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High prevalence group testing 
in epidemiology with geometrically 
inspired algorithms
Hannes Schenk  1, Yasemin Caf 2, Ludwig Knabl  2, Christoph Mayerhofer  2 & 
Wolfgang Rauch  1*

Demand for mass surveillance during peak times of the SARS-CoV-2 pandemic caused high workload 
for clinical laboratories. Efficient and cost conserving testing designs by means of group testing can 
substantially reduce resources during possible future emergency situations. The novel hypercube 
algorithm proposed by Mutesa et al. 2021 published in Nature provides methodological proof of 
concept and points out the applicability to epidemiological testing. In this work, the algorithm is 
explored and expanded for settings with high group prevalence. Numerical studies investigate the 
limits of the adapted hypercube methodology, allowing to optimize pooling designs for specific 
requirements (i.e. number of samples and group prevalence). Hyperparameter optimization is 
performed to maximize test-reduction. Standard deviation is examined to investigate resilience 
and precision. Moreover, empirical validation was performed by elaborately pooling SARS-CoV-2 
virus samples according to numerically optimized pooling designs. Laboratory experiments with 
SARS-CoV-2 sample groups, ranging from 50 to 200 items, characterized by group prevalence up to 
10%, are successfully processed and analysed. Test-reductions from 50 to 72.5% were achieved in 
the experimental setups when compared to individual testing. Higher theoretical test-reduction is 
possible, depending on the number of samples and the group prevalence, indicated by simulation 
results.

Managing the SARS-CoV-2 pandemic required containment and mitigation strategies, such as mobility restric-
tions, as well as public health and social interventions. Extensive individual testing was undertaken by many 
countries. Among the most extensive testing countries were Austria, Cyprus, Denmark and UAE with over 104 
tests per a thousand people since the start of the pandemic1. Epidemiological testing of individuals requires great 
effort in terms of organization, resources and logistics. The most vulnerable people in lower developed countries 
with less resources for mass testing are likely impacted the most by the pandemic2. With limited surveillance 
capacity it is important to establish an efficient, accurate and sustainable diagnostics pipeline3. Experience of the 
SARS-CoV-2 pandemic has shown the importance of rapid diagnostics infrastructure, which may eventually also 
be beneficial to future emergencies or situations of urgent mass testing4. Diagnostics laboratories have the task to 
cope with mass testing endeavours in pandemic emergencies, which can pose a challenge in terms of workload.

A possible solution for managing large quantities of tests is to pool samples together and perform tests on the 
grouped samples5. If all of the samples in a group are negative, the grouped test is negative. If one or more of the 
samples in a group is positive, the grouped test is positive. The scientific field of group testing investigates sparse 
recovery problems, that identify algorithms and test designs to efficiently detect defective items (for example 
positive SARS-CoV-2 samples) in a large group. This statistical and combinatorial approach allows to reduce 
testing equipment and processing time by applying an appropriate pooling design. The pooling design is a set 
of instructions on how to effectively pool samples, in order to maximize the probability of fully identifying all 
defective items with a minimum of testing effort6. Prerequisite for successful group testing is a sufficiently small 
number of defective items (i.e. low group prevalence) and an appropriate number of samples within one group 
test, to not violate the limit of detection7.

Group testing is applicable to a wide range of scientific fields, including biology, medicine, computer science 
and engineering8. Dorfman9 initiated the field by identifying syphilitic soldiers during Second World War by 
using a simple pooling design, batching samples without overlap. The main research in recent years is focused on 
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non-adaptive group testing, by exploring approaches to optimize the pooling design10,11, as well as improving the 
decoding properties12,13. A recent work by Mutesa et al.14 in Nature proposed a pooling algorithm by considering 
the geometric properties of a hypercube.

This paper explores the hypercube algorithm proposed by Mutesa et al.14 for the application of SARS-CoV-2 
testing, by adaptation to higher prevalence settings (~ 10%). The hypercube design allows to vary geometric 
parameters, such as number of edge nodes and cube dimension. Thereby, the characteristics of the algorithm 
are altered, which influences the performance of the pooling design. As part of their proof of concept, Mutesa 
et al.14 propose the use of a hypercube with three edge nodes and adjusting the cube dimension according to the 
group size. Theirproposed testing design is applied sequentially, until every item is labelled with assertiveness 
as defective or non-defective. This approach is very effective for low prevalence applications (~ 0–2% defective 
items), but restricts the group size to be a whole power of three.

