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Expression signature of ten small
nuclear RNAs serves as novel
biomarker for prognosis prediction
of acute myeloid leukemia

Zhongming Zhang®?, Rui Huang®? & Yongrong Lai'**

This study aimed to screen for small nuclear RNAs (snRNAs) associated with the prognosis of acute
myeloid leukemia (AML) by using The Cancer Genome Atlas (TCGA) whole-transcriptome sequencing
dataset. A total of 130 AML patients from TCGA cohort with complete prognostic information and
transcriptome data were enrolled in the current study. Comprehensive survival and functional
enrichment analyses were performed to explore the prognostic value and potential biological
functions of prognostic snRNAs in AML patients. In the current study, we screened 72 snRNAs that
were notably associated with the clinical outcome of AML and developed an expression signature
consist of ten snRNAs, that can be accurately applied to assess the overall survival of AML patients.
Functional mechanism analysis revealed that this expression signature may be strongly linked to
some classical tumor-associated pathways, such as Notch and Wnt pathways, as well as being closely
related to B and T cell receptor pathways. Furthermore, we screened six compounds (chicago sky
blue 6 B, 5230742, clorsulon, nefopam, nicardipine, and streptomycin) that may serve as targeted
therapeutic drugs for AML using connectivity maps. Tumor immunoassays indicated significant
differences in the immune microenvironment of the bone marrow tissue between high-risk and low-
risk AML patients. Immune infiltration analysis also revealed significant differences in the abundance
of multiple immune cells in the bone marrow of the two groups of AML patients groups. In conclusion,
our results revealed a novel prognostic expression signature of AML consisting of ten snRNAs, and we
conducted a preliminary exploration of its potential biological functions and tumor immunity.

Abbreviations

AML Acute myeloid leukemia

snRNA Small nuclear RNA

GSEA Gene set enrichment analysis

DEG Differentially expressed gene

CMap Connectivity map

ESTIMATE  Estimation of STromal and Immune cells in MAlignant Tumor tissues using expression data
MMP7 Matrix metallopeptidase 7

SIX3 SIX homeobox 3

CENPC Centromere protein C

TREML2 Triggering receptor expressed on myeloid cells like 2
FAMS83G Family with sequence similarity 83 member G

TCGA The Cancer Genome Atlas

HR Hazard ratio

CI Confidence interval

AUC Area under the ROC curve

GO Gene ontology

KEGG Kyoto Encyclopedia of Genes and Genomes
oS Overall survival
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NES Normalized enrichment score

FDR False discovery rate

FC Fold change

GSVA Gene set variation analysis

ssGSEA Single-sample gene set enrichment analysis

Acute myeloid leukemia (AML) is a hematological malignancy. Currently, there is no effective treatment for
most types of AML that mainly relies on chemotherapy. However, the prognosis of many AML patients remains
poor'. According to cell morphology and histochemical characteristics, AML can be divided into different
types based on cell morphology and histochemical characteristics. With the use of immunology, cytogenetics,
and other technologies, in-depth knowledge of the biological parameters of AML cells has provided the basis
for the accurate classification, clinical outcome, and treatment of AML?. At the same time, genomics is widely
used for the diagnosis, treatment selection, and prognostic evaluation of AML. Even so, accurate and efficient
prognostic prediction models and biomarkers for AML that can guide clinical diagnosis and treatment are yet to
be developed. Therefore, efficient and objective biomarkers are needed to accurately evaluate the diagnosis, treat-
ment, and prognosis of AML. Small nuclear RNA (snRNAs) are intracellular RNA molecules. It is an ingredient
of the RNA spliceosome in the post-transcriptional processing of eukaryotes, and plays a role in the treatment
of mRNA precursors®. Abnormal variants of snRNAs have been widely perceived as strongly linked to malig-
nant cancers, including hepatocellular carcinoma (HCC), chronic lymphocytic leukemia (CLL), sonic hedgehog
medulloblastoma (Shh-MB), melanoma, and many other malignant tumors and blood diseases*™°. By analyzing
the snRNA data set of TCGA, Qin et al.” built a prognostic risk scoring system based on three snRNAs to predict
the prognosis of patients with gastrointestinal malignancies through computational biology and bioinformatics
analysis methods. Based on a similar method, Zhang et al. constructed a prognostic risk score system based on
Eight m6A-associated snRNAs to predict the prognosis of HCC patients®. Reviewing previous studies, we have
not found any reports on the value of snRNAs in AML prognosis. To address this research gap, we conducted
an integrated investigation of the clinical value and molecular mechanisms of snRNAs in AML. The objective
of the current study was to investigate the snRNAs associated with AML prognosis using The Cancer Genome
Atlas (TCGA) whole transcriptome sequencing dataset.

