate BM fitting
for a clinically relevant, non-steady-state, and faster acquisition scheme requires using the numerical model
solution, leading to exceedingly long reconstruction times (on the order of hours®).

Recently, several deep-learning-based strategies were developed to accelerate the molecular MRI pipeline.
CEST Z-spectrum data were converted into phosphocreatine concentration maps using a neural network (NN)
trained with BM-simulated signals®. The extraction of amide proton volume fraction and exchange rates, as
well as semisolid MT parameters, was successfully performed in-vivo, using pseudo-random MR-fingerprinting
(MRF) acquisition schemes, empowered by deep reconstruction strategies (typically trained using numerical
dictionaries containing millions of entries)*°-.

However, all the above works rely on a computationally demanding generation of synthetic BM-based signals,
requiring from hours to days, depending on the complexity of the imaging scenario addressed. This exhaustive
and mandatory process must be repeated for every change in the acquisition protocol parameters or hardware
available (e.g., modifying the recovery time, flip angle, duty cycle, or By field strength), and for every new biologi-
cal scenario of interest (e.g., where the metabolite of interest or relaxation properties may vary). This restriction
severely limits the generalizability and utilization of quantitative CEST/semisolid MT techniques for the broad
spectrum of molecular imaging applications. In addition, the lengthy BM simulation times hinder the efficient
optimization of any semisolid MT/CEST acquisition protocols, as such efforts mandate an accurate simulation
of a huge number of BM signals, which become impractical for the Guassian saturation pulse trains typically
required for clinical applications and for super-Lorentzian lineshapes.

Here, we designed a deep-learning-based system that can capture the nonlinear relations embedded in the
molecular MRI Bloch-McConnell model, enabling a rapid and accurate generation of biologically realistic syn-
thetic data. The system was designed to allow robustness and flexibility for various hardware and biological
conditions while accommodating any acquisition protocol length. Validation was performed in-silico, in-vitro,
and in-vivo for both classical CEST-weighted imaging and quantitative semisolid MT/CEST MRE.

Results

Dynamic simulation of molecular MRl signals

A fully connected NN was designed to receive tissue and scanner parameters of interest and rapidly generate
the corresponding semisolid-MT or CEST signal (Fig. 1a). Each inference cycle was designed to output a single
time-evolution signal element, which was then stored and served as input for the next cycle. This configura-
tion enabled a synthesis unrestricted by acquisition protocol length. The accuracy of the rapid signal genera-
tor was initially examined in-silico, using six practical imaging scenarios®*, involving the following molecular
targets: L-arginine, semisolid MT, aliphatic relayed nuclear Overhauser enhancement (rNOE), amine, iohexol,
and amide. Representative pairs of NN-predicted and ground truth signals (obtained via traditional numerical
solution of the BM equations) are shown in Fig. 2. An excellent agreement between the NN-generated and the
ground-truth signals was observed for the entire test set (Fig. 3), with a normalized root-mean-squared error
(NRMSE) smaller than 3%, and a significant correlation across all cases (Pearson’s r > 0.99, p < 0.0001). The signal
generation time was 63-92% shorter compared to the reference consensus signal generator®*> when using the
exact same desktop computer and CPUs, and 78-96% shorter when employing a GPU. Exact generation times
for all imaging scenarios are availalble in Supplementary Information Table 1. To investigate the adaptive NN
performance as a function of the signal element iteration, we calculated the NRMSE across different iteration
steps for all imaging scenarios presented in Fig. 2 (see Supplementary Information Figure S1). No evident trend
was obtained between the iteration step and the error.

In-vitro CEST MRF based on NN-generated signals

To further validate the applicability of deep signal generation for standard imaging applications, an in-vitro
phantom study was conducted. A 50 mM L-arginine phantom, composed of three vials titrated to different pH
levels (yielding different proton exchange rates), was scanned at 9.4T. A dictionary of 665,873 simulated signals
(Fig. 3—top left), corresponding to various combinations of the water pool and the amine proton exchange
parameters®**” was generated using the NN-based and the standard reference method. A traditional dot-product-
based MRF reconstruction was then performed to quantify the L-arginine properties using the two dictionaries.
The resulting proton exchange rate (Fig. 4b,f) and concentration (Fig. 4a,e) maps obtained using both methods
were in excellent agreement (Supplementary Information Table 2), demonstrating an NRMSE < 2% and a struc-
tural similarity index (SSIM) > 0.90.
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In vivo semisolid MT MRF based on NN-generated data