In this work, the pooling design is altered and tailored towards higher prevalence, with the aim of maximizing 
correct labelling after one parallel test round. To clearly rephrase the aim of this study, high prevalence epidemio-
logical group testing with the emphasis on practicality and applicability are the goals of this work. The contribu-
tions of the undertaking are implemented with the following tasks. In a numerical study, different performance 
indicators are inspected to optimize the parameter selection of the pooling design by performing Monte Carlo 
simulations. Empirical validation is performed on SARS-CoV-2 virus samples with group sizes ranging from 
50 to 200, characterized by group prevalence up to 10%. At the end, a practical example is presented, explaining 
how to apply the proposed methodology.

Methodology
Non-adaptive group testing consists of two distinct phases, the design phase and the decoding phase15. The test 
design for non-adaptive group testing is prepared in the design phase. Common practice in the field is to express 
the test design as a matrix (see Fig. 1 right for an example). A binary testing matrix M displays the grouping 
instructions for N items into t tests. The columns j of M represent each item (or SARS-CoV-2 sample), the rows 
i of M represent each test. The design matrix has the following properties: Element (i, j) is 1, if the i-th item is 
included in the j-th tests and 0 otherwise. After performing the tests, the binary vector y of length t is obtained, 
displaying the test results (1 defective, 0 non-defective). In the decoding phase, the set of defective items is 
estimated by analysing the vector y. For the present application, all items in negative test sets are labelled as 
non-defective.

The following subsections expound on the Hypercube algorithm, as well the performed numerical, analyti-
cal and experimental investigations. At the end of this manuscript, a practical example is carried out on how to 
apply the proposed methodology. The public GitHub repository https://​github.​com/​Hanne​sSche​nk/​Adapt​ive-​
Hyper​cube-​Group-​Testi​ng shares the code that generates design matrices. No human participants are involved 
in the study. Test results from SARS-CoV-2 samples were provided by an external laboratory. All Methods and 
experimental undertakings are carried out in accordance to guidelines and regulations.

Group testing with Hypercube pooling
Hypercube pooling is a group testing algorithm, inspired by the geometrical properties of a hypercube. A hyper-
cube can be characterized by the number of edge nodes L and the dimension D, with the number of nodes N = LD. 
Figure 1 displays an example hypercube arrangement with N = 27 items (left, L = 3, D = 3) and the corresponding 
test matrix (right), outlining the grouping instructions. Each test consists of items, corresponding to the slices 
perpendicular to each principal direction D. The subgroups formed therefrom constitute the pooling design. The 
example test matrix in Fig. 1 shows the pooling instructions matching the cube lattice in the figure. For example, 
test number 3 contains the items 19 to 27, derived from a planar slice of the cube.

A hypercube with LD items is partitioned into LD overlapping subgroups, consisting of L(D−1) items each. This 
grouping arrangement allows to efficiently detect one or few defective items. It works extremely well for low 
prevalence (~ 0–2% of items are defective) and can confirm to identify one defective item, when the condition 
D = sum(y) is met, without further retesting. However, for higher prevalence setups, naive hypercube pooling 
layouts risk to have few (or no) negative tests, requiring extensive retesting of suspects and low to no reduction 

Figure 1.   Left: Example cube with L = 3 edge nodes in D = 3 dimensions. Each node represents an item, tests 
are formed by slicing the cube perpendicular to the principal directions. Right: Test matrix M resulting from the 
cube design on the left.

https://github.com/HannesSchenk/Adaptive-Hypercube-Group-Testing
https://github.com/HannesSchenk/Adaptive-Hypercube-Group-Testing


3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18910  | https://doi.org/10.1038/s41598-023-45639-6

www.nature.com/scientificreports/

of resources. Therefore, refining the properties of hypercube pooling by altering the geometric characteristics 
is proposed.

