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Weakly supervised object localization tasks remain challenging to identify and segment an entire
object rather than only discriminative parts of the object. To tackle this problem, corruption-based
approaches have been devised, which involve the training of non-discriminative regions by corrupting
(e.g., erasing) the input images or intermediate feature maps. However, this approach requires an
additional hyperparameter, the corrupting threshold, to determine the degree of corruption and

can unfavorably disrupt training. It also tends to localize object regions coarsely. In this paper, we
propose a novel approach, Module of Axis-based Nexus Attention (MoANA), which helps to adaptively
activate less discriminative regions along with the class-discriminative regions without an additional
hyperparameter, and elaborately localizes an entire object. Specifically, MOANA consists of three
mechanisms (1) triple-view attentions representation, (2) attentions expansion, and (3) features
calibration mechanism. Unlike other attention-based methods that train a coarse attention map with
the same values across elements in feature maps, MoANA trains fine-grained values in an attention
map by assigning different attention values to each element. We validated MoANA by comparing

it with various methods. We also analyzed the effect of each component in MoANA and visualized
attention maps to provide insights into the calibration.

During the last decade, various deep learning models have been developed for inferring the bounding box of
objects in natural images, and have achieved remarkable performance in object localization!>. However, from
the perspective of data efficiency, those works used a fully-labeled dataset with respect to localization, which is
regarded as a major limitation. The construction of such a dataset is time-consuming and labor-intensive leading
to their limited applicability in practice.

Meanwhile, Weakly Supervised Object Localization (WSOL) methods employ only class labels, without using
the target bounding box labels*'*. WSOL has therefore attracted considerable attention, because of its potential
for training in a data-efficient manner. The main idea of WSOL is to detect the class-discriminative regions via
an object recognition task, and to utilize those regions for the localization of the identified object.

A Class Activation Map (CAM)*, one of the representative methods in WSOL, estimates the class-specific
discriminative regions based on the inferred class scores. However, various studies®!* have addressed that CAM-
based methods are not capable of capturing overall object regions in a finer way, because they focus only on
the class-discriminative regions, disregarding non-discriminative regions. For this reason, many of the output
bounding boxes are either over-sized or under-sized with respect to the target object. There have been efforts to
tackle these challenges via diverse network architectures and learning strategies®2!.

Among the diverse WSOL strategies, a corruption approach is most commonly used. Corruption methods
intentionally corrupt (e.g., erase) parts of an input image®!"** or feature map®'*>!’. For the corruption methods,
two different strategies are exploited: random corruption and network-guided corruption. The random corrup-
tion approach removes a small patch within an image at random and uses the corrupted image to learn richer
feature representations®!'°. This approach helps the trained network to discover diverse discriminative represen-
tations, thus detecting more object-related regions. The network-guided corruption approach adaptively corrupts
feature maps by dropping out the most discriminative regions based on the integrated activation maps®'>'”. The
corrupted feature maps only include non-discriminative regions, which enables localization by modifying the
original feature map'*'7, or making an activation map through an additional layer or network’.

While those methods improve the performance, they have limitations that should be further considered. First,
the random-corruption approach®!! potentially disrupts network learning due to unexpected information loss*!*.
For example, if object-characteristic parts are removed from an input image, a network is enforced to discover
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other parts from the remaining regions. When there exists no discriminative region anymore, the network would
be trained incorrectly. Second, the network-guided corruption approach®!*!” introduces an additional hyperpa-
rameter (e.g., corrupting threshold) to determine the most discriminative regions. Also, most network-guided
corruption methods use a specially designed module to generate an attention map in which the most discrimi-
natory regions are hidden, to capture the integral extent of an object. However, it mainly exploits the coarse
information in the channel or spatial attention and applies the same attention values to units in feature maps.

In this paper, we propose a novel Module of Axis-based Nexus Attention (MoANA), which accurately localizes
object-related regions in an image. Specifically, we propose a new mechanism to generate a fine-level axis-based
attention map that utilizes a series of information distributed over channels, heights, and widths with an attention
mechanism towards calibrating features. The fine-level axis-based attention map is the same size as the input
feature maps; thus, the attention is assigned for each unit across feature maps and channels. Compared to other
existing methods, there is no need to mask patches in an image in our method. Further, we do not require an
additional hyperparameter, such as a corrupting threshold, to select the most discriminative regions. For these
reasons, our proposed method can be regarded as a relatively simple algorithm, which requires only one layer.
Unlike most WSOL studies that reported only the performance of the single object localization, we applied our
method to a Weakly Supervised Semantic Segmentation (WSSS) task. Since WSSS requires generating pseudo
masks for multiple classes and multiple objects, this process allowed us to evaluate how effective our method
is for multi-object segmentation. Based on those WSSS results, our proposed method can be used not only for
single-object work but also for multi-object work, demonstrating the generalizability of our method.