Results

SnRNA risk score modeling and survival analysis in AML

The flow chart of this study was shown in Fig. S1. The AML patient records are shown in Table S1. French-
American-British (FAB) morphology type and age were notably associated with the overall survival (OS) of
patients with AML in the TCGA cohort. In the multivariate Cox proportional hazard regression model, we
incorporated FAB morphology type and age into the model for adjustment. Altogether, 1872 snRNAs were
obtained from the RNA sequencing data of TCGA, and snRNAs with an average value of < 1 were removed.
Finally, 694 snRNAs were obtained by edge R-normalization for subsequent analyses. Using a multivariate Cox
proportional hazard regression model in the R platform to screen for prognostic snRNAs, we identified 72 snR-
NAs that were notably associated with AML OS (Fig. 1, Table S2). We then included 72 prognostic snRNAs into
the R platform for optimal prognostic model screening and finally obtained an expression signature containing
10 snRNAs. The expression signature was as follows: risk score = Expryue.1274p X 0-1409 + EXpryus.1143p X (—0.23
53) + Expraue.1100 X (= 0.2212) + Expy; X 0.1877 + Expragua.gp X 0.2214 + EXproue s61p X 0.3087 + EXprague. 12720 X (—

4+ °
3-
[ ]

. %
H o Sig
< ° ® High risk
2 8 .
‘C_> ’ Low risk
5’ ® Not
]

1 L]

0-

-1.0 -05 0.0 05 10
l0g2(HR)

Figure 1. Distribution map of prognostic snRNAs in AML. Notes Figure was drawn by R4.0.2 version: https://
WWW.r-project.org.
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0.5222) + Expryus-202p X (—0.1926) + EXpryue-osep X (—0.2896) + EXprnusaTacsop X 0.3445. The high- and low-risk
groups were divided according to the median value of the risk score. We observed that the OS of high-risk AML
patients was notably shorter than that of low-risk patients [log-rank P<0.0001, adjusted P <0.0001, adjusted
hazard ratio (HR) =5.524, 95% confidence interval (CI)=3.180-9.598, Fig. 2A,B]. Subsequently, survivalROC
analysis showed that the risk score had high accuracy in predicting AML OS, and the area under the ROC curve
(AUC) for predicting the 5-years OS of AML was 0.907 (Fig. 2C). Multivariate survival analysis results for these
ten prognostic snRNAs are presented in Table 1 and Fig. 3A-]. We also used A nomogram model was used to
predict the individual prognosis of this sSnRNA signature. Our study observed that this snRNA signature con-
tributed the most to the death of AML patients in TCGA cohort (Fig. 4A,B).

Molecular mechanism exploration of risk score in AML
It is well known that snRNA is mainly involved in the post-transcriptional regulation of PCG mRNA, and func-
tions mainly by regulating protein-coding gene (PCG) mRNA expression. Therefore, mRNA regulated by a
specific snRNA exhibits a co-expression interaction with this snRNA at the expression level. A total of 8106 pairs
of interactions between these ten snRNAs and PCGs (Fig. 5, Table S3) were identified by co-expression analysis.
We carried out gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrich-
ment of PCGs and found that these PCGs were significantly enriched in DNA repair, NIK(NF-kappaB-Inducing
Kinase)/NF(nuclear factor)-kappa B signaling, planar cell polarity pathway, regulation of signal transduction
by p53 class mediator, Wnt signaling pathway, T cell receptor (TCR) signaling pathway, cell division, cell-cell
adherens junction, regulation of mitotic cell cycle phase transition, and the Fanconi anemia pathway (Table S4).
The results of the BINGO enrichment analysis also verified these results (Fig. S2). We also performed a sur-
vival analysis for these PCGs (Table S5) and screened 1017 PCGs that were associated with AML OS (Fig. 6A,
Table S5). The top three significant PCGs were centromere protein C (CENPC, adjusted P <0.0001, adjusted
HR=0.310, 95% CI 0.191-0.504, Fig. 6B), triggering receptor expressed on myeloid cells such as 2 (TREML2,
adjusted P<0.0001, adjusted HR =3.114, 95% CI 1.938-5.004, Fig. 6C) and a family with sequence similarity 83
member G (FAM83G, adjusted P <0.0001, adjusted HR=3.015, 95% CI 1.880-4.837, Fig. 6D).
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Figure 2. The prognostic risk prediction expression signature of AML composed of ten prognostic snRNAs.
(A) Distribution map of expression signature and patients’ survival time; (B) Kaplan-Meier curve of AML
patients with different risk scores; (C) SurvivalROC curve of ten snRNAs expression signature. Notes All figures
were drawn by R4.0.2 version: https://www.r-project.org.

