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Polaritonic and excitonic 
semiclassical time crystals based 
on TMDC strips in an external 
periodic potential
Gabriel P. Martins 1,2,3, Oleg L. Berman 1,2* & Godfrey Gumbs 2,3,4

We investigated the dynamics of Bose–Einstein condensates (BECs) under an external periodic 
potential. We consider two such systems, the first being made of exciton–polaritons in a nanoribbon 
of transition metal dichalcogenides (TMDCs), such as MoSe

2
 , embedded in a microcavity with a spatial 

curvature, which serves as the source of the external periodic potential. The second, made of bare 
excitons in a nanoribbon of twisted TMDC bilayer, which naturally creates a periodic Moiré potential 
that can be controlled by the twist angle. We proved that such systems behave as semiclassical time 
crystals (TCs). This was demonstrated by the fact that the calculated BEC spatial density profile shows 
a non-trivial long-range two-point correlator that oscillates in time. These BECs density profiles were 
calculated by solving the quantum Lindblad master equations for the density matrix within the mean-
field approximation. We then go beyond the usual mean-field approach by adding a stochastic term 
to the master equation which corresponds to quantum corrections. We show that the TC phase is still 
present.

Symmetry breaking has been a subject of much interest in condensed matter physics since it leads to further 
understanding of many phases of matter exhibited by materials. In symmetry-broken phases, a system has a 
Hamiltonian which is unchanged by a particular symmetry transformation, but the state of the system itself does 
not exhibit the same symmetry. The breaking of translational symmetry, for example, leads to a crystal phase; 
the breaking of spin-rotational symmetry gives rise to a ferromagnetic phase. A Time crystal (TC) is a state of 
matter which shows spontaneous breaking of time translation symmetry (TTS). This phase was first predicted by 
Wilczek in 20121 and has been the subject of many studies ever since. In order for a system to be considered a TC, 
it has to contain a macroscopically large number of particles which exhibit long-living spontaneous breaking of 
TTS, showing non-trivial correlations in an order parameter when measured at two long-time apart instances2. 
A proper mathematical definition for a Quantum TC was proposed in Ref.3.

Many no-go theorems have been advanced showing that TCs cannot exist under certain conditions3–5. Ever 
since then, several groups have proposed different settings that could exhibit a TC phase6–9. In a recent review, 
Sondhi et al. presented a detailed and very well written description of TCs2. Systems ranging from chains of 
spins10,11 to Bose–Einstein Condensates (BECs) in many different settings12–16 have been shown to display spon-
taneous breaking of the TTS. Of particular interest to our work is the one found in Ref.13, in which a BEC of exci-
ton-polaritons in an annular potential in which a TC phase was shown to be present within the annular region.

Technological applications of time crystals are the subject of current studies. Many TC settings have been 
demonstrated to be very resilient to external perturbations17–19. It has been shown that coupling TCs to entangled 
systems prevents the otherwise very fragile quantum entanglement from rapid decay due to the interactions 
of these entangled systems with the external environment17. Therefore, it has been proposed that TCs are very 
appropriate candidates to be applied for the development of memory-storing apparatus for quantum computers20. 
Additionally, in recent times it has been discussed that a set of TCs can be employed as a model to simulate the 
human brain21.
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Absorption of a photon by a semiconductor leads to the creation of an electron in the conduction band and a 
positive charge, i.e., “hole”, in the valence band. This electron–hole pair can form a bound state referred to as an 
“exciton”22. Bose–Einstein condensation and superfluidity of such excitons are expected to exist at experimentally 
observed exciton densities at temperatures much higher than for the BEC of alkali atoms22,23. A direct exciton 
is a two-dimensional (2D) exciton, formed as a bound state by an electron and a hole in a single semiconductor 
quantum well whereas an indirect exciton is formed by the bound state of an electron and a hole in neighboring 
quantum wells. Excitons can be created when the material absorbs photons and can decay by emitting photons. 
When a suitable material for the occurrence of excitons is put inside an optical microcavity, linear superposition 
between photons and excitons can be found24. Such a quasiparticle is known as an exciton–polariton.

Many theoretical and experimental investigations have identified Bose coherent effects of 2D excitonic polari-
tons in a quantum well embedded in a semiconductor microcavity24–27. To obtain polaritons, two Bragg mirrors 
are placed opposite each other in order to form a microcavity, and a quantum well is embedded within the cavity 
at the antinodes of the confined optical mode. The resonant interaction between a direct exciton in a quantum 
well and a microcavity photon results in the Rabi splitting of the excitation spectrum. Two polariton branches 
appear in the spectrum due to the resonant exciton–photon coupling. The lower polariton branch of the spec-
trum has a minimum at zero momentum. These lower polaritons form a 2D weakly interacting Bose gas. The 
extremely light mass of these bosonic quasiparticles at experimentally achievable excitonic densities results in 
a relatively high critical temperature for superfluidity. The critical temperature is relatively high because the 2D 
thermal de Broglie wavelength is inversely proportional to the mass of the quasiparticle, and this wavelength 
becomes comparable to the separation between the bosons. BEC and superfluidity of exciton-polaritons have 
been observed in a microcavity26–28. The various applications of microcavity polaritons for optoelectronics and 
nanophotonics have been developed recently24.