The main contributions of our work are three-fold:

® We propose a novel Module of Axis-based Nexus Attention (MoANA) that allows us to utilize feature rep-
resentations from various views in a tensor, thus localizing an object accurately.

e With our proposed calibration of the feature map, our fine-grained attention map adaptively concentrates on
the less activated regions along with the class-discriminative regions. Accordingly, it is more likely to focus
on informative regions of an entire object in an image.

® Our MoANA achieved the best object localization performances in the metrics of Top-1 Loc. Err., Top-5
Loc. Err., Gt-known Loc. Err., and MaxBoxAccV2* on two datasets, i.e., CUB-200-2011% and ILSVRC?*.
Additionally, the segmentation mask generated by employing our MoANA to the WSSS method has the best
segmentation performance in the Pascal VOC 2012 dataset®.

Related work

Weakly supervised object localization

Most of the existing WSOL research addresses corruption methods, which can be categorized into two approaches
depending on the strategies of corrupting regions: (1) random corruption®'"'?, and (2) network-guided cor-
ruption methods*!%1317,

For the random corruption strategy, Singh and Lee® devised Hide-and-Seek (Ha$S), an approach that ran-
domly drops patches of input images to encourage the network to find other relevant regions, rather than only
focusing on the most discriminative parts of an object. Yun et al.!! introduced CutMix, in which the randomly
erased (e.g., by cutting) patches are filled with patches of another class, and the corresponding labels are also
mixed. Although these methods have been considered as an efficient data augmentation method since they do
not require parameters, the random corruption can negatively affect localization performance due to its brute-
force elimination of input images.

For the network-guided corruption methods®'*', the most discriminative regions of the original image
or feature map are dropped with a corrupting threshold. Zhang et al.° proposed Adversarial Complementary
Learning (ACoL) to find complementary regions through adversarial learning between two parallel-classifiers;
one to erase discriminative regions, and the other to learn other discriminative regions except for the erased
regions. Choe et al.’® introduced an Attention-based Dropout Layer (ADL) that generates a drop mask and an
importance map utilizing a self-attention mechanism, and then randomly selects one of them for thresholding
feature maps. Mai et al.'” proposed Erasing Integrated Learning (EIL) that trains non-discriminative corrupt-
ing (e.g., erasing) features and original features with shared CNN layers. However, they all require a corrupting
threshold as a parameter for the masking. Our proposed MoANA discovers regions of both class-discriminative
regions and non-discriminative but object-related regions using a novel axis-based attention module without
the need for a erasing treshold.

There are several other WSOL approaches. SPG!? generated a Self-Produced Guidance (SPG) mask for use
as pixel-level supervision through attention maps. DANet'? employed divergent activation for learning comple-
mentary and discriminative visual patterns. NL-CCAM' combined low-probability and high-probability class
activation maps. DGL'® exploited two kinds of gradients, those of the target class and classification loss. RCAM"
alleviated the fundamental problems (e.g., global average pooling, instability of thresholding reference) of the
existing CAM* methods by several techniques. [?C'® leveraged pixel-level similarity with high activation values of
two images of the same category. MCIR" utilized two self-attention modules and attention-based fusion loss to
get better feature representations. Gao et al.” proposed the Token Semantic Coupled Attention Map (TS-CAM)
that employs the self-attention mechanism of visual transformers to mitigate the long-range dependency problem
in CNNs and avoid partial activation by generating long-range dependency attention maps. Vitol?! employed
a patch-based attention dropout layer (p-ADL) in an architecture that utilized a visual transformer for self-
attention, expanding the localization map. To the best of our knowledge, most of the above-mentioned WSOL
methods have focused on expanding the activated regions, so excessive activated regions were often generated
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and coarsely localized. Our MoANA can elaborately and naturally expand the activation domain by leveraging
various types of discriminative information based on different views of the feature maps.

