
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18921  | https://doi.org/10.1038/s41598-023-46086-z

www.nature.com/scientificreports

The impact of the number of high 
temporal resolution water meters 
on the determinism of water 
consumption in a district metered 
area
Justyna Stańczyk  1*, Krzysztof Pałczyński  2, Paulina Dzimińska  3, Damian Ledziński  2, 
Tomasz Andrysiak  2 & Paweł Licznar  4

Developments in data mining techniques have significantly influenced the progress of Intelligent 
Water Systems (IWSs). Learning about the hydraulic conditions enables the development of 
increasingly reliable predictive models of water consumption. The non-stationary, non-linear, and 
inherent stochasticity of water consumption data at the level of a single water meter means that 
the characteristics of its determinism remain impossible to observe and their burden of randomness 
creates interpretive difficulties. A deterministic model of water consumption was developed based on 
data from high temporal resolution water meters. Seven machine learning algorithms were used and 
compared to build predictive models. In addition, an attempt was made to estimate how many water 
meters data are needed for the model to bear the hallmarks of determinism. The most accurate model 
was obtained using Support Vector Regression (8.9%) and the determinism of the model was achieved 
using time series from eleven water meters of multi-family buildings.

Intelligent Water Systems (IWSs) are one of the components of smart cities, an idea that is constantly being 
implemented and refined as part of the vision of the city of the future. The intelligence of the water sector, accord-
ing to the Water Environment Federation, is evidenced by the use of advanced technologies in decision-making 
and management1. In practice, this means, among other things, the need to reduce operational costs, manage 
and mitigate risks, which should be facilitated by risk assessment solutions, failure prediction, performance 
prediction and decision support systems2,3. In the context of water supply networks, intelligence is sought in 
Automatic Meter Reading (AMR) and machine learning methods for analyzing and interpreting recorded time 
series, preferably in real time4.

Water Distribution Network (WDN) operation and optimization are based on the division of the water sup-
ply network into District Metered Areas (DMAs). With the help of control and measuring devices, isolating and 
cutting-off valves and Pressure Reducing Valves (PRVs), water supply network operators are able to balance 
the volume of water pumped into a specific zone, manage pressure and reduce water losses due to leaks5. The 
optimal number of nodes forming a water supply zone should be in the range of 500 to 5,0006, as overextended 
zones will cause the amount of non-revenue water to increase. On the contrary, if the number of nodes is too 
small, implementing monitoring of the water supply network can be costly. Therefore, network managers face 
the problem of selecting the optimal number of measuring devices so as to acquire as much diagnostically useful 
information as possible with the least number of them. Smart metering sensors installed in DMAs contribute 
to water, energy and economic savings, which, according to Spedaletti et al.7, translates into financial savings, 
gained from locating and fixing uncontrolled leaks, of €1,857 over 3 months for the city of Osimo (Italy), with 
a population of more than 33,000. From the level of the water utility user, installing smart meters and allowing 
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consumers to view their current water consumption additionally allows water savings in the range of 15–26%8, 
which significantly supports the push for sustainable cities.

Determining the boundaries of DMA zones, selecting the optimal number of nodes or locating the instal-
lation of PRVs are the scope of research using graph theory, clustering analysis, multi-objective optimization 
and multi-criteria analysis9,10. The basis for clustering includes such data as the amount of water demand, the 
topography of the area, and the coordinates of the line axes at contractual nodal points. Apart from the issues 
concerning the delineation of DMA boundaries, it is also important to try to answer questions about how to 
deploy measuring devices and their number so that monitoring data can be used effectively by decision mak-
ers. On the one hand, a large amount of measuring devices makes it possible to visualize detailed conditions of 
the hydraulic flow of water in pipes, but on the other hand, it can create streams of data that are impossible to 
process in the context of network operating condition detection11. In addition, each measuring device generates 
a certain cost of its purchase and subsequent operation, so measuring points should bring maximum benefit in 
the form of information useful to network operators. Brentan et al.12 proposed modifying the k-means algorithm 
for partitioning and using a multi-objective Particle Swarm Optimization (PSO) to suitably place partitioning 
devices. The results showed that this approach contributed to pressure control, reduced and faster leak detection, 
lowered the energy intensity of the system and increased its reliability.

The random nature of water consumption by users of water supply networks, hourly, daily and seasonal 
variability (as noted by Luna and Ballini13), cause the recorded time series of hydraulic water flow to be treated 
as a stochastic process. The non-stationary, non-linear, and inherent stochasticity of water consumption data at 
the level of a single water meter means that the characteristics of its determinism remain virtually impossible to 
observe14. Additionally, overly rigorous data pre-processing can lead to the omission of dynamic behaviour in 
water consumption15. Rahim et al.16, showed that 15-min profiling is the most appropriate interval