Two-dimensional van der Waals materials such as the atomically thin transition metal dichalcogenides have 
unique physical properties, which are attractive for a broad range of applications. Monolayers of TMDC such as 
MoS2 , MoSe2 , MoTe2 , WS2 , WSe2 , and WTe2 , for instance, are 2D direct bandgap semiconductors, which have 
a variety of applications in electronics and optoelectronics29. The strong interest in TMDC monolayers is driven 
by the following factors: the direct gap in the band structure spectrum30, the existence of excitonic valley physics, 
and the possibility of electrically tunable, strong light–matter interactions31,32. Monolayer TMDCs have already 
been implemented in field-effect transistors, logic devices, and lateral and tunneling optoelectronic structures29. 
Monolayer TMDCs have hexagonal lattice structures, and the nodes (valleys) in the dispersion relations of the 
valence (conduction) band can be found at the K and K′ points of the hexagonal Brillouin zone. The specific 
properties of excitons in monolayer TMDCs have been the subject of many experimental and theoretical stud-
ies (see, for example, Ref.33). The large binding energy and long lifetime of interlayer excitons in van der Waals 
heterostructures have prompted much work on these materials34,35. Exciton–polaritons in a TMDC monolayer 
embedded in a microcavity were observed experimentally at room temperature36. The superfluidity of exci-
ton–polaritons in a TMDC monolayer embedded in a microcavity has been studied in Refs.37–39.

Stacking 2D materials to form van der Waals heterostructures opens up new strategies for materials properties 
engineering. One increasingly important example is the possibility of employing the relative orientation (twist) 
angle between a pair of 2D crystals to tune electronic properties. For small twist angles and lattice constant 
mismatchings, heterostructures exhibit long period Moiré patterns, characterized by the periodic potential 
acting on the charge carriers40. It is well established that the Moiré superlattice can modulate the electronic 
band structure of the material and lead to transport properties such as unconventional superconductivity41 and 
insulating behavior driven by correlations42–44.

In bilayer TMDC, formed by vertically stacking two TMDC monolayers, intralayer excitons are formed by 
an electron and a hole, located in the same monolayer. On the other hand, interlayer excitons are formed by 
an electron and a hole, located in two neighboring monolayers. Since an interlayer exciton is composed of an 
electron and a hole which are separated in neighboring layers, its properties can depend strongly on the layer 
configurations and external fields. For example, it was recently predicted that Moiré superlattices, where the 
interlayer atomic registry changes periodically over space, can host arrays of localized interlayer exciton states 
with distinct valley selection rules45–47.

In this paper, we investigate the dynamics of two BEC systems. One made of exciton-polaritons in a strip of a 
MoSe2 monolayer, embedded in a microcavity, and the other made of bare excitons on a strip of twisted TMDC 
bilayer. We show that, under certain circumstances, these systems are good candidates for time crystallization. In 
the dilute regime, the systems will form a BEC whose mean-field dynamics is given by Gross–Pitaevskii’s equa-
tion (GPE). For the exciton-polaritons, we consider the strip to be inside a spatially curved optical microcavity. 
The curvature of the cavity creates an effective external potential on the photons inside the cavity which, in turn, 
acts as an effective potential for the polariton as a whole37–39. This effective potential enters directly in the GPE 
and significantly changes the dynamics of the condensate. We calculate the curvature required for an effective 
sinusoidal potential on the polariton BEC. For the bare excitons system, the Moiré pattern caused by the rela-
tive twist between the two TMDC layers naturally creates a periodic external potential for the excitons in the 
strip. We present the mathematical condition for a system to be in a semiclassical TC phase. This condition is a 
modification of the quantum TC criterion proposed in Ref.3. We numerically solved the GPE which governs the 
time evolution of both considered systems within the mean-field approach and showed that both systems obey 
the semiclassical TC criterion. We also go beyond the mean-field description by adding a stochastic term to the 
GPE27 and show both systems still demonstrate the semiclassical TC behavior.

A study implying that a BEC of exciton-polaritons can behave as a time crystal has been reported in Ref.13. 
However, there are some considerable differences between the system studied in Ref.13 and the one under con-
sideration in our paper. While in Ref.13 a localized TC based on exciton-polaritons inside a 2D annular trap was 
analyzed, we consider an extended system in a very long strip within an external periodic potential. The dynamics 
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in both systems are significantly different, even though both of them follow similar GPEs. Besides, we also have 
considered our systems beyond the mean field approach.

The rest of this paper is organized as follows. We present the theoretical foundation of the problem in “Theo-
retical framework” section, where we define both systems which we studied. We also present the mathematical 
framework for semiclassical time crystals. In “Methods” section, we present model equations for the dynamics 
of a non-equilibrium BEC in a periodic potential, both in the usual mean-field description, as well as showing 
how to go beyond that, by adding a stochastic term corresponding to quantum uncertainty in the equations. 
Numerical results of our calculations for the mean-field dynamics of an exciton–polariton and bare-exciton 
condensate in a periodic potential are presented in “Numerical results” section.

Theoretical framework
In this section, we provide the theoretical framework for the remainder of the paper. First, we define our systems 
of interest, namely an exciton–polariton condensate on a strip of TMDC inside a spatially curved microcavity 
and an excitonic BEC on a strip of twisted TMDC bilayer. After that, we provide the mathematical condition 
that must be satisfied by semiclassical time crystals.