Weakly supervised semantic segmentation

Like WSOL, WSSS aims to predict exact pixel-level object masks using weak annotations, a process that requires
no expensive labeling. Conventional WSSS methods have trained a classification network with image-level class
labels to estimate object localization maps and then employed them as a pseudo mask for semantic segmentation.
To do this, most WSSS methods generated the pseudo masks using CAM*. However, as CAM is based on inter-
mediate features down-sampled by the classifier, it has issues of poor object localization and incorrect boundary.

To alleviate this problem,**-?® focused on expanding incorrect object regions (i.e., seed areas) and***
attempted to generate better seed areas. Regarding®-?%, they introduced the seed refinement methods to modify
initial seeds obtained from CAM. Kolesnikov et al.? refined CAM by exploiting their Seed, Expand, and Con-
strain (SEC) principles. Ahn et al.?” developed Inter-pixel Relation Network (IRNet) which generates a transi-
tion map from the boundary activation map. A Deep Seeded Region Growing (DSRG) network introduced by
Huang et al.?® found small and subtle discriminative regions from the object of interest using image labels and
then produced pixel-level labels.

On the other hand,?®* jointly conducted the pseudo mask generation and segmentation tasks to generate
better seeds. Wang et al.” proposed a self-supervised equivariant attention mechanism (SEAM) to narrow the
gap between fully and weakly supervised semantic segmentation. Zhang et al.*” designed a context adjustment
approach (CONTA) which constructs a structural casual model to remove the confounding bias in image-level
classification and generate better pseudo-masks as ground truth. We also concentrated on generating better seed
areas, however, our MOANA computes fine-level axis-based attentions, and is therefore simple and efficient.

Attention based deep neural networks
Our MoANA is based on an attention mechanism; therefore, we reviewed existing attention methods even if
they were not devised for WSOL. Attention mechanisms have been widely used to enhance the representa-
tional power of features. Among various attention mechanisms*-*°, here, we focused on a context fusion based
mechanism?!-3338:42-464930 that strengthens the feature maps to be more meaningful by aggregating information
from every pixel. For instance, Hu et al.’! proposed a Squeeze-and-Excitation Network (SENet) which is a simple
and efficient gating mechanism to consider the channel-wise relationships among the feature maps of the basic
architectures. Likewise, Woo et al.** devised a Convolutional Block Attention Module (CBAM) that sequentially
combines two separate attention maps for channel and spatial dimension. Unlike SENet®!, CBAM* considered
spatial attention which involves “where” to focus. Moreover, to alleviate a limitation of SENet® that utilizes fully-
connected layers, Wang et al.* introduced an Efficient Channel Attention Network (ECA-Net)** that deploys a
1D convolutional layer to obtain cross-channel attention, while maintaining lower model complexity.
However, since these methods®**>#* emphasized meaningful features by multiplying the same attention values,
where the different information corresponding to spatial (i.e., height and width) or channel dimensions might
be ignored, they can be unsuitable for WSOL in which fine location information is demanded. Meanwhile, our
MoANA generates a fine-grained attention map that has different attention values across all regions by inferring
the connection of channel, height, and width axis-based attention.

Methods
In this section, we present the details of our proposed Module of Axis-based Nexus Attention (MoANA). MoANA
is applied to output feature maps before they are fed into a classifier (Fig. 1) to induce the model to learn the entire
region of an object. Hereafter, we regard the output feature maps as a 3D feature tensor, without loss of generality.
Our MoANA generates a self-attention tensor derived from three types of view-oriented attention map, by
projecting the input feature tensor into the channel, height, and width dimensions, respectively. The MoANA-
generated attention tensor presents a fine-grained characteristic in the sense of assigning different attention values
for each of the elements in a tensor. The interaction between the complementary information of the axis-based
attention matrix in MoANA leads the attention tensor to focus on not only the most discriminative regions,
but also on the less discriminative regions of an object. In these regards, the final output feature tensor has an
enriched representation resulting in a better object localization output. The overall architecture of the proposed
MoANA is illustrated in Fig. 2 and the detailed descriptions are given below.