As another means to assess the NN-based signal generator under realistic settings, a semisolid MT brain imaging
experiment was performed in a wild-type mouse scanned at 9.4T. A dictionary composed of 26,400 signals repre-
senting various tissue parameter combinations was generated using the same dynamic NN used in the L-arginine
phantom study. The resulting dictionary was used for dot-product MRF reconstruction of the semisolid MT
proton volume fraction and exchange rates across the mouse’s brain and compared to the corresponding images
reconstructed using a traditional dictionary synthesis. The resulting exchange parameter maps generated using
both methods (Fig. 4¢,d,g,h) were in excellent agreement (Supplementary Information Fig. S2), demonstrating
an NRMSE < 4% and a structural similarity index (SSIM) > 0.98.

Application optimized ultrafast signal generation

For applications focused on a single exchangeable proton pool or a particular pathology of interest, the optimiza-
tion of the signal-to-noise ratio, or parameter quantification ability is highly desirable, but the flexibility to accom-
modate a variety of imaging cases and various acquisition schedule lengths can be relaxed. To accommodate
these situations, we have designed another NN-based molecular signal generation architecture (Fig. 1b), where
the dynamic component is absent, and the entire signal trajectory (including all its time-evolution components)
is generated simultaneously. While such architecture can only enable a fixed-size signal generation, it inherently
offers increased acceleration compared to the dynamic NN (Fig. 1a), requiring only a single inference cycle. The
system was validated using a challenging imaging scenario, where CEST signals from the human brain need to
be synthesized while considering the simultaneous effects from seven proton pools (amide, guanidine, amine,
OH, NOE, semisolid MT, and water)"”. The simulation was performed using a clinically relevant saturation pulse
train, which is particularly lengthy to simulate using standard signal generators. A comparison between a repre-
sentative NN-generated Z-spectrum from the above-described case and its traditionally simulated counterpart
is shown in Fig. 5a. The excellent agreement between the entire test-set results obtained with both methods is
shown in Fig. 5b (Pearson’s r > 0.99, p-value < 0.0001, NRMSE < 1%). Notably, the test-set generation time was
shortened from 25.2 hr (90,719 s, Supporting Information Table 1) using the reference method to 1.6 s using the
application optimized NN, implemented using the exact same (non-GPU) hardware.

Discussion

The BM equations have played a vital role in the progress of semisolid MT and CEST imaging. Their solution pro-
vides offline insights on protocol design, field strength dependencies®, and predicted compound-related effects,
and is being routinely used in a variety of imaging tasks, such as traditional Bloch fitting®® and semisolid-MT/
CEST MRF*. While various deep-learning-based strategies were recently proposed for accelerating/quantifying
molecular semisolid MT/CEST imaging®*>***4*-44 most of these computational approaches require an exhaus-
tive simulation of the underlying BM model that needs to be repeated for millions of different tissue parameter
combinations. The proposed NN-based signal generator is expected to complement these quantitative CEST
efforts, providing a drastic acceleration at a different point in the imaging pipeline—the dictionary generation
step. Moreover, the same signal generator could be used for accelerating classical Bloch-fitting of traditional
CEST data. Notably, the dynamic nature of the suggested framework (Fig. 1a) offers a robust framework for
accommodating any signal length and a wide variety of tissue and scanner parameters while circumventing the
need to re-synthesize data for a newly examined imaging protocol and biological scenario. This characteristic
is expected to enable rapid comparison between the encoding capability of various-length quantitative CEST
protocols, assist in choosing the optimal field strength for a given application, and improve the contrast to noise-
ratio in semisolid MT or CEST-weighted imaging.

While analytical solutions for semisolid MT and CEST-weighted signals were previously derived”**454, they
rely on several inherent assumptions that yield inaccuracy at particular exchange regimes and are incompatible
with many saturation pulse trains and pulse shapes. As numerically solving the BM equations in such cases is
extremely computationally demanding, the deep signal generator becomes particularly attractive, as its inference
time is agnostic to the pulse shape, saturation pulse train characteristics, and the macromolecular Lorentzian/
super-Lorentzian absorption lineshape. Specifically, a 56,699-fold acceleration was demonstrated here (Fig. 5)
to simulate a seven-pool CEST Z-spectrum acquisition using a sinc-Gaussian pulse trains (without a GPU).

The choice of the fully connected architecture for the deep signal generator was based on its previous success
in capturing semisolid MT/CEST signal dynamics® and as a means to minimize the model complexity, training,
and inference time. Future work could nonetheless explore more sophisticated recurrent-based architectures,
which may further improve the system’s accuracy (though with a potential penalty in computational time).