Exciton–polariton BEC in an uneven microcavity
In semiconductors, electrons in the conduction band and holes in the valence band can be bound together, 
forming a hydrogen-like structure called an exciton22. The creation energy for the excitons εexc is equal to the 
gap energy between the conduction and valence bands of the semiconductor, � , minus the binding energy of the 
electron-hole pair εb , εexc = �− εb . Excitons are created when the material absorbs photons and can spontane-
ously decay by the recombination of the electron-hole pair, which, in turn, emits a photon. When a material that 
can harbor excitons is contained within an optical microcavity, in which photons are confined, a linear super-
position state can be formed between excitons and photons. Those states are called exciton–polaritons24. There 
are two branches of exciton–polaritons, one with higher energy, called the upper polariton branch, and one with 
lower energy, called the lower polariton branch. The lower polaritons can form Bose–Einstein condensates24. 
One such condensate has been recently verified in room-temperature settings28.

Inside an optical microcavity of length LC , the energy of a photon of the q-th mode with momentum P is 
εph(P) = (c/n)

√

P2 + �2π2q2LC
−2 , where n = √

ǫr  is the refractive index of the cavity. For low momentum, 
εph ≈ �πqc

nLC
 . If this cavity is uneven, namely, if one of the mirrors that make it is curved, the energies of the 

photons depend on the position. This effectively creates an external potential, Vph , for low-momentum photons 
inside the cavity. If, for example, a cavity has a length that varies in the x direction like

low-momentum photons of the q-th mode will have an energy εph(x) = ε0 + Vph(x) . It is evident that the effect 
of such a curvature is equivalent to the addition of an external potential to the photons. It can be shown that an 
effective potential on either photons, Vph(x) , or excitons, Vexc(x) , leads to an effective potential Veff  acting on 
exciton-polaritons, which can be approximated as Veff = 1

2

(

Vph + Vexc

)

37–39.
We consider the system depicted in Fig. 1. Such a system is composed of exciton-polaritons in a strip of 

TMDC embedded in a curved optical microcavity with the length LC(x) given by

(1)LC(x) =
�πqc

n
(

ε0 + Vph(x)
) ,

x

MoSe2e h
photon

Figure 1.   Schematic representation of the considered system. A strip of MoSe2 inside an uneven microcavity. 
The cavity is composed of a plane mirror at the bottom and a spatially curved mirror on the top. The cavity 
length is, therefore, not constant and is a function of x, LC(x) , given by Eq. (1).
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Polaritons confined in such a cavity would be subjected to an effective potential Veff (x) = V0 cos(kx) , 
k = 2π/ap with ap being a period of the external effective potential, and V0 the amplitude, which can both be, in 
principle, arbitrarily chosen by the design of the microcavity.

Excitonic BEC in a twisted TMDC bilayer
We also consider a system composed of bare excitons in a twisted TMDC bilayer as shown in Fig. 2. Bare excitons 
can also form a BEC phase at low temperatures22,23.

It has been shown that, when excitons are in a twisted TMDC bilayer, they are subjected to an effective peri-
odic potential V(r) caused by the Moiré pattern given by40

where bj are unit vectors which divide the plane into six identical sections, and k = 2π
aM

 , where aM is the Moiré 
period. If we constrain the excitons to a ribbon of TMDC that is finite in the y direction with a width W and 
infinitely long in the x direction, we can replace the potential by an effective potential Veff (x) given by

only if the width W = 4πm

k
√
3
= 2m√

3
aM , for positive integer m’s.

Criterion for a semiclassical time crystal
The mathematical criterion that a system must obey in order for it to be a quantum time crystal was first devel-
oped in Ref.3. This criterion, however, is not appropriate for the study of mean-field dynamics, which is the subject 
of studies in this paper. Therefore, we needed to devise a new criterion that can be applied to the semiclassical 
mean-field study of BECs.

By following steps similar to the ones in Ref.3, we say that a system behaves as a semiclassical time crystal 
if it shows non-trivial time dependent correlations between values of an order parameter ρ(r, t) at long-apart 
times and positions. Namely, if

where c(t) is a non-stationary function of time and V is the volume of the system, we can say that the system is in 
a semiclassical TC phase. A more detailed explanation of the deduction of Eq. (5) and its relation to the criterion 
first proposed in3 can be found in the Supplemental Information, as well as the reasoning of validity of Eq. (5) 
being a criterion well-suited for the semiclassical mean-field study.

When dealing with one-dimensional systems, Eq. (5) can be reduced to

where Lx is the length of the system.

(2)LC(x) =
�πqc

n(εexc + 2V0 cos(kx))
.

(3)

V(r) =V0

∑

j

cos
(

kbj · r
)

=2V0

(

cos(kx)+ cos k

(

x

2
+

√
3

2
y

)

+ cos k

(

x

2
−

√
3

2
y

))

,

(4)Veff (x) =
1

W

∫ W/2

−W/2
dy V(x, y) = 2V0 cos(kx),

(5)lim
|�r|→∞

lim
|t−t′|→∞

1

V

∫

ρ(r, t)ρ(r +�r, t ′)dr = c(t),

(6)c(t) = lim
|�x|→∞

lim
|t−t′|→∞

1

Lx

∫ Lx/2

−Lx/2
ρ(x, t)ρ(x +�x, t′)dx, ,

Figure 2.   Moiré pattern in the crystal lattice structure seen by twisting one of the layers of a bilayer TMDC. 
The pattern is created by the difference in atomic alignment in the upper and lower layers. Excitons in such an 
environment will be subject to an external periodic potential given by Eq. (3).
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Methods
In this section, we present the mathematical framework we will employ to investigate the dynamics of the con-
densate. First, we will present the equation that governs the evolution of the mean-field, which is a semi-classical 
and deterministic approach for the condensate. After that, we will present a way of going beyond the usual 
mean-field description by adding the effect of quantum uncertainty to the otherwise deterministic mean-field 
evolution. These quantum effects are, however, treated as corrections to the equation that governs the mean-field 
dynamics and are not sufficient to recreate the full range of quantum phenomena.