Axis-based attention

Let X € REXH*XW e an input feature tensor, where C, H, and W denote the dimensions of the channel, height,
and width, respectively. To condense the global distribution of an input feature tensor X in the triple views, we
applied an average pooling in each dimension of the tensor, i.e., channel, height, and width as follows:

¢ = AvgPool ; (X) (1)
h = AvgPool,, (X) (2)
w = AvgPool (X) (3)

where AvgPool, , is an average pooling operator with respect to the dimensions of {-}. The three pooled features
ofc € ROXIXL b e ROxHx Landw € RE*1*W can be regarded as a summary of the extracted features in X from
different viewpoints. Surely, the three views carry different information distributed in the input feature tensor
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Figure 1. (a) Overview of our MOANA method, which generates fine-grained attended maps for WSOL by
incorporating triple-view attentions (channel, height, and width) before a classifier. The full attention map is
generated by an outer sum of the triple-view attentions. (b) Comparison of CAM* and our MoANA with respect
to an activation map (left) and a localization (right). In the localization, red and green boxes denote the ground-
truth and predicted bounding boxes, respectively. The green-masked region indicates the activation map after
applying a threshold. These maps were generated using Python 3.6.0, available at https://www.python.org.

X. That is, ¢ captures which feature representations are highly activated, and h and w reflect the discriminative
features distributed vertically and horizontally across channels, independently.

Subsequently, in order to utilize their local interaction among units in each pooled feature, we applied a 1D
convolution* with a kernel size of k and zero-padding without biases, thus keeping their dimensionality. Then,
a batch normalization® and a non-linear activation function were applied as follows:

zc = 0 (BN(W¢(0))) (4)
z, = o (BN(Wp(h))) (5)
Zy = 0 (BN(Wy,(W))) (6)

where o (-) is a sigmoid function and Wy, indicates the 1D convolutional layer for the respective pooled features.
Here, z. € RO¥1X1, 7 ¢ ROHX1 and z,, € RE¥IXW corresponds to the resulting triple-view attentions.
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Figure 2. Illustration of Module of Axis-based Nexus Attention (MoANA). An input feature X is processed
using triple-view attentions transformed from three kinds of pooled features, ¢, h, and w, which are then fed into
an expansion function f. The generated fine-grained attention map is combined with the input feature, which is
referred to as X ® M. A combination of X ® M and X, we obtain X is fed it into a classifier.

Attentions expansion

We expanded the triple-view attentions of z, zy, and zy to generate an attention map M € RE*H*W of the same
size of the input feature map X by means of an outer sum function fas follows:
M :f(ZC»Zh’ZW) (7)
. i1 .
= [2000 4 g 4 2GR (8)
= [ma,j,k)] ©)

In Egs. (8) and (9), zc(i’l’l),zﬁl’]’l),zg’l’k) and m®% denotes the elements of each tensor Zc, Zh, Zw, M and i, j, k
represent the index of the channel, height, and width dimensions. The values in the attention map M are likely to
be different from each other, resulting in a fine-grained attention map. Our fine-grained attention map represen-
tation method is different from the previous attention-based methods that learn a coarse attention map having
the same values across elements within the same channel. We provide illustrations of tensor-form elements and
an example in supplementary B to facilitate a better understanding of our method.

Feature calibration
We applied the attention tensor estimated in Eq. (7), to the input feature tensor. We considered computational
approaches as follows:

X=X®XOM) (10)

where © and @ denote the Hadamard product and the element-wise summation, respectively.

The proposed approach employs fine-level attention maps, enabling detailed feature calibration at element-
level units; this approach is advantageous from the perspective of feature representation learning. The axis-based
attended feature (X ® M) that is the sum of discriminative features mined from various viewpoints, has a rich
feature representation. Additionally, because the element-wise summation adds an input feature that already
contains information about the discriminative feature, it can help to activate regions in which the scaling term
is less discriminative.

Thus, the attention module described in section “Attentions expansion” is trained to focus not only on the
most discriminative features, but also on relatively degraded features. Consequently, our MoOANA increases the
activation of the object-related regions and relatively lowers the activation of the non-object-related regions. This
interpretable phenomenon can be clearly observed from our experimental results in Figs. 4 and 6.

Distinction to conventional context fusion attention
Figure 3, shows the distinction between the processes of our method and those of other context fusion attention
methods. Existing work?®!»***2 primarily considers channel-wise or spatial-wise attention, ignoring the spatial or
channel characteristics distributed over the different maps in a feature tensor. For example, CBAM™, one of the
representative context fusion attention methods, is used to calculate two attention maps: a spatial attention map
with a shape of [1 x H x W], and a channel attention map with a shape of [C x 1 x 1], where C, H, and W are
the channel, height, and width. Then, the same attention values are multiplied, ignoring different information
between each spatial and channel dimension. Therefore, there still remains a limitation of the context fusion
attention mechanism.