ID Ensemble ID Adjusted P§ | HR Low 95%CI | High 95%CI
RNU6-1143P ENSG00000251934 | 0.000272814 | 0.426713992 | 0.269758037 | 0.674993163
RNU6-1272P ENSG00000199646 | 0.001142804 | 0.451039966 | 0.279165911 | 0.728731709
RNU6-202P ENSG00000251807 | 0.001349364 | 0.468147755 | 0.294325617 | 0.744625366
RNU6-1274P ENSG00000207287 | 0.002548141 | 2.026689935 | 1.280923906 | 3.206648007
Ul ENSG00000278099 | 0.003877337 | 1.955643381 | 1.240514241 | 3.083028722
RNU6ATAC39P ENSG00000252118 | 0.005643496 | 1.903128765 | 1.206614834 | 3.001702776
RNU6-761P ENSG00000206875 | 0.008652609 | 1.861213512 | 1.170547774 | 2.959397141
RNU4-8P ENSG00000201806 | 0.008699737 | 1.848034 1.168063504 | 2.923839031
RNU6-110P ENSG00000207237 | 0.00908825 0.542894557 | 0.343086512 | 0.859067581
RNU6-946P ENSG00000206605 | 0.009464659 | 0.539917887 | 0.338955868 | 0.860027371

Table 1. Multivariate survival analysis results of the ten snRNAs included in the risk score model in AML.
AML acute myeloid leukemia, snRNA small nuclear RNA, FAB French-American-British, HR hazard ratio,
CI confidence interval. *Adjusted for age and FAB morphology type in multivariate Cox proportional hazards
regression model.
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Figure 3. Kaplan-Meier curve of ten prognostic snRNAs in AML. (A) Kaplan-Meier curve of RNU4-8P;
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Figure 4. Nomogram of ten prognostic snRNAs expression signature in AML. (A) Risk score was divided
into two groups; (B) Risk score is grouped according to scores. Notes All figures were drawn by R4.0.2 version:
https://www.r-project.org.

1274P

272P

@ Positive correlation genes @ snRNAs

Negative correlation genes

—— Co-expression relationship

Figure 5. Interaction network plot of ten prognostic snRNAs and their co-expressed genes. Notes Figure was
drawn by Cytoscape 3.6.1 version: https://cytoscape.org.

In gene set enrichment analysis (GSEA), our results verified the above-mentioned Database for Annotation,
Visualization, and Integrated Discovery v6.8 (DAVID v6.8) enrichment results for these PCGs. In GSEA analysis
using the c2 gene set, we found that high-risk AML patients were notably enriched in the following signaling
pathways: NF/kappa B, VEGE, Toll-like receptor (TLR) pathway, Notch, tumor protein 53 (TP53), apoptosis,
TCR, Aktl, mitogen-activated protein kinase (MAPK), Wnt, tumor necrosis factor (TNF), AML cluster 15,
B-cell receptor (BCR) signaling pathway, and cytokine-cytokine pathway (Fig. 7A-P, Table S6). By Using the ¢5
gene set, we found that AML patients with high-risk phenotypes were notably enriched in the T cell apoptotic
process, TNF pathway, NF/kappa B, cell-cell adhesion, MAPK pathway, TCR, T cell-mediated immunity, B cell
activation involved in the immune response, and TLR signaling pathway (Fig. 8 A-P, Table S7).