Mean‑field evolution
Here, we will present the modified Gross–Pitaevskii equation (GPE) which governs the mean-field dynamics 
BECs. The same equation is valid for the BEC of exciton–polaritons, and for the BEC of bare excitons, both under 
an external potential, Veff (r) , caused by different reasons, as explained in the previous section. Both quasiparticles 
are described by a Hamiltonian Ĥ for a weakly interacting dilute Bose gas37:

where ψ̂†(r) and ψ̂(r) are creation and annihilation Bose operators for the polaritons or excitons, Mp is the 
effective mass of the quasiparticle, Veff (r) is the effective periodic potential acting on them. and Ueff  is the 
Fourier image of the pair polariton-polariton (or exciton–exciton) repulsion potential at zero momentum. For 
excitons, this repulsion is given by Ueff = Uex = 3�2

Mex
 , where Mex is the exciton mass; and Ueff = Upol = 1

4Uex , 
for polaritons37.

The density matrix ρ for non-equilibrium BEC can be obtained from the quantum Lindblad master equation27:

where the usual Lindblad superoperator is defined as

and κ , γ and Ŵ are the rates of single-particle loss, single-particle incoherent pumping and two-particle loss, 
respectively.

To properly obtain the time-evolution of the density matrix ρ by solving Eq. (8) is an extremely complex 
mathematical problem. The usual approach is to, instead, study the semiclassical mean-field dynamics. The 
mean-field equation of motion can be obtained by replacing 

〈

ψ̂(r)
〉

= ϕ̃(r) (where ϕ̃(r) is the wave function of 
the condensate) and decoupling all correlators. This procedure results in a modified Gross-Pitaevskii equation 
(GPE)26, including dissipative terms describing particle gain and loss:

where γeff = γ − κ is the effective pumping rate.
When we consider our system to be a strip, with a width Ly in the y direction much smaller than the size of 

Lx of the strip in the x direction ( Ly ≪ Lx ), we can treat Eq. (10) as one-dimensional, by making the substitution 
ϕ̃(r) → ϕ(x)

√

Ly
 , which leads to

In our one-dimentional approximation for narrow strips, we have Veff (x) sinusoidal for both systems, namely, 
polariton BEC in a TMDC strip, embedded in a microcavity, and exciton BEC in a strip of a twisted TMDC 
bilayer, for very different reasons. In the polaritonic system, this potential is created by the special manufactur-
ing of the microcavity, while for the excitonic system, the potential arises naturally from the relative twist of the 
layers, as explained in the previous section.

Beyond mean‑field description
Here, we explain what corrections should be added to Eq. (11), in order for us to consider some of the effects of 
quantu randomness to the otherwise deterministic mean-field evolution.

where ϕQ is the “quantum” field, which can be represented by the dissipative-stochastic GPE (DSGPE). The 
DSGPE is equivalent to Eq. (12) with the replacement i(κ + γ )ϕQ → ξ(r, t) , where ξ(r, t) represents a Gaussian 
white noise process with

(7)Ĥ =
∫

d2r ψ̂†(r)

(

−�
2∇2

2Mp
+ Veff (r)

)

ψ̂(r)+ Ueff

2
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r),

(8)
∂ρ

∂t
= − i

�

[

Ĥ , ρ
]

+
∫

d2r

(

κL

[

ψ̂(r), ρ
]

+ γL

[

ψ̂†(r), ρ
]

+ Ŵ

2
L

[

ψ̂2(r), ρ
]

)

,

(9)L

[

X̂, ρ
]

= 2X̂ρX̂† −
[

X̂†X̂, ρ
]

+
,

(10)i�
∂ϕ̃

∂t
=

[

−�
2∇2

2MP
+ Veff (r)+ Ueff |ϕ̃|2 + i

(

γeff − Ŵ|ϕ̃|2
)

]

ϕ̃,

(11)i�
∂ϕ

∂t
=

[

− �
2

2MP

∂2

∂x2
+ Veff (x)+

Ueff

Ly
|ϕ|2 + i

(

γeff − Ŵ

Ly
|ϕ|2

)]

ϕ.

(12)i�
∂ϕC

∂t
=

[

−�
2∇2

2MP
+ Veff (r)+ Ueff |ϕC |2 + i

(

γeff − Ŵ|ϕC |2
)

]

ϕC + i(κ + γ )ϕQ,
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For the one-dimensional case we are considering, the DSGPE becomes

where the sub-index C of ϕC was omitted for simplicity.
One thing that is important to note, however, is that in reaching the DSGPE represented in Eq. (14), quantum 

phenomena are treated perturbatively. The effects of the addition of the quantum noise term, ξ(x, t) , do not fully 
capture all quantum aspects pertinent to the system. Such a term is only efficient in mimicking local variations to 
order parameters due to inherent quantum randomness, but fail to show, for example, effects caused by quantum 
correlations between two different measures. In order to properly evaluate all quantum effects, one would have 
to obtain the full dynamics of the system’s density matrix, obtained from Eq. (8), which is a very complicated 
mathematical problem, as previously discussed.