Meanwhile, our MoANA method generates three attention maps with [C x 1 x 1], [C x H x 1], and
[C x 1 x W], and then generates a triple-view attention map using the outer sum. The triple-view attention
map on different axes provides complementary information not found when only one axis is considered, allowing
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Figure 3. Illustration of conventional context fusion attention approaches and MoANA. Our MoANA
calibrates the feature employing an fine-grained attention map generated with axis-based complementary
information.

attention to be paid to fine-grained features not found in existing spatial or channel. Therefore, our MOANA
method can calibrate features through the complementary relations inherent in the input feature tensor, thereby
achieving the best performance and alleviating a limitation of the context fusion attention mechanism.

Experiment

Experiment setup

Datasets

We validated our MoANA using three public datasets, CUB-200-2011?* and ILSVRC?* for WSOL and Pascal
VOC 2012% for WSSS. CUB-200-2011 includes a total of 11, 788 images from 200 bird categories, divided into
5,994 images for training and 5794 images for evaluation. ILSVRC consists of 1.2 million images in about 1000
categories for training and 50, 000 images for a validation. Pascal VOC 2012 contains a total of 21 classes, com-
posed of 1, 464 training images, 1449 validation images and 1456 test images. In our experiments, we used the
10, 582 training images generated by, and 1449 validation images.

Competing methods

We compared our MoANA with the existing state-of-the-art WSOL methods, CAM?, HaS¢, ACoL’, SPG',
CutMix'!, ADL, NL-CCAM', RCAM'5, DGL'®, EILY, and I2C®. In order to observe the effectiveness of our
methods in WSSS, we compared it with five other WSSS methods, SEC?, DSRG?, IRNet?”’, CONTA*, and
SEAM?.

Evaluation metric

For quantitative evaluation, we used the Top-1 Loc. Err., Top-5 Loc. Err., and Gt-known Loc. Err. metrics. Top-N
Loc. Err. is the fraction of images that the IoU between the predicted bounding box and the ground truth bound-
ing box is less than 50%, and the target class does not exist in the N classes with the highest class prediction
probability. Gt-known Loc. Err. is the fraction of images that the IoU between the predicted bounding box and
the ground truth (GT) bounding box is less than 50%, regardless of the classification result. We additionally used
the recently proposed metric MaxBoxAccV2** over the IoU thresholds § € {0.3,0.5,0.7} at the optimal activation
map threshold. A threshold of the activation map, t, was set between 0 and 1 at 0.01 intervals. Our final results
of MaxBoxAccV2 measured various localization performances over threshold 7 for activation maps at various
levels of 8. In semantic segmentation, quantitative evaluation was performed using the mIoU score.

Implementation details

Weakly supervised object localization

We used a ResNet-50 pre-trained with ILSVRC as the backbone network. In order to obtain localization maps,
we used 1 x 1 convolutional layers, similar to ACoL’. For the kernel size k in the axis-based attentions, we used
3, according to*2 The input images of training were resized to 256 x 256 and then we cropped 224 x 224 patches
randomly from the resized images. Then, they were flipped horizontally with a probability of 0.5. The test images
were resized to 224 x 224. For the ILSVRC dataset, we trained our MoANA using a stochastic gradient descent
(SGD) optimizer with a momentum of 0.9, weight decay of 0.0005, and a mini-batch size of 256 for 20 epochs.
The learning rate was decreased from initial values of 0.002 for the feature extractor and 0.02 for the remaining
modules by multiplying by 0.1 after at every 5 epochs. For the CUB-200-2011 dataset, we set a mini-batch size
of 32 for 45 epochs, an initial learning rate of 0.01, and a learning rate decay rule of multiplying by 0.1 every 10
epochs.
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Figure 4. Qualitative comparison between our proposed method (MoANA) and CAM* for WSOL task on the
(a) CUB-200-2011 and (b) ILSVRC datasets. The red box is the GT bounding box, the green box is the predicted
bounding box, and the green area is the segmented region to extract the bounding box after the threshold is
applied. MOANA can generate more exact localization maps by tightly bounding the entire region of the object
in an image. These maps were generated using Python 3.6.0, available at https://www.python.org.