We also explored functional enrichment by comparing the differentially expressed genes (DEGs) between
patients with high- and low-risk AML. Through edgeR screening, 244 DEGs between these two groups were
obtained, of which 96 were downregulated and 148 were upregulated (Fig. 9, Fig. S3, Table S7). The enrichment
analysis of GO and KEGG revealed that these DEGs may be involved in the following biological molecular
mechanisms: positive regulation of leukocyte chemotaxis, cell junctions, transcriptional activator activity, RNA
polymerase II core promoter proximal region sequence-specific binding, positive regulation of transcription from
the RNA polymerase II promoter, ephrin receptor signaling pathway, positive regulation of cell proliferation,
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Figure 6. Survival analysis results of co-expressed genes of ten prognostic snRNAs. (A) Survival analysis
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results distribution map of snRNA co-expressed genes in AML; (B) Kaplan-Meier curve of centromere protein
C (CENPCQ); (C) Kaplan-Meier curve of triggering receptor expressed on myeloid cells like 2 (TREML2); (D)
Kaplan—Meier curve of family with sequence similarity 83 member G (FAM83G). Notes All figures were drawn

by R4.0.2 version: https://www.r-project.org.

cell-cell signaling, focal adhesion, ECM-receptor interaction, PI3K-Akt signaling pathway, and Notch signaling
pathway (Table S9). BINGO enrichment analysis also verified these results (Fig. S4). Prognostic analysis revealed
that 42 DEGs were significantly associated with the OS of AML patients (Fig. 10A, Table S10), and the top three
significant DEGs were AC092042.3 (adjusted P<0.0001, adjusted HR=0.352, 95% CI 0.219-0.566, Fig. 10B),
matrix metallopeptidase 7 (MMP?7, adjusted P<0.0001, adjusted HR=2.761, 95% CI 1.726-4.415, Fig. 10C), and
SIX homeobox 3 (SIX3, adjusted P <0.0001, adjusted HR=0.374, 95% CI 0.234-0.598, Fig. 10D). These DEGs
were imported into the online analysis tool connectivity map (CMap) to screen for potential small-molecule
targeted therapies. We obtained six compounds (chicago sky blue 6 B, 5230742, clorsulon, nefopam, nicardipine,
and streptomycin) that may be targeted therapeutic drugs for this risk score signature; their chemical structures

are shown in Fig. 11A-F. The detailed list of CMap results is shown in Fig. 11G.
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Figure 7. GSEA analysis results of the low- and high-risk score phenotypes in AML using c2 reference gene set
(A-P). Notes All figures were drawn by GSEA 2.2.3 version: https://www.gsea-msigdb.org/gsea/index.jsp.

Immune microenvironment and immune infiltration analysis

In the functional enrichment analysis of this risk score signature, we found that the risk score model was mark-
edly related to immune-associated pathway mechanisms such as the TCR and BCR Signaling pathways. To this
end, we investigated this signature from two aspects: the immune microenvironment and immune infiltration.
Immunohistochemical analysis revealed no significant differences in the stromal scores between the two groups
(Fig. 12A, P =0.1716). Nevertheless, significant differences were observed in immune (Fig. 12B, P =0.0002)
and ESTIMATE scores (Fig. 12C, P =0.0031). Single-sample gene set enrichment analysis (ssGSEA) revealed
significant differences in the abundance of ten immune cells in immune infiltration between low- and high-risk
AML. The abundance of immune infiltrates was higher in high-risk AML patients than that in low-risk patients
(Fig. 13).

Discussion

The advent of high-throughput sequencing technology has greatly expanded our understanding of snRNA.
Dysregulation of snRNA is closely associated with cancer progression, and there is growing evidence of snRNA’s
potential as a cancer diagnostic and prognostic biomarker, or therapeutic target’. By reviewing the literature,
we have not found any reports on the comprehensive exploration of snRNAs in tumors, including hematologi-
cal malignancies. A review of published multi-omics analyses based on TCGA dataset showed that snRNAs are
rarely reported. We searched for 10 snRNA-related reports included in the prognostic signature. We only found
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Figure 8. GSEA analysis results of the low- and high-risk score phenotypes in AML using c5 reference gene set
(A-P). Notes All figures were drawn by GSEA 2.2.3 version: https://www.gsea-msigdb.org/gsea/index.jsp.