For applicability to epidemiological SARS-CoV-2 testing, the aim is to maximize the information output after 
one round of testing. After the first round of parallel group tests, a subset of items is identified as suspects Nsus. For 
conformation of infection, the suspect items need to be retested individually. If a correct test design is chosen for 
a given group of items, the subset of suspects is much smaller than N. The efficient nature of the pooling strategy 
allows to reduce test resources considering all required tests (including grouped tests and retesting of suspects).

Adapted hypercube pooling
A numerical study is conducted to evaluate the optimal set of hypercube parameters for a given group of items 
N, of which k are defective. The construction of an efficient test design requires a prevalence assumption (i.e. 
estimate the number of defective items). With the application of SARS-CoV-2 testing, laboratories have good 
knowledge about prevalence with regard to different sources of samples (i.e. hospitals, public institutions, volun-
tary samples etc). Without a prevalence assumption, a conservative test design is required, potentially resulting 
in lower pooling performance.

The layout of the hypercube can adapt to any combination of L and D, with {L,D} ∈ N . This provides flexibility 
to satisfy a range of applications with varying number of items and group prevalence. Adapting the hypercube 
algorithm to higher prevalence is achieved by introducing “dummy items”, which are non-defective per definition. 
Dummy items fill out the hypercube lattice in case of LD > N. Choosing higher values for L and D than required 
for a given pool of N samples, inflates the cube lattice with non-defective dummy items and thereby lowers the 
group prevalence artificially. This approach creates a sparse distribution of defective items on the hypercube lat-
tice and artificially lowers the prevalence, at the cost of having to perform more tests. Note, dummy items need 
not to be processed in the testing phase and are merely a conceptual tool for the optimal selection of L and D. In 
order to avoid unequal cardinality of tests, we propose to distribute dummy items uniformly over the cube lattice.

The aim of the algorithm is to efficiently identify k defectives out of N items. In a random virtual setting with 
a given cube design, the placement of k defective items on the geometric grid influences the performance of the 
testing design. Depending on the random placement of—for example − 5 defectives on the lattice, different test 
reductions are achieved. Evidently, defective items in a real-world scenario are randomly allocated to a node. In 
order to examine the varying pooling performance influenced by the random placement of defectives over the 
lattice, a numerical study performing Monte Carlo simulations is carried out. In principle, the sample space of 
possible configurations of defective item distribution over the hypercube lattice can be computationally brute 
forced, however the computational effort for sensible setups is exceedingly large. Moreover, the Monte Carlo 
approach is particularly applicable in this case, since the entire sample space maps to few distinct solutions (i.e. 
same number of positive tests), all having equal pooling performance each.

In order to attain the optimal hypercube parameters for a varying set of items and group prevalence, a numeri-
cal study is carried out on a space of configurations. Systematically varying the parameters L, N and k, while 
performing Monte Carlo simulations within each configuration, randomly placing k defectives on the hypercube 
lattice, allows to examine the group testing performance for a range of hypercube test matrixes and prevalence 
setups. For the numerical study, groups with up to 750 items with a group prevalence up to 18% are analysed.

Figure 2 displays a flowchart, outlining the procedure of the numerical study in detail. For any particular set 
of N, L and k, the process in the flowchart is followed. The process starts with initializing the parameters N, k and 
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Figure 2.   Flowchart outlining the algorithmic procedure and hyperparameter optimization of the numerical 
study.
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L. The hypercube dimension is than computed by ceiling the fraction of the logarithms of N and L. From this, 
the number of nodes is determined by LD. The surplus of nodes over N items is compensated with dummy items. 
The dummy items are distributed uniformly over the lattice, preventing large disparities in the size of pooled 
tests. For this given setting of lattice design, Monte Carlo simulations randomly distribute defective nodes. This 
allows to examine the average test-reduction as well as the standard deviation therefrom. The standard devia-
tion illustrates the susceptibility to deviate from the mean. The lower the standard deviation, the greater the 
probability of achieving the predicted test-reduction by the test design. By looping through a predetermined 
set of edge nodes (in the numerical study from L = {2…12}), an optimum of test-reduction can be determined, 
corresponding to a specific design matrix.