Numerical results
In this section, we will present our numerical results. These results will be separated as such: first, we will do 
an in-depth analysis of the time evolution of the BEC of exciton–polaritons inside a spatially curved optical 
microcavity, where we will prove that such a system is in a TC phase both when we consider just the mean-field 
evolution, and when we go beyond the usual mean-field description. After that, we will analyze the evolution of 
the BEC of bare excitons on a twisted TMDC bilayer and show that the same results still apply.

Polariton BEC on a spatially curved cavity
First, we will consider a system of exciton–polaritons inside a spatially curved microcavity, as depicted in Fig. 1. 
We consider the length of the cavity LC(x) to be given by Eq. (2). We considered a strip of MoSe2 , in which the 
polaritons have an effective mass MP = 5.8× 10−6m0 , where m0 is the free electron rest mass. The strip is inside 
a microcavity assembled with constituent elements similar to ones such as that in Ref.48, which has a refractive 
index n = 2.2 and a mean width L0 = 2.3 µ m. We consider the q = 5 mode of that cavity, which resonates with 
the excitons in the MoSe2 strip. The effective Rabi coupling between photons and excitons is �� = 20.0 meV. 
We have chosen the period of the effective potential, aC , to be aC = 10 µ m. Throughout all of our simulations, we 
considered the length of the strip to be Lx = 4000 µ m, and its width to be W = 1 µ m. We consider the effective 
pump rate to be γeff = 0.1 meV, and the two-particle loss is assumed to be Ŵ ≈ 0.3 Ueff

49.
Our results showed that the polariton BEC density , P(x, t) = |ϕ(x, t)|2 , oscillates around the value, 

P0 =
γeffLy

Ŵ
≈ 69.8× 103 µm−1 , which is the condensate density for the system being in the steady state in the 

case of an absence of external potential. For almost all the plots the system was chosen to begin the simulation 
at t = 0 in the steady-state of the unperturbed system, ϕ(t = 0, x) =

√
P0 , the only exception being the ones in 

Fig. 5b. We will discuss this in further detail as we analyze each of the plots.
Our results are divided into three subsections. The first one deals with the mean-field dynamics, represented 

by the GPE in Eq. (11). In the second one we consider the mean-field dynamics obeying to a modified version of 
the GPE given by Eq. (11), assuming the polariton decay rate κ to be spatially dependent, and not constant. The 
last subsection provides the results of the polariton condensate dynamics beyond the mean-field description, 
when the polariton BEC time-evolution is governed by the DSGPE presented by Eq. (14). Another set of results is 
shown in the Supplemental Information, in which we consider both the time evolution of the BEC phase, as well 
as that of the polariton reservoir. In such considerations, the polariton BEC will evolve following another modi-
fied version of the GPE in Eq. (11), in which interactions between the BEC and non-BEC polaritons are taken 
into consideration, as well as transitions between both polaritonic phases being allowed. In the Supplemental 
Information, we consider both a constant pump of reservoir polaritons as well as a spatially varying pump with 
the same period as the external potential on the polaritons. We show that the results there are completely akin 
to those of a constant effective pumping rate, as well as a spatially varying pumping rate, that will be shown here.

Mean‑field evolution
Our first result depicts the polariton BEC density throughout the strip at three different times. We allowed the 
simulation to run a long time before taking those plots in order to be sure that, if our system was able to thermal-
ize and reach a steady state, it would have done so. By looking at Fig. 3, we see that the polariton BEC density 
throughout the strip is oscillating in time. We can see that this condensate appears to be pulsating around the 
steady state density for a planar microcavity, P0 ≈ 69.8× 103 µm−1 , since it deviates from this constant density 
a moderate amount at Fig. 3a, then it approaches P0 throughout the entire strip af Fig. 3b and deviates even more 
than on Fig. 3a on Fig. 3c. Since the time difference between each of the plots in Fig. 3 is of 5 ps, the period of 
these oscillations cannot be longer than just a few ps, meaning that our chosen start time of 3 ns is, indeed, suf-
ficiently big to discard the possibility of the system thermalizing. The inability of reaching a steady state is one 
condition for the system to be a TC, which serves as a first evidence of this phase2.

In Fig. 4, we see the time evolution of the polariton BEC density in three different positions in the strip. The 
condensate density oscillates between P0 and a value that can be smaller than P0 , as in Fig. 4a,c, or greater than 
P0 , as in Fig 4b. The system oscillates in phase, reaching P0 at the same time for all positions; and reaching the 

(13)�ξ(r, t)� = 0,
〈

ξ(r, t)ξ̄ (r′, t′)
〉

= (γ + κ)

2
δ
(

t − t ′
)

δ
(

r − r
′).

(14)i�
∂ϕ

∂t
=

[

− �
2

2MP

∂2

∂x2
+ Veff (x)+

Ueff

Ly
|ϕ|2 + i

(

γeff − Ŵ

Ly
|ϕ|2

)]

ϕ + ξ(x, t),
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maximum deviation also at the same time. The period of oscillation can be seen to be of around 3 ps. We, again, 
see that the system does not show any tendency of reaching a steady state.