that U1 has been reported in cancer, and the remaining nine snRNAs are new prognostic markers for AML that
have not been reported before'’. Shuai et al.’ showed that mutations in U1 were significantly associated with
poor outcomes in patients with CLL, and they also suggested that mutations in U1 are strongly associated with
alcohol consumption in HCC patients. Zhang et al.!! extracted U1 related snRNA from lung cancer patients for
the first time and proposed that this snRNA might be a marker of lung cancer. A subsequent study by Dong et al.'?
confirmed that U1 serves as a diagnostic marker for lung cancer. After silencing or overexpressing Ul in HeLa
and other malignant tumor cell lines, Oh et al. found that changing the level of U1 can notably affect the migra-
tion and invasion capabilities of malignant tumor cells'. Suzuki et al.® revealed that mutations in Ul in SHH
medulloblastoma can notably suppress the tumor suppressor gene patched 1 (PTCH1) and activate oncogenes
GLI family zinc finger 2 (GLI2) and cyclin D2 (CCND2), suggesting that U1 may serve as a therapeutic target for
this tumor. Cheng et al. upregulated U1 in PC-12 pheochromocytoma cell lines and sequenced overexpressed Ul
in cancer cell lines using whole-genome sequencing. Subsequently, differentially expressed genes were screened
using bioinformatics analysis to determine the activation of oncogene-related functions and pathways'%. By
reviewing the abovementioned literature, we found that U1 was defined as an oncogene in previous reports. In
the current study, we discovered that AML patients with high U1 expression had poorer clinical outcomes than
those with low U1 expression, which is consistent with the results of previous studies.
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Figure 9. Volcano map of differentially expressed genes between low- and high-risk score phenotypes. Notes
Figure was drawn by R4.0.2 version: https://www.r-project.org.

Theoretical modeling of gene/protein signaling networks plays an important role in understanding regulatory
mechanisms and discovering potential therapeutic targets for diseases. Li et al.'” verified the regulatory mecha-
nism of caspase-1 or GSDMD and apoptosis and pyrodeath by using mathematical modeling combined with
quantitative western blot analysis. Their team also used a phase-field model to explore how protein phase sepa-
ration are controlled by mRNAs, and these computational models were eventually confirmed experimentally'.
Therefore, the exploration of biological mechanisms through the use of computer simulation models can help
to further understand functional mechanisms and discover potential therapeutic targets for diseases. These
computational biology deep learning predictive models include, but are not limited to, fivefold cross-validation
experiments. Graph convolutional network with graph attention network and so on'”%. It is still difficult to iden-
tify the association between genetic markers and noncoding RNAs in large-scale experiments, and computational
biological methods to predict the association between genes and noncoding RNAs remain the potential effective
way to explore disease markers and molecular mechanisms. However, the current prediction methods still have
some limitations and need to be verified by experiments. In the field of computational biology, Zhao et al. have
also published a variety of programs and research strategies for predicting the association of genetic markers
and noncoding RNAs as well as the correlation of single cell sequencing data in computational biology'®*~%. In
this study, the computational biology analysis method adopted by us is similar to theirs. Our current study also
identified signaling pathways closely related to AML through bioinformatics enrichment analysis, including the
TCR, BCR, Wnt, and Notch pathways. The T-cell receptor signaling pathway plays an important role in cancer
immunotherapy**?, and can also be used for the immunotherapy of hematological malignancies®. TCR can be
used as PD-1 blockade therapy, and the effect of PD-1 blockade therapy in AML patients can be determined by
the different states of T cells””. T-cell receptor gene therapy can significantly prevent AML recurrence after bone
marrow transplantation®®. B-cell receptors are widely used in lymphatic malignancies, and the targeted BCR
signaling pathway can be used in the treatment of CNL*-3!.

The Wnt signaling pathway has been shown to be closely related to cancer. Studies have suggested that the
deregulation of Wnt signaling is beneficial for malignant transformation, tumor progression, and resistance to
conventional cancer therapy®>~**. There is growing evidence that dysregulated Wnt signaling may also disrupt
cancer immune surveillance, thus promoting immune evasion and resistance to multiple immunotherapies,
including immune checkpoint blockers®>?. The Wnt signaling pathway is involved in regulating the immune
microenvironment in leukemia®. Wnt signaling may be disrupted in acute leukemia in several ways, including
changes in gene expression and protein levels, epigenetic regulation, and mutations. Dysregulation of these Wnt
signaling pathways may have different effects on the diagnosis and progression of AML, and is also a potential
target for AML treatment®®. Our current study found that the risk score may play a role in AML by regulating
the Wnt signaling pathway, and we also observed that this risk score was significantly related to the immune
microenvironment and immune cell infiltration. Through a literature search, we found that the Wnt signaling
pathway plays an indispensable role in AML. Dai et al. explored the prognostic value of the Wnt gene family
using TCGA AML cohort and found that Wnt family genes are closely related to the clinical outcome of AML¥.
Multiple genes in the Wnt signaling pathway have also been identified to be associated with AML*.