Scientific Reports|  (2023) 13:18588 | https://doi.org/10.1038/s41598-023-45796-8 nature portfolio


https://www.python.org

www.nature.com/scientificreports/

Weakly supervised semantic segmentation

We used IRNet? as the base model to generate a Pseudo-Mask. We trained by feeding MoANA to the classifi-
cation network of IRNet. We used the pseudo-masks generated using IRNet, as GT, to train the segmentation
network DeepLab v2°* for WSSS. The input image was transformed through the same process as IRNet: horizontal
flipping, random cropping, and color jittering. The classification model was trained with the input image cropped
as 512 x 512 and 16-sized batches. We used a weight decay with a coefficient of 0.0001, an SGD optimizer with
a momentum of 0.9, and an activation map threshold of 0.16. A total of 8000 iterations were trained, starting
with an initial learning rate of 0.1 and using polynomial decay, which is Irjui; = Irini (1 — itr/ max;;, )% at every
iteration. All settings were the same as in DeepLab v2°*, except that the segmentation model setting used a
pseudo-mask as the GT label. We implemented all methods in PyTorch and trained with Titan X GPU. The Code
is available at: https://github.com/ku-milab/MoANA.

Experimental results

Weakly supervised object localization

We visualize the predicted localization bounding boxes and activation maps for the CAM* and MoANA meth-
ods in Fig. 4. We also indicate the IoU value between the predicted bounding box and the GT box at the upper
left corner. We observed that MoANA elaborately localized the entire part of an object for CUB-200-2011 and
ILSVRC datasets. While CAM* focused on the partial objects or covered the outside of the exact object region,
MoANA tightly bounded the entire region of the object in an image, thereby achieving the best localization
performance.

Table 1 summarize the localization performance of the competing methods. In Table 1, we observed the
effectiveness and reliability of our MoANA in localization tasks, consistently achieving the best or second-best
performance in various evaluation localization metrics on the CUB-200-2011 and ILSVRC. In Table 2, MoANA
achieved the best MaxBoxAccV2??, of 71.4 for CUB-200-2011 and 65.8 for ILSVRC, evaluated at the optimal
activation map threshold.

CUB-200-2011 ILSVRC

Methods Backbone Top-1] | Top-5| |Gt-Known| |Top-1] |Top-5) |Gt-Known|
CAM* VGG16 55.9 47.8 44.0 57.2 45.1 38.9
HaS$® InceptionV3 | 58.9 - 42.3 50.3 - 34.5
ACoL’? VGG16 54.1 43.5 40.7 54.2 40.6 37.0
SPG!? GoogLeNet | 53.4 423 37.3 51.4 40.0 353
CutMix!! VGGl16 47.5 - 28.2 56.6 - 36.1
ADL® InceptionV3 | 47.0 - 36.7 51.3 - 38.4
DANet'? GoogLeNet | 47.5 38.0 - 52.5 41.7 -
NL-CCAM™" VGG16 47.6 35.0 - 49.8 39.3 34.8
RCAMP VGG16 41.0 - 23.7 55.4 - 39.3
DGL"® VGG16 439 - - 52.3 - 352
EILY VGG16 42.5 - 26.2 53.2 - 29.7
>C' InceptionV3 | 44.0 31.7 27.4 46.9 359 31.5
MCIRY VGG16 419 - - 48.4 - 33.7
CAM* ResNet-50 50.6 46.4 26.8 53.7 40.0 37.2
ACoL’ ResNet-50 422 - 27.3 52.6 - 38.4
SPG!® ResNet-50 48.5 - 284 51.5 - 36.6
CutMix!! ResNet-50 452 - 322 52.8 - 34.6
ADL"P ResNet-50 37.7 - 26.5 51.5 - 359
RCAM" ResNet-50 40.5 - 224 50.6 - 37.8
DGL'® ResNet-50 39.2 29.5 - 46.6 37.3 335
12C8 ResNet-50 37.6 - 174 452 354 315
MCIRY ResNet-50 35.3 - 227 47.6 - 321
TS-CAM? DeiT-S 28.7 16.2 223 46.6 35.7 324
Vitol?! DeiT-S - - - 46.3 - 28.2
MoANA (Ours) ResNet-50 329 19.6 15.8 45.2 34.9 31.9

Table 1. Quantitative results compared to other WSOL methods using Top-1, Top-5, Gt-known localization
errors on the CUB-200-2011 and ILSVRC datasets. A lower value is an indicator of better performance.The
best performance is highlighted in bold, and the second-best performance is underlined.
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MaxBoxAccV2 4
Methods CUB-200-2011 | ILSVRC
CAM* 63.0 63.6
HaS$® 64.7 63.4
ACol? 66.5 62.2
SPG!? 60.4 63.2
CutMix"! 62.8 63.2
ADL" 58.4 63.6
MoANA (Ours) | 71.4 65.8

Table 2. Quantitative results comparing other WSOL methods with MaxBoxAccV2? using Resnet-50 as
backbone. A higher value is an indicator of better performance.