A single dynamic model (with a fixed set of optimized neural network weights) was able to accurately generate
semisolid MT/CEST signals (NRMSE < 3%, Pearson’s r > 0.99, p < 0.0001) for six different imaging scenarios
(Figs. 2 and 3). The same model could be expanded and trained to accommodate additional pulse-sequence
diagrams and various readout patterns used by the MRI community. This process is expected to be relatively
straightforward via the use of the open-source pulseq standard format sequences®. Similarly, the same model
could be used to generate traditional water pool T and T signal dictionaries for conventional MRF*® while
taking into consideration the magnetization transfer effect on the measured relaxivity**.

This work has used a Pulseq-CEST-based rapid numerical solver of the Bloch-McConnell equations as
the ground-truth reference®*2. While Pulseq-CEST has been used in various previous reports®®*%, there is
still an ongoing effort by the research community to compare different codes and reach a consensus on CEST
simulation®"*2. The deep learning approach described in the manuscript can easily be adapted and re-trained
using any other simulator-based signals, to accommodate a future consensus.
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Parameter | Minimum value | Maximum value
Tiw (s) 13 34
Tow () 0.04 1.2
Tis (s) 1.3 3.4
T (s) 4-107° 0.04
S % 13100(2)0(?0
ksw (s71) 5 1500
By (uT) 0.25 6

Ty (s) 1 10
Trec (s) 1 10
By (T) 3 11.7
FA (°) 60 90
wp (ppm) —3.5 4.3
w,f (ppm) —3.5 20

Table 1. Tissue and scanner parameter range used for dynamic NN training. A series of 10 acquisition
parameters were used in all imaging scenarios®, except for the semisolid MT* and L-arginine® cases where a
series of 30 elements was used. Notations are defined in the caption of Fig. 1.
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Figure 1. Network architectures. (a) A dynamic fully connected NN receives tissue parameters, scanner
parameters, and the previous inference cycle signal S;. The output is the next time-evolution signal element
Si+1- The inference cycle continues according to the user’s desired signal acquisition length N. (b) Application
Optimized network. The input of the network are tissue and scanner parameters. The output is the entire
magnetic signal inferred at once, according to a particular value N used during the training. T}, —water
longitudinal relaxation, T, —water transverse relaxation, Tj;—solute longitudinal relaxation, Tz,—solute
transverse relaxation, f;—proton volume fraction for solute i, ks,,;—proton exchange rate for solute i, w,—
chemical shift, T j—saturation pulse duration, T,,,—recovery time, Bo—main magnetic field, FA—flip angle, wyf
—saturation pulse frequency offset, Bj—saturation pulse power, n,—number of pulses in the saturation pulse

train.

To assess if the network performance are dependent on the tissue and acquisition parameters, we have
separately calculated the NRMSE as a function of water relaxivity, proton volume fraction and exchange rate,
and the saturation pulse power, for a representative imaging scenario (L-arginine, Figs. 2 and 3). As shown in
Supplementary Information Fig. S3, while a very mild dependency was demonstrated for the water relaxivity,
an increased error was demonstrated for the slowest proton exchange rates, the close to zero saturation pulse
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Figure 2. In-silico comparison between dynamic-NN-generated semisolid MT/CEST signals, and their
ground-truth counterparts. Each subfigure describes a representative test-set signal trajectory taken from a
different molecular imaging scenario®, all generated using a single NN (Fig. 1a). In all cases, a series of varied
saturation pulse powers (B;) was applied, except for the In-vivo MT scenario where both the B; and the
saturaion pulse frequency offset (w,) were simultaneously varying. Note the excellent agreement between the
reference ground-truth standard and the NN-generated trajectories.

powers and the close to zero proton volume fractions. This can be explained by the relatively low CEST/semisolid
MT signal associated with a very slow exchange, a highly diluted CEST compound, and inefficient saturation
powers. This limitation could potentially be mitigated, by intentionally generating additional training signals
from this challenging SNR regime.