The present study also identified another classic cancer-related signaling pathway, the Notch signaling path-
way, which is notably associated with risk score and tumor immunity. The Notch signaling pathway plays an
indispensable role in the occurrence, progression, prognosis, and treatment of hematological malignancies and
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Figure 10. Survival analysis results of differentially expressed genes (DEGs) between low- and high-risk score
phenotypes. (A) Survival analysis results distribution map of DEGs; (B) Kaplan—Meier curve of AC092042.3;
(C) Kaplan-Meier curve of matrix metallopeptidase 7 (MMP?7); (D) Kaplan-Meier curve of SIX homeobox 3
(SIX3). Notes All figures were drawn by R4.0.2 version: https://www.r-project.org.

solid cancers, and serves as a target for malignant tumors treatment*!~*%, Although reports have found that Notch
plays an oncogenic role in most solid tumors, it is still controversial whether Notch is carcinogenic or tumor sup-
pressor in AML. Kannan et al. observed that activated Notch1 and Notch2 could inhibit the growth of AML cells
in vivo and otherwise promote their growth of AML cells**. Lobry et al. observed similar results in their study*,
whereas mutations in Notch1 were often associated with poor prognosis in AMLY. By reviewing the literature,
we have summarized the potential molecular mechanisms explored by expression signatures through functional
enrichment. These signaling pathways are not only classic malignant tumor-related pathways but are also closely
related to tumor immunity. Our current study also developed the tumor immunity expression signature, and we
observed that this expression signature is notably associated with tumor immunity.

Among the screened drugs, Chicago Sky Blue 6 B was not found to be associated with AML or cancer in our
review of previous studies. It is an allosteric inhibitor of macrophage migration (MIF), which inhibits osteoclast
formation and promotes osteogenesis by inhibiting the NF-Kappa B signaling pathway*®*°. In previous studies,
nicardipine was found to enhance sensitivity to tumor chemotherapy agents. Shi et al. revealed that nicardipine
could enhance the antitumor effect of temozolomide in glioblastoma multiforme (GBM) by inhibiting stem cell
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Figure 13. The abundance of immune infiltration between AML patients with different risk score phenotypes
was compared by ssGSEA method. Notes All figures were drawn by R4.0.2 version: https://www.r-project.org.

autophagy and promoting apoptosis®. Nicardipine has also been reported to significantly enhance the inhibitory
effects of this drug on breast cancer cell proliferation®. Chen et al. used nicardipine to interfere with breast cancer
cell lines and found that nicardipine significantly inhibited the migration and colony-forming abilities of breast
cancer cells. By exploring the molecular mechanism, it was found that nicardipine achieves this phenomenon by
regulating the Nrf2/ Ho-1 Axis and matrix metalloproteinase-9 in breast cancer cells*’. Nicardipine significantly
inhibited the growth of prostate cancer xenografts in nude mice in vivo®. A review of the literature revealed
that the remaining four drugs were not associated with cancer or AML. Our findings are the first to reveal that
these drugs may be targeted therapies for AML. However, these results need to be confirmed in future studies.

Although we found many interesting results in this study, our results still have certain limitations, because
we were a small-sample study with a single cohort. First, it was a single-cohort study and lacked an additional
validation cohort. Second, our study mainly used bioinformatics analysis tools to explore functional mechanisms
and still needs in vivo and in vitro experimental verification. However, our findings provide a theoretical basis
for exploring the potential clinical applications of snRNAs in AML and lay a foundation for the subsequent
development of snRNA-related AML biomarkers.

Conclusions

Our current study preliminarily identified 72 snRNAs that are associated with AML prognosis. Our results
revealed a novel prognostic expression signature of AML consisting of ten prognostic snRNAs, and we conducted
a preliminary exploration of its potential biological functions and tumor immunity. Functional enrichment
analysis revealed that this prognostic signature is notably associated with biological functions and pathways
such as cell adhesion, BCR, TCR, Wnt, and Notch signaling pathways. We also used CMap to screen six potential
targeted drugs for this risk score of AML: Chicago sky blue 6 B, 5230742, clorsulon, nefopam, nicardipine, and
streptomycin. Immunological analysis revealed significant differences in the immune microenvironments of
AML patients with high- and low-risk phenotypes. The immune infiltration abundance of ten immune cells in the
high-risk score phenotype was significantly higher than that in the low-risk score phenotype. However, because
our study was a single-center, small-cohort study, these results require additional verification in future studies.