In order to check if our result depends on the initial conditions chosen by us, namely the state 

ϕ0(x) =
√

(γ − κ)Ly

Ŵ
 , which is the steady-state for the unperturbed BEC (when Veff = 0 ), we tried a different 

initial condition, when the system started in the vacuum state. This result is shown in Fig. 5.
On the top row of Fig. 5, we see a picture of the condensate density throughout the entire strip at an arbitrary 

time, just like one of the panels in Fig. 3. On the bottom row, we see the time evolution of the condensate density 
at an arbitrary position, just like in of the panels in Fig. 4. In Fig. 5a, the system started at t = 0 in the steady-
state of the unperturbed system, like on all previous and future Figures, while in Fig. 5b, the system started in 
the vacuum state. It is evident that the only difference between the figures is the overall phase of the system. The 
dynamics themselves, for t long enough, are completely equivalent. This means that our results were not impacted 
by our choice of initial state and should be verifiable regardless of how the system is at t = 0.

So far, we have shown evidence that our system could be in a TC phase, but haven’t yet provided the definite 
proof, through the study of the mathematical criterion for semiclassical TCs proposed in Eq. (6). This will be 
shown in Fig. 6.

We consider the order parameter ρ to be the relative deviation of the BEC density, P(x, t), from the unper-
turbed steady-state density P0 = |ϕ0|2 , ρ(x, t) =

P(x, t)− P0

P0
 . Since P(x, t) is a valid order parameter for BECs, 

ρ(x, t) is also one, given that P0 is a constant value.
It can be seen from Fig. 6 that the polariton BEC in a strip of TMDC, embedded in a microcavity in the pres-

ence of the external periodic potential, in fact, obeys the mathematical condition given by Eq. (6) within the 
mean-field approach, and can be, therefore, characterized as a Time Crystal. A brief comparison between the 
two-point correlator shown in Fig 6 with the time evolution of the polariton condensate shown in Fig. 4 shows 
us that this correlator oscillates in time with the same frequency as the condensate itself oscillates, a result that 
does seem reasonable.

Spatially‑varying loss
So far, all of our results were given directly by the numerical solution of Eq. (11), in which the gain and loss of 
particles, given by κ and γ , are considered to be constant throughout the strip. One might wonder, however, 
whether this is the best approximation for a system that is subject to an external periodic potential. Given that 
the average lifetime of photons in a microcavity is usually usually a decreasing function of their energy, it is only 
reasonable to assume that the loss ratio should be higher, whenever the energy of photons is higher. In this 

Figure 5.   Comparison between the dynamics of the BEC of exciton–polaritons for two different initial 
conditions. On the top, we see the condensate distribution throughout the entire strip at an arbitrary time, long 
after the beginning of the simulation; on the bottom, we see the time evolution for the condensate density at 
x = 125 µ m for a period of 5 ps for the system starting at (a) the steady-state solution for the unperturbed 

condensate, ϕ(x, t = 0) =
√

γeffLy

Ŵ
 ; and (b) the vacuum state, ϕ(x, t = 0) = ǫ , with ǫ infinitesimal.
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section, we study the effects of a spatially varying loss in the time-evolution of the polariton condensate, and of 
the two-point correlator c(t), given by Eq. (6). In the following results, we replace the polariton decay rate, κ by 
κ
(

1+ a′ cos(kx)
)

 , where k = 2π/ap with ap being the same period as that of the external potential Veff (x) , and 
a′ < 1 is a numeric parameter that modulates the intensity of this spatial dependence. This leads to a spatially 
dependent effective gain ratio γeff → γeff (1− a cos(kx)) , in which a = γ

κ + γ
a′ . In Fig. 7, we study how the 

time-evolution of the condensate mean-field density and the two-point correlator c(t) varies with the parameter 
a.

By analyzing Fig. 7, it is evident that the substitution γeff → γeff (1− a cos(kx)) in the GPE of Eq. (11) sig-
nificantly impacts the dynamics. When compared to the constant gain/loss case (when a = 0 ), being subject to 
a spatially dependent gain/loss changes the period of oscillation of the overall condensate. This can be seen by 

Figure 6.   Numerical results for the two-point correlation function c(t) as defined in Eq. (6) for the polariton 
BEC. For this plot, we considered the order parameter ρ to be the relative deviation between the condensate 
density P(x, t) and the unperturbed steady-state density P0 , namely, ρ(x, t) = P(x, t)− P0

P0
 . We took x − x′ to be 

half the length of the strip. The limit |t − t ′| → ∞ was taken by fixing t ′ at t ′ = 100 ps, and assuming t to vary 
between 3000 and 3060 ps. This way |t − t ′| ≫ τC , where τC ≈ 14 ps is the period of the condensate oscillations.

Figure 7.   (a,b) Time evolution of the polariton mean-field condensate density at two arbitrary positions in 
the strip, with a spatially varying effective gain term γeff → γeff (1− a cos(kx)) . The solid green line has a = 0 , 
the dashed red line has a = 0.5 , and the dotted black line has a = 1.0 . (c) Steady-state density of the polariton 
condensate mean-field for the a = 1 case. (d) The two-point correlator given by Eq. (6).
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the comparison of the solid green lines and dotted red lines from the first two panels of Fig. 7. Furthermore, it 
changes the amplitudes of the oscillations and the average value of the condensate density at each given point. 
When the value of a reaches a = 1 , we stop seeing time-oscillations in the condensate density and the system 
reaches a final steady state, which is depicted in Fig. 7c.