As demonstrated in Figs. 3 and 5b, the application optimized NN has demonstrated increased correlation
between the NN-predicted signals and the ground truth, compared to the adaptive NN and faster inference
times (Supporting Information Table 1). To further compare the outputs for the two networks, we evaluated
their performance on the same representative example, the amine imaging scenario described in Figs. 2 and
3. As shown in Supplementary Information Fig. S4, while both networks demonstrate a significant agreement
with the ground-truth reference (pearson’s r > 0.99, p < 0.0001) , the NRMSE obtained by the application opti-
mized network is lower (0.59% compared to 1.1%) and the inference time shorter (0.82 s compared to 1.42 s).
However, the network is only suitable for a pre-determined acquisition protocol length, and is mostly relevant
for a researcher/physician with a research focus on a particular imaging application (e.g., brain amide proton
transfer CEST weighted imaging using a fixed full-length Z-spectrum). The adaptive NN, on the other hand,
offers a wide applicability to a variety of imaging scenarios (Fig. 2), while retaining sufficiently low error rates
and practically reasonable inference times.

Conclusion

A deep learning-based framework for dynamic and rapid generation of semisolid molecular MT and CEST
MRI signals was developed, demonstrating broad applicability with various imaging scenarios and acquisition
protocols.

Methods

Deep molecular signal generator architecture

Two deep learning models were designed to receive a set input of tissue and scan parameters and rapidly gener-
ate the corresponding semisolid MT or CEST signals. Both architectures consisted of a four-layers fully con-
nected neural network, with 256 x 256 neurons in the two hidden layers and sigmoid activation functions. The
dynamic network variant (Fig. 1a) was designed to accommodate a two-pool imaging scenario of various target
compounds using a continuous wave saturation pulse scheme with a wide range of saturation and readout char-
acteristics (Table 1), and a variety of field strengths (By = 3T, 4.7T, 7T, 9.4T, and 11.7T). The network operated in
an iterative manner, where each inference cycle i yielded a single time-evolution signal element (S; = [Myy,|). In
the next cycle, the last estimated signal served as additional input for generating S until reaching the required
signal length N. Training was performed using 104,190,000 random signal trajectories from the tissue and scan-
ner parameter range described in Table 1. The data was split between training and validation sets in a ratio of
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Figure 3. Statistical analysis of the in-silico signal generation experiment performed using the dynamic NN.
An excellent agreement was obtained between the NN-predicted signal trajectories and their ground truth
counterparts (Pearson’s r > 0.99, p < 0.0001, normalized root mean square error (NRMSE) < 3%) for all six
examined imaging scenarios.

90/10%, employing an early-stopping approach to prevent over-fitting. A separate set of 1,694,183 signals from
various imaging scenarios® was synthesized as a test set.

The application-optimized network variant (Fig. 1b) was designed to obtain a further acceleration in signal
generation time, with the cost of removing the flexibility for variable output signal acquisition lengths. The net-
work was oriented to address a seven-proton-pool human brain imaging scenario at a variety of field strengths
(Bo=3T,4.7T, 7T, 9.4T, and 11.7T), with various tissue parameter values enabled, based on the baseline properties
described in'”*3. A flexible CEST protocol, consisting of Sinc-Gaussian pulses, variable pulse duration, variable
number of saturation pulses, recovery time, and By magnetic field was considered, and the output consisted
of an N=34 long acquisition schedule, obtained in a single inference cycle. The training was performed using
5,443,200 random signal trajectories from the tissue and scanner parameter range described in Table 2, with a
90/10% split between training and validation data. A separate set of 259,200 signal trajectories (at By = 4.7T)
was synthesized for the test phase.

For both network variants, the training was performed using signal dictionaries generated via a numerical
reference solution of the Bloch-McConnell equations (see next section), employing the adaptive moment estima-
tion (ADAM) optimizer, a mean square error loss, a learning rate of 0.0001, and a batch size of 2048. The NNs
were realized using the TensorFlow framework, trained using a GeForce RTX 3060 T1 graphic processor, and an
Intel i5-11400 2.6 GHz 12-core CPU desktop. The total training time was 640 min and 35 min for the dynamic
and application-optimized network variants, respectively. Inference times were calculated both with and without
the use of the GPU (Supporting Information Table 1).

Reference standard molecular signal generator

Dictionaries of simulated signal intensity trajectories were generated using a state-of-the-art Bloch-McConnell
equations numerical solver*"*, implemented in C** according to the open-source pulseq-based standard®**.
To provide a fair comparison for the MRF application, requiring the simultaneous and exhaustive generation
of a huge number of signal trajectories, we have activated the pulseq-signal generator in a parallel execution
manner* (see the code availability section). The simulations were implemented on an Intel i5-11400 2.6 GHz
12-core CPU desktop.
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a
[L-arg] (mM)

e
[L-arg] (mM)