Materials and methods

Data preparation

Original RNA sequencing (RNA-Seq) count dataset and demographic information were obtained from TCGA
website (https://portal.gdc.cancer.gov)>. The normalization of the raw sequencing data was performed using
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edgeR on the R platform®®. We excluded patients with no prognostic or RNA sequencing data, and 130 patients
will be included in the follow-up study. The patient inclusion and exclusion criteria can be found in our previous
study’S. The data used in this study met the requirements of TCGA. This study was approved by the Ethics Com-
mittee of the First Affiliated Hospital of the Guangxi Medical University. The approval number is 2021(KY-E-325).

SnRNA risk score modeling and survival analysis in AML

A multivariate Cox proportional hazard regression model was used to screen for snRNAs related
to the OS of AML patients. We performed a step function in the R platform to construct the best
OS risk-score model for prognostic-related snRNAs. The calculation formula was as follows: risk
score = ExpsnRNA, x BsnRNA, + ExpsnRNA, X fsnRNA, +--ExpsnRNA | x fsnRNA,, (Exp: expression value)®.
The nomogram model was executed using the rms package in the R software. The efficacy of the risk score model
in predicting the OS of AML was determined using SurvivalROC?®.

Functional mechanism of risk score in AML

To evaluate the potential functional mechanism of snRNAs in the risk score model, we explored three approaches:
snRNA-co-expressed genes, GSEA (https://www.gsea-msigdb.org/gsea/index.jsp), and DEGs. We extracted the
mRNA expression profile matrix from TCGA RNA-Seq dataset and evaluated the co-expressed PCGs associated
with snRNAs using the Pearson correlation coefficient. Subsequently, the DAVID v6.8 (https://david.ncifcrf.gov/
home.jsp) was used to screen for pathways and biological functional mechanisms related to snRNA co-expression
of PCGs, including Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG)**-%2. We
also used the BINGO app in cytoscape v3.6.1 software (https://cytoscape.org) to further verify the enrichment
analysis results of DAVID®*%*. We also conducted functional enrichment analysis of the AML genome-wide
dataset in GSEA v2.2.3 software using reference gene sets, including C2 (c2.all.v7.4. symbols.gmt), and C5 (c5.
all.v7.4. symbols.gmt)®-%. We defined the GSEA results as [normalized enrichment score (NES)|> 1, P<0.05, and
false discovery rate (FDR) <0.25 as reaching statistical significance. We also used risk scores to group patients
into high- and low-risk phenotypes, screened DEGs between the two phenotypes using edgeR, and used DEGs
for functional enrichment to explore the mechanism. DEGs were defined as [log2 fold change (FC)|> 2 and both
P and FDR values were less than 0.05. We also used DEG to screen potential AML risk score therapeutic small-
molecule compounds in the CMap ( https://portals.broadinstitute.org/cmap/)®® and the chemical structure was
obtained from PubChem (https://pubchem.ncbi.nlm.nih.gov)®>7°.

Immune microenvironment and immune infiltration analysis

We used the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTI-
MATE) package to score the immune microenvironment in the R platform and calculated the stromal score,
immune score, and ESTIMATE score in the bone marrow tissue of AML patients’’. We used the gene set vari-
ation analysis (GSVA) package to perform ssGSEA in the R platform to evaluate the abundance of immune cell
infiltration in the bone marrow tissues of AML patients’>.

Statistical analysis

Pearson correlation coefficient (r) was used to evaluate co-expressed PCGs, and P<0.05 considered that there is a
co-expression interaction relationship. Kaplan—Meier curves were evaluated using the log-rank test. We included
demographic data related to AML prognosis of AML in a multivariate Cox proportional hazards regression
model for adjustment. The R platform adopts R4.0.2 version. All statistical analyses were performed using the
SPSS version 22.0. Differences were considered statistically significant at P<0.05.

Ethics approval and consent to participate

All raw dataset of AML included in the present study were downloaded from open access public database. The
authors were not involved in any animal or human experiments and according with the ethical guidelines of the
Helsinki Declaration. This study was approved by the Ethics Committee of the First Affiliated Hospital of the
Guangxi Medical University. The approval number is 2021(KY-E-325).
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