Overall, we see that the effect of a spatially dependent loss, in which gain is maximal (minimal) where energy 
of the particles is minimal (maximal), is to diminish the time oscillations in the condensate density that serves as 
evidence of a TC phase. However, a semiclassical TC phase is still observed, given that this spatial dependence 
is somewhat weak. This can be seen on Fig. 7d, where the two-point correlator c(t) from Eq. (6) is depicted. It 
is clear that, in the a = 0.5 case, the overall oscillations of c(t) are still evident, being even more intense than 
those of the a = 0 case. The same cannot be said of the a = 1 case, in which c(t) appears to be almost constant, 
destroying any evidence of time crystallization.

Beyond mean‑field description
We now turn our attention to the BEC dynamics when quantum corrections are taken into consideration. The 
results we show here depict the numerical solution of the time evolution of the polariton BEC density following 
the DSGPE in Eq. (14). In Fig.  8, we see the time evolution of the condensate density in various positions along 
the ribbon, similarly to Fig. 4, for the mean-field approach.

As it can be seen from the panels of Fig. 8, the addition of the noise term in the DSGPE significantly interferes 
with the dynamics. If the noise term is sufficiently small, clear and well defined oscillations can still be seen, as in 
panel (a). As the noise term grows, meaning greater pump and decay rates γ and κ , which were increased while 
maintaining γeff = γ − κ constant at γeff = 0.1 meV. In panel (b), γ and κ are suffiently big to visibly affect the 
otherwise perfect oscillations in the condensate density, but the overall shape is still maintained. In panel (c), 
this shape is further deformed; and, in panel (d), the incoherent pumping and decay rates are big enough as to 
make the oscillations on the condensate density appear to be completely random. In the next plots, depicted in 
Fig. 9, we turn our attention to the effects of the stochastic corrections to the GPE in the two-point correlator 
defined in Eq. (6).

When we analyze the time evolution of the two-point correlator c(t) beyond the mean-field description, we 
reach a similar conclusion as to when we study the time-evolution of the condensate density profile. Provided 
that the decay and pump rates are sufficiently small, we barely notice any deviation from the mean-field case, as 
can be seen in Fig. 9a. However, as κ + γ grows, the otherwise well-defined shape of c(t) starts to deform (panels 
(b), and (c)), until it becomes completely unrecognizable, and, effectively, completely random (panel (d)).

Figure 8.   Polariton BEC density P(x, x) = |ϕ(x, t)|2 at an arbitrary position in a strip 4000 µ m long for 
different values of κ and γ , when quantum uncertainty is taken into consideration. In all the simulations, the 
effective pumping rate γeff = γ − κ was kept constant and considered to be γeff = 0.1 meV. (a) κ + γ = 1 meV; 
(b) κ + γ = 5 meV; (c) κ + γ = 10 meV; and (d) κ + γ = 30 meV.
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In addition, we present the time evolution of the phase of the condensate wave function. It is expected that the 
addition of a noise term should disturb the distribution pattern of the phase throughout the strip. In the plots of 
Fig. 10, we show how the phase profile of the condensate evolves for different values of the quantum noise κ + γ.

As it can be seen from the panels of Fig. 10, provided that the quantum noise is sufficiently small, the phase 
throughout the strip behaves in a similar manner than in the mean-field approximation, as can be seen in panel 

Figure 9.   Two-point correlation function c(t) as defined by Eq. (6) for the exciton-polariton condensate, with 
the addition of quantum noise. Like in Fig. 6, we considered the order parameter ρ to be the relative deviation 
between the condensate density P(x, t) and the unperturbed steady-state density P0 , namely, 
ρ(x, t) = P(x, t)− P0

P0
 . We took x − x′ to be half the length of the strip. The limit |t − t ′| → ∞ was taken by 

fixing t ′ at t ′ = 100 ps, and taking t to vary between 1000 and 1020 ps. This way |t − t ′| ≫ τC , where τC ≈ 14 ps 
is the period of the condensate oscillations. In all the simulations, the effective pumping rate γeff = γ − κ was 
kept constant and considered to be γeff = 0.1 meV. (a) κ + γ = 1 meV; (b) κ + γ = 5 meV; (c) κ + γ = 10 
meV; and (d) κ + γ = 30 meV.

Figure 10.   Phase of the condensate wavefunction throughout the strip at an arbitrary long time t ≫ τC , where 
τC ≈ 14 ps is the period of oscillations of the BEC. (a) Solid blue line corresponds to the mean-field dynamics, 
dashed yellow line corresponds to κ + γ = 0.5 meV, the dot-dashed green line corresponds to κ + γ = 1 meV, 
and the dotted red line corresponds to κ + γ = 1.5 meV. (b) the solid blue line corresponds to the mean-field 
dynamics, the solid blue line corresponds to the mean-field dynamics, the dashed yellow line corresponds to 
κ + γ = 2 meV, and the dot-dashed green line corresponds to κ + γ = 5 meV.
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(a). The actual value of the phase does show some random variance from the mean-field phase. The variance is 
more intense the bigger the noise is, however, the overall shape is maintained with local maxima and minima 
of the phase occuring in the same places. If the noise increases, however, the overall phase of the wave-function 
will, eventually, become a seemingly random function of the position, as can be seen in panel (b). It is interesting 
to note, however, that this seemingly random phase occurs even when the two-point correlator c(t) still shows 
a moderately well-defined shape.