Optimal parameters can be selected based on various performance indicators, such as test-reduction, resource 
consumption, number of suspects Nsus, failure probability, among others. Practically, the parameter selection 
for the optimal test design is to be tuned with consideration of the respective application. Using a combination 
of performance indicators, it is possible to express a cost function that aligns with a particular application and 
enables informed decision-making regarding the optimal model parameters for a given case.

Limitations of adapted hypercube pooling
Hypercube pooling is designed to label items as defective or non-defective correctly and efficiently. Assuming 
noise free testing (no false positive or false negative outcome of test results), in theory, hypercube pooling guar-
antees to label all defective items as suspects. Only non-defectives can potentially be mislabelled. This is a result 
of the decoding protocol, labelling only items in negative tests as non-defective.

To fully understand the characteristics of the pooling approach, the following edge cases can be analytically 
considered. Depending on the random placement of defectives on the cube lattice, a best-case and a worst-case 
scenario can be outlined. The best-case scenario occurs, if all defectives are placed in a single test, resulting in 
the identification of all defectives, without mislabelling any non-defectives as suspects. This is guaranteed to 
occur in the trivial case of k = 1, regardless of the pooling design. This instance is recognised by exactly D tests 
being defective. D tests is also the minimum number of defective tests, as long as at least one item is defective. 
The possibility for the occurrence of the best-case scenario theoretically exists, as long as there are less or equal 
defectives than the number of items in a test (i.e. k ≤ L(D−1)). Although improbable, but by chance, all defectives 
could be located in one single test, allowing to label all non-defectives correctly.

On the other hand, the worst-case occurs, when by chance the defective items lie on the diagonal of the cube 
lattice (or form a Latin hypercube formation, that can be rearranged into a diagonal with simple row/column 
order manipulation16). Therefrom follows, that each defective item pollutes D tests. Considering this worst-case 
and k ≥ L, no negative test (or t defective tests) occur in y, resulting in N = Nsus. The result is a failure of the group 
test in the sense that no test-reduction is achieved. In case of k < L and—by chance—all defectives pollute D 
tests, D(L − k) tests are guaranteed to be negative, guaranteeing to have some test-reduction even in the worst-
case scenario. The probability of all defectives lying on the diagonal for the case of k ≤ L can be calculated with

In other words, p is the probability, that each of the k defectives pollutes D tests. The expression divides favour-
able outcomes by possible outcomes. The numerator counts the outcomes that satisfy the condition of polluting 
D new tests. The binomial coefficient in the denominator expresses all possibilities to place k defectives on the 
cube lattice, multiplied by the permutation factor k! to compensate for unordered sampling without replacement.

Validation experiments
In order to empirically validate the claims of the group testing algorithm, three pooling designs are tested on 
SARS-CoV-2 samples in a laboratory setting. Previously confirmed positive samples were pooled with nega-
tive samples according to selected test designs, validating the methodology. Table 1 lists the details of the three 
performed experiments.

As described in Table 1, three experimental group tests are performed with 50, 100 and 200 samples respec-
tively and 5 defective items each. The hypercube characteristics of the tests are listed, as well as the mean test-
reduction (TR), estimated from Monte Carlo simulations, varying the hypercube parameters, performing 104 
simulations each. Estimated test-reduction is calculated as percentage from the individual test requirement 
N and considers all required tests, comprising the tests from the pooling design (LD), as well as retesting Nsus 
suspects. It is computed with

(1)p =
∏k−1

a=0(L− a)D

k!
(

LD

k

) .

Table 1.   Validation experiments. N… total items; k… defective items; L… edge nodes; D… dimension.

Experiment

Group characteristics Pooling design

N k Prevalence (%) L D Estimate mean test-reduction (%)

I 50 5 10 5 3 34.9

II 100 5 5 10 2 62.7

III 200 5 2.5 7 3 72.8
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The hypercube settings for the empirical validations are selected based on two criteria. Firstly, the test-reduc-
tion was considered as a selection metric. Secondly, pooling designs with lower number of groups are preferred, 
which reduces the manual grouping effort of the laboratory. The design matrices M of the pooling designs used 
for the experiments are attached in the Supplementary Material.