Parameter Minimum value Maximum value
Tiw (s) 0.8 1.6
Tow (s) 0.04 0.12
fs amide 0.0005 0.0045
ksw amide (s71) 30 90

fs guanidine 0.0005 0.0014
fs amine 0.0005 0.0045
fs OH 0.0005 0.0045
fs NOE 0.0022 0.0067
fss MT (Lorentzian) 0.018 0.216
T, (s) 0.05 0.1
Trec (s) 2.5 4

By (T) 3 11.7
np 10 30

-
-]

Table 2. Tissue and scanner parameter range used for application-optimized NN training. The fixed tissue
parameters are available at the pulseq-CEST simulation repository®, based on the values described in'’. The
fixed acquisition protocol parameters are defined at the pulseq sequence library*’, as described in the CEST
APT consensus paper, sequence APTw002%. T},,—water longitudinal relaxation, T, —water transverse
relaxation, fi—proton volume fraction for solute i, ksy;—proton exchange rate for solute i, T ,—saturation
pulse duration, Ty, —recovery time, Bo—main magnetic field, n,—number of pulses in the saturation pulse
train.
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Figure 4. Magnetic resonance fingerprinting quantitative reconstruction of in-vitro CEST and in-vivo
semisolid MT data using dynamic-NN-generated signals. (a,b,e,f) L-arginine concentration and proton
exchange rate maps were obtained using dynamic-NN-generated signals (top) and traditional numerical
solutions of the BM equations (bottom). (c,d,g,h) In vivo semisolid MT proton volume fraction and exchange
rate maps from a wild-type mouse, obtained using dynamic-NN-based signals (top) and traditional numerical
solution of the BM equations (bottom).

100

100

CEST phantom imaging
An in-vitro MRF imaging study was performed using an L-arginine phantom composed of three different vials
with a 50 mM concentration and a pH titrated to 5.0, 5.5, and 6.0 pH (affecting the amine proton exchange
rate)®%%, Imaging was conducted using a 9.4T MRI scanner (Bruker Biospin, Billerica, MA), a transmit/receive
volume coil (Bruker Biospin, Billerica, MA), a field of view (FOV) of 32 x 32 mm?, a matrix of 64 x 64 pixels,
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Figure 5. In-silico generation of a seven-pool human brain Z-spectrum data, acquired with a Sinc-Gaussian
saturation pulse train, using an application optimized NN. (a) A representative brain CEST signal generated
using the NN-predicted (blue) or the reference standard method (black). (b) Statistical analysis of the entire test
set data, demonstrating an excellent agreement between the NN-predicted and ground truth reference values
(Pearson’s r > 0.99, p < 0.0001, normalized root mean square error = 0.0003).

and a 5 mm slice thickness. An in-house programmed, flexible semisolid MT/CEST-EPI protocol was used,
employing a pseudo-random varied series of saturation pulse parameters, as described in***’.

In vivo semisolid MT mouse imaging

All animal experiments and procedures were performed in accordance with the NIH Guide for the Care and
Use of Laboratory Animals and were approved by the Institutional Animal Care and Use Committee of the
Massachusetts General Hospital. The study is reported in accordance with ARRIVE guidelines. A single adult
C57/BL6 wild-type male mouse (28 gr), was purchased from Jackson Laboratory for a proof of concept imaging
experiment. It was anesthetized using 1-2% isoflurane and placed on an MRI cradle with ear and bite bars to
secure the head. The respiration rate was monitored with a small animal physiological monitoring system (SA
Instruments, Stony Brook, NY), and the temperature was maintained by blowing warm air in the bore of the
magnet. A quadrature volume coil was used for RF transmission, and a mouse brain phased array surface coil
was used for receive (Bruker Biospin, Billerica, MA). A field of view (FOV) of 19 x 19 mm?, a matrix of 64x64
pixels, and a 1 mm slice thickness were used. A pseudo-random semisolid-MT MRF protocol was implemented,
where the saturation pulse power and frequency offset were varied between differently acquired raw images, as
described in*.

Statistical analysis

Pearson’s correlation coefficients were calculated using the open-source SciPy scientific computing library for
Python*. The structural similarity index (SSIM) was computed using the SSIM-python imaging library (PIL).
Differences were considered significant at p < 0.05.

Data availability
The in-vitro and in-vivo datasets used in this study are available in Figshare repository: https://doi.org/10.6084/
m9.figshare.23289800.

Code availability

CEST and semisolid MT Z-spectra, as well as MR fingerprinting reference dictionaries can be generated using
the code available in: https://github.com/operlman/cest-mrf. The deep-learning models and source code are
available at: https://github.com/DinorNagar/Molecular-MRI-Generator.
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