Excitonic BEC on a twisted TMDC bilayer
We will now present our results for the mean-field dynamics of the bare exciton BEC in a strip of twisted TMDC 
bilayer. In order to avoid seemingly repetitive plots and discussions, we will compile all results for this condensate 
in two figures. In Fig. 11, we combine all the results for the mean-field dynamics of the condensate. In Fig. 12, we 
present our results for the dynamics of the condensate when quantum uncertainty is taken into consideration.

We considered the same system as in Ref.40, namely a WSe2/MoSe2 bilayer heterostructure twisted by 1 ◦ , 
we will have Mex ≈ 0.84 m0 , aM ≈ 19 nm and V0 ≈ 18 meV. We considered our strip to be 8 µ m long and to 
have a width of 10.4 nm, which obeys the criterion for the effective potential to be given by Eq. (4). As with the 
polaritonic system, we considered γeff = 0.1 meV, and Ŵ ≈ 0.3 Ueff

49. The resulting dynamics of the excitonic 
condensate and two-point correlator can all be seen in Fig. 11.

Each of the panels in Fig. 11 shows results for the mean-field evolution of the excitonic BEC in a twisted 
TMDC bilayer that are similar to one of the figures in the mean-field analysis of the polariton BEC. Figure 11a 
shows the BEC mean-field density throughout the entire strip, just like Fig. 3 did for the polaritons. The similari-
ties are evident, the overall shape of the BEC is completely equivalent, the only difference being the scale. This 
comes from the fact that the bare exciton mass is about six orders of magnitude larger than the effective mass of 
the polaritons, which leads to the bare exciton BEC length scales to be about three orders of magnitude smaller 
than those of the polariton BEC. Figure 11b shows the time evolution of the condensate mean-field density in 
an arbitrary position as a function of time, just like what we saw in the panels of Fig. 4 for the polariton BEC. 
Those results are completely equivalent, just with a different period of oscillation, which is about one order 
of magnitude smaller. Lastly, in Fig. 11c, we show the two-point correlator from Eq. (6). It is evident that this 
correlator also obeys the semiclassical TC criterion, given in Eq. (6), and the exciton BEC in a twisted TMDC 
bilayer is, therefore, a TC.

In Fig. 12, we see numerical results for the time-evolution of the condensate density in an arbitrary position 
(panel (a)); and the two-point correlator defined in Eq. (6) (panel (b)). Just like in the polaritonic condensate 
beyond the mean-field description, we lose the perfect definition of the oscillations when quantum uncertainty 
is taken into consideration. The actual height of each peak and valley in Fig. 12a is slightly different from one 
another. This, however, is not nearly enough to erase the overall shape seen by the mean-field dynamics in 
Fig. 11b. The comparison between the two-point correlator beyond mean-field shown in Fig. 12b with its mean-
field counterpart, shown in Fig. 11c is also very similar to the polaritonic condensate case. The overall shape of 
this correlator does change visibly, but its shape still shows clear signs of oscillations in time. The intensity of 
the peaks was greatly enhanced in the non-deterministic beyond mean-field approach, when compared to the 
deterministic mean-field approach and, like in the polaritonic BEC, we now see negative values for the correlator 
that were not observed in the mean-field approach. However, the criterion proposed in Eq. (6) is still obeyed and 
the system is, therefore, still in a TC phase. As we can see from the panels of Fig. 12, the results obtained for the 
mean-field dynamics of the excitonic BEC still hold even when quantum uncertainty is taken into consideration, 
just like for the polaritonic BEC.

Concluding remarks
Throughout this paper we have studied two distinct BEC systems, namely, excitons in a twisted TMDC bilayer 
and exciton–polaritons in a strip of MoSe2 embedded in a microcavity with a spatial curvature, causing the 
effective periodic potential. Our results show that both systems are good candidates for time crystallization. We 
have shown that the mean-field density profiles of both systems are periodic functions of time, and that both 
systems satisfy the semiclassical TC criterion, by exhibiting long-range non-trivial time-dependent correlations 
of the order parameter. Our results were robust enough to survive, even when quantum corrections were added 
to the mean-field description provided that the polaritonic or excitonic gain and loss ratios are sufficiently small. 
We have shown, however, that a spatially varying loss relation with the same period as the external potential 
diminishes the density oscillations and can even completely destroy them, provided that this spatial dependence 
is strong enough.

It is our opinion that both of our considered systems are good candidates for future experimental verification. 
Since recently a BEC of exciton-polaritons has been verified in room-temperature settings in halide perovskite28, 
it is reasonable to assume the same might be possible for TMDCs. If that is the case, our results lead to the pos-
sibility of having a room-temperature TC, which would depend only on the manufacturing of our proposed 
spatially curved microcavity. Our second system, namely bare-excitons on a twisted TMDC bilayer, on the other 
hand, has been seen to form condensates at temperatures around 190 K23, way above the ultra-cold regime in 
which atoms form condensates and reachable in most research settings. Such a system has the advantage that 
the external potential arises naturally from the twisting of the TMDC layers, forming the bilayer40, making the 
manufacture process much simpler.
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