Samples were pooled in Eppendorf tubes as described above and underwent RNA extraction using the 
chemagic® Viral DNA/RNA 300 Kit in a chemagic 360 instrument for nucleic acid extraction (PerkinElmer, 
Massachusetts, USA) according the manufacturer’s instructions. SARS-CoV-2 was detected by using the ViroReal® 
Kit SARS-CoV-2 & SARS (Ingenetix GmbH, Vienna, Austria) according to instructions for use. The limit of 
detection for this kit is 21 copies per PCR reaction. The Ct-values of the positive samples ranged from 20 to 30.

State‑of‑the‑art and contributions
The Sars-CoV-2 pandemic gave rise to a multitude of group testing publications in recent years. In this subsec-
tion we shortly explore the state-of-the-art literature concerning epidemiological group testing. Furthermore, 
we aim to explain the contributions of this work to the field at hand.

In the first year of the pandemic Hogan et al.17 and Abdalhamid et al.18 performed group tests for Sars-
CoV-2 surveillance. They lead the way in providing a proof of concept for the application of group testing for 
SARS-CoV-2 as an effective strategy to conserve testing resources. The benefits of non-adaptive group testing 
approaches concerning practicality and time criticality are recognized by Price and Scarlett10 and McDermott 
et al.19. Price and Scarlett10 propose a probabilistic group testing algorithm based on the binary splitting approach. 
McDermott et al.19 use combinatorial test strategies on varying prevalence settings which outperform Dorfman 
sequential approaches. Täufer20 explores Shifted Transversal pooling designs and rigorously derives error prob-
abilities for multipool setups. Test-efficiency (required tests per item) and optimal pool size are investigated by 
Hanel and Thurner21. In their study, a formula for optimal pool size is presented, as well as a practical example is 
carried out, displaying the test efficiency if the population of Austria were to be tested. Regen et al.22 demonstrate 
analytical derivations for an optimal pool size and give a practical guideline on how to apply a two-staged pool-
ing strategy for laboratories. An innovative approach called Polynomial Pools introduced by Brust and Brust23 
constructs pooling matrices based on projective geometries and guarantees to correctly label all items up to a 
specified number.

In this paper, the hypercube algorithm introduced by Mutesa et al.14 is adapted and applied to high prevalence 
settings. Abundant literature in the field investigates group testing with low prevalence settings (see Refs.14,20,22,23). 
Low prevalence testing facilitates high test-reduction by a variety of group testing algorithms. Exploring the high 
prevalence range in epidemiological group testing is underrepresented in the literature. With this paper we aim to 
contribute to this research gap and to provide a practical guidance on how to apply efficient one-stage test designs.

Results
The adapted hypercube pooling method presents a promising tool for epidemiological group testing. Adapting 
geometric parameters of the cube lattice provides extensive flexibility and allows to tackle a great range of pool-
ing problems. This work investigates optimal test designs for SARS-CoV-2 sample testing, however the results 
are applicable to a variety of pathogens in epidemiological surveillance. The results section is divided into two 
parts, firstly the results of the numerical study is presented. Secondly, the experimental validation is covered.

Numerical results
A group testing problem consisting of N items—among which k are defective—can be tackled with the hyper-
cube algorithm by varying the geometric properties L and D. For a given case of N items and edge nodes L, the 
dimension D results from the following relation

where the brackets ⌈ ⌉ denote the ceil function, rounding to the next greater integer. Remaining nodes in the cube 
lattice are filled with dummy nodes. The number of dummy nodes is given by LD−N. For sets of N, L and k, Monte 
Carlo simulations are performed, evaluating the efficiency of the pooling design. Simulations were performed 
by systematically altering the parameters N, ranging from 5 to 750 in increments of 5, L ranging from 2 to 12 in 
increments of 1, and the prevalence ranging from 0.2% to 18% in increments of 0.2. These configurations resulted 
in 148,500 individual pool testing setups, for which 102 Monte Carlo simulation have been performed each. The 
Monte Carlo approach is utilized in the numerical study to account for the possibilities of random distribution of 
defective items over the hypercube lattice. Varying pooling performing occurs depending on the random alloca-
tion of defectives. The influence of the random distribution of defectives is examined by the standard deviation 
from the mean test-reduction. Furthermore, a larger parameter space (i.e. N > 750) can be solved for, however 
the conducted numerical study aims for epidemiological applications, where larger sample sizes are unsuitable.