Weakly supervised semantic segmentation
We visualize the semantic segmentation results for Pascal VOC 2012 are shown in Fig. 5. Specifically, Fig. 5a
illustrates the pseudo-mask generated by the classification model, and Fig. 5b shows the segmentation mask
obtained from the segmentation model trained with the pseudo-mask as the segmentation label.

In Fig. 5a, an analysis of the outcomes produced by IRNet illustrates that the pseudo-masks are confined to
distinct sections of each object, a challenge reminiscent of the issues inherent in CAM in WSOL. However, a
distinct transformation is observed when our proposed method is applied; the masK’s scope extends, covering the

Input IRNet MoANA Ground Input IRNet MoANA Ground
Image (Ours) truth Image (Ours) truth

(a) Pseudo-Mask (b) Segmentation Mask

Figure 5. Qualitative comparison between our proposed method (MoANA) and IRNet? for WSSS task on the
Pascal VOC 2012 dataset. Multi-label regions were segmented to be more similar to GT than IRNet?".
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entirety of the objects. A case in point can be observed in the 6th row of Fig. 5a, where the traditional approach
is centered on prominent features, such as the facial region of a person. In contrast, our technique expands the
mask to cover the entire bodily structure.

In Fig. 5b, the influence of our enhanced pseudo-masks on the accuracy of segmentation masks is demon-
strated. The segmentation model learned with the IRNet-based pseudo mask shown in Fig. 5a can identify the
problem of segmenting only certain parts of the object or segmenting into the wrong class. The segmentation
model learned with the pseudo mask generated by applying our method expands the object area and is accurately
classified. This is particularly evident in the 5th row of Fig. 5b, where specific sections of the cow are initially
misclassified, and the correctly identified areas are confined. However, the integration of our method not only
corrects the misclassifications but also augments the segmented mask area to align more precisely with the
ground truth. In other words, compared to baseline methods, MoANA effectively identifies and corrects missed
segment regions, resulting in representations that are more closely aligned with the actual ground truth.

Table 3 summarizes the results of MOANA and the competing methods in the fully and weakly supervised
settings for Pascal VOC 2012. When we employed the MOANA method as a module into IRNet, although the
performance did not exceed that of the most advanced methods, a notable enhancement in mIoU was observed.
These results underscore the potential applicability of our method in contexts involving multi-label and multi-
object tasks. Detailed mIoU results for each class are show in supplementary A.

Analysis and ablation study

Effect of feature combination approach

In order to investigate the combination feature map effect, we compared the results with and without the com-
bination approach in Eq. (10) in terms of the localization and segmentation task. Based on an understanding of
a combination operation, note that X & (X © M) leads the function X ® M to learn information that the input
feature tensor X may have missed or emphasized less. The ablation study was conducted by dividing the inves-
tigation into three cases: (1) original features, (2) calibration features by scaling with attention value, and (3)
calibration features as a combination of scaling features and input features (Table 4). We demonstrated the effec-
tiveness of the combination approach by observing that our proposed method performed best in the three cases.

Visualization of attention map

To get an insight into the working of our MoANA, we visualized the axis-based attention maps zj and zy, the
combined attention map M, the input feature map X, the resulting output feature map X, and the difference
D between X and X in Fig. 6. We transformed the expanded attention map E(zp) and E(zy) into a matrix by
channel-wise average pooling, for visualization. However, the attention map of z. is omitted because there was
no difference in the values of the map when channel-wise average pooling was performed. We normalized each
matrix in the range of [0, 1].