Figure 3 displays the test-reduction in percentage, referenced to the test requirement for individual tests. Test-
reduction considers the tests required for the pooling design, as well as the tests to confirm or reject defectivity 
of suspects. For the simulation setup visualized in Fig. 3, k is estimated by the prevalence and N by rounding to 
the nearest integer. Additionally, the constraint k ≥ 1 is applied. Test-reduction is depicted as colour profile, where 
bright shaded areas correspond to high and dark shaded areas correspond to low test-reduction. For SARS-CoV-2 

(2)TR =
(LD)+ Nsus

N
100%.

(3)D =
⌈

log(N)

log(L)

⌉

,
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sample testing, relative test-reduction in reference to individual testing is the objective of the optimization, 
however an arbitrary cost function is feasible in accordance with the respective application.

Numerical results show that high test-reduction (80% and above) is achievable in case of low prevalence and 
high number of items. Lower number of items allow for higher prevalence to achieve good test-reduction (see 
hyperbolic outline in Fig. 3). Depending on the number of edge nodes L, group testing below a certain threshold 
of samples is not beneficial. In case of L = 10, N below 30 does not yield test-reduction, in case of L = 6, N below 
20 does not yield test-reduction. This threshold correlates positively with L and approximately follows 2L + 5. 
Overall, high prevalence decreases the performance of pooling due to the increase of positive tested groups. The 
more positive groups occur, the less samples can be labelled as negative in the decoding phase, while incidentally 
labelling negative samples as suspects.

To examine the resilience of the methodology, the standard deviation from the mean test-reduction is com-
puted. In conformity with Fig. 3, the following figure shows the standard deviation from the mean test-reduction. 
In general, we can observe that systematically more deviation from the mean is present in a transition area 
between low prevalence/low number of grouped items and high prevalence/high grouped items. On the bottom 
left of the figure, approximately 0% standard deviation is observed, outlining the ease of converging to a robust 
solution. On the top right of Fig. 4, low standard deviation is observed. In these high prevalence cases group 
testing is not beneficial and all solutions converge to 0% test-reduction. The lower the standard deviation, the 
higher the precision of the proposed design matrix to perform the predicted test-reduction.

Hypercube pooling performance is compared to Dorfman pooling. Dorfman test designs are simple non-
overlapping batches of test groups. In this numerical investigation, the group size of the Dorfman pools is 
constructed to be ⌈

√
N⌉ , in order to adapt to a wide range of number of samples. Within the domain examined 

Figure 3.   Monte Carlo results outlining test-reduction over N and the group prevalence in % for the cases 
L = {10, 8, 6, 4}.

Figure 4.   Monte Carlo results outlining the standard deviation from the mean test-reduction.
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for the numerical study (L = {3…12}, N = {5…750} and prevalence = {0.2…18%}, on average 12.5% higher test-
reduction is observed with hypercube pooling as compared to Dorfman pooling.

Experimental validation
Three pooling configurations are empirically validated in experiments. Experiment I with 50, II with 100 and III 
with 200 SARS-CoV-2 samples have been pooled, containing 5 confirmed positive samples each. This resulted in 
10%, 5% and 2.5% group prevalence respectively. The test designs have been selected to maximize test-reduction 
against individual tests, determined by numerical optimization. The full design matrices for the empirical valida-
tion is added to the Supplementary Material.

The measured test-reduction of the three experiments is 50%, 64% and 72.5%, corresponding to the experi-
ments I, II and III respectively. Figure 5 shows the normalized relative frequency of expected outcomes of each 
experiment, numerically evaluated by Monte Carlo simulations (105 each). The measured test-reductions are 
highlighted as black bars. In the experiments I and II, slightly above mode performance can be observed, while 
experiment III turned out marginally lower than the estimated mode value.