From the Fig. 6 of localization results, we observed an activation map where the CAM focuses only on the
part of the object regions, such as wings. On the other hand, MoANA generates sophisticated activation maps
by paying additional attention to activated object regions such as wings and inactivated object-related regions
such as bodies. Furthermore, it can be observed that the body and wing regions are calibrated regions in the D

Backbone mloU (%)
Methods (for Pseudo-mask) | CAM | Pseudo-mask ‘ Seg. mask
Fully supervised
DeepLab v2* - ‘ - ‘ - ‘ 77.7
Weakly supervised
SEC?*® VGGl16 46.5 53.4 50.7
SEAM? ResNet-38 55.1 63.1 64.3
DSRG* ResNet-101 47.3 62.7 61.4
IRNet”’ ResNet-50 48.3 65.9 63.0
SC-CAM™ ResNet-101 50.9 - 66.1
BES® ResNet-101 50.4 67.2 65.7
CONTA* ResNet-50 48.8 67.9 65.3
CDAY ResNet-50 50.8 67.7 65.8
AdvCAM?® ResNet-101 55.6 69.9 68.1
RIB* ResNet-101 56.5 70.6 68.3
PPC® ResNet-38 61.5 70.1 67.7
RECAM®! ResNet-101 54.8 70.9 68.5
SIPE®? ResNet-101 58.6 69.2 68.8
MoANA (Ours) ResNet-50 49.2 66.7 67.0

Table 3. Quantitative results to other WSSS methods using mIoU on the Pascal VOC 2012 dataset. The best
performance is highlighted in bold.
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CAM

Loc.Err (%)

Methods Datasets | Top-1 | Top-5 | Gt-Known
X=X

CUB 55.9 47.8 44.0
CAM*

ILSVRC | 57.2 45.1 38.9
@QX=XoM)

CUB 34.0 23.0 18.8
MoANA w/o combination

ILSVRC | 45.8 35.1 31.9
B)X=XoXOM)

CUB 329 19.6 15.8
MoANA (Ours)

ILSVRC | 45.2 349 319

Table 4. WSOL Results of MoANA about combination approach on the CUB-200-2011 and ILSVRC datasets.
The best performance is highlighted in bold.

Localization Results Spatial Feature Maps

(b) (c) (d) () (b) () (@

E(zn)

E(zw)

Figure 6. (Left) Visualization of activation maps and bounding boxes in CAM* and our MoANA for
comparison. (Right) We plotted triple-view attention maps (E(zy), E(zyw) and M) in our MoANA by
normalizing them in a range between 0 and 1. Here, E(.j indicates the expansion of the pooled feature to the
input feature size. Also, we plotted the normalized difference D between X and X to show to which MoANA
gives attention. If the column names are the same in the left and right figures, the input image is the same. These
maps were generated using Python 3.6.0, available at https://www.python.org.

row of the spatial feature maps column (b) of Fig. 6. From the viewpoint of attention map generation, the role
of X ® M can be interpreted as being to excite the less activated regions in which the target task-related infor-
mation is inherent. As shown in Figs. 4 and 6, we validated the effectiveness of our fine-grained calibration of
features in WSOL.

Conclusion

In this paper, we proposed a novel Module of Axis-based Nexus Attention (MoANA) to accurately localize an
object in an image. MOANA consists of three components; (i) triple-view attentions, (ii) an expansion of the
attentions, and (iii) calibration of the features. Our proposed method utilizes complementary information from
axis-based attention for the calibration of sophisticated object-related regions within the feature map. MOANA
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therefore does not require an additional hyperparameter such as a corrupting threshold for masking the discrimi-
nant regions in the corrupting methods. Our proposed method achieved the highest performance in localization
and segmentation tasks in terms of Top-1 Loc. Err., Top-5 Loc. Err., Gt-known Loc. Ert., Seg. Mask mIoU, and
MacBoxAccv2 metrics over three datasets. Our experimental results show the validity of all three components
and interpreted the inner working of the feature calibration. Our proposed method can be plugged into any
CNN architecture without modifying the original network architecture, in the sense that we applied MoANA
on the final output of the feature extractor before a classifier. Further, we applied our algorithm to the WSSS
task of multi-object localization. In that sense, it would be our forthcoming research issue to more generalize its
application to various CNN tasks (e.g., object detection).

Data availability

We have evaluated our proposed method on the CUB-200-2011, ILSVRC, and Pascal VOC 2012 dataset. All
datasets are publicly available, and more information can be found at the following link: (CUB-200-2011) https://
www.vision.caltech.edu/datasets/cub_200_2011/, (ILSVRC) https://www.image-net.org/challenges/LSVRC/,
(Pascal VOC 2012) http://host.robots.ox.ac.uk/pascal/ VOC/voc2012/.

Code availability
All codes used in our experiments are available at https://github.com/ku-milab/MoANA.
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