Conclusion
Group testing applied to epidemiology allows to effectively reduce costs and processing time by testing pooled 
samples, compared to individual testing. Elaborately pooling selected samples into subgroups allows to efficiently 
identify infected samples out of a large group. The hypercube algorithm proposed by Mutesa et al.14 promises 
high test-reduction for cases with low group prevalence. In this work we adapt the hypercube algorithm towards 
higher group prevalence. Alteration of key geometrical parameters allow to tune the pooling design for specific 
needs of the application. Pooling designs are numerically optimized and empirically validated.

Experimental validation shows agreement to the proposed test designs optimized by numerical simulation. 
Experiments with 50, 100 and 200 SARS-CoV-2 samples have been processed with 10%, 5% and 2.5% group 
prevalence respectively. Compared to individual testing, up to 72.5% of test-reduction was achieved. Numerical 
simulation results suggest that higher test-reduction is possible depending on the case specificities. A wide range 
of settings have been numerically investigated with Monte Carlo simulations (up to 750 samples and 18% group 
prevalence). Simulation results have been compared to the conventional Dorfman pooling, which is most fre-
quently applied in laboratory practice, if group testing is applied. The adapted hypercube pooling design displays 
significant increase in pooling performance (12.5% more test-reduction on average). An analytic expression for 
the failure probability is shown, allowing to adapt the pooling design accordingly. The selection of an optimal 
pooling design requires a prevalence estimation. Laboratories have usually good knowledge about group preva-
lence based on the source of samples (i.e. hospitals, public institutions, voluntary samples etc.). Group testing 
designs can be tailored for different settings and the optimization cost function tuned for different applications.

The proposed testing design by adapting the hypercube algorithm displays advantages in terms of applicabil-
ity towards higher prevalence settings and temporal criticality. The methodology is designed to maximize the 
information output after one round of group testing. Group testing as a field of applied mathematics provides 
solutions to a wide range of practical applications beyond epidemiological surveillance. An efficient and resource 
conservative approach to mass testing is vital to detect infected individuals in a population.

Practical example
In the following, a practical example of the proposed methodology is applied. The prerequisite for the applica-
tion of adapted hypercube pooling is stating two parameters. Firstly, the number of items N (or test samples) 
to be tested. Secondly, a prevalence estimation is required to optimally construct the design matrix for a given 
setting. The prevalence estimation k is stated as an absolute value approximating the number of defective items 
(or infected samples) from the items to be tested. The output of applying the proposed methodology is the design 
matrix, showing the optimal grouping of the items into test according to the adapted hypercube algorithm.

Figure 5.   Test-reduction relative frequency numerical results of hypercube pooling of the three experimental 
setups. The black bars show the measured result.
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The algorithm determines the optimal hyperparameters of the hypercube, subject to maximizing the test-
reduction. The proposed algorithm can be computed as a MATLAB code, available on the public GitHub reposi-
tory https://​github.​com/​Hanne​sSche​nk/​Adapt​ive-​Hyper​cube-​Group-​Testi​ng. The first code section requires the 
inputs N and k.

%% USER INPUT
n = 100; % number of total items
k = 5; % number of defective items (from prevalence estimation)

After running the code, a figure summarising the results of the specific setup is displayed (Fig. 6 shows an 
example). Furthermore, a csv-file is created, generating the design matrix. Columns of the design matrix represent 
the items/samples and the rows represent the individual pool tests to be carried out. On the top left, the figure 
shows the development of test-reduction over the edge length L and its optimal value (highlighted by a vertical 
line). Secondly, it shows the probability distribution histogram, outlining the most likely test-reduction to occur 
(evaluated from Monte Carlo simulations), in addition to the standard deviation. On the bottom of the figure, 
the proposed design matrix is displayed graphically. The ‘Design_Matrix.csv’ file is generated and consists of 0 
and 1 elements outlining the grouping scheme.

Data availability
The datasets used and analysed during the current study are available from the corresponding author on reason-
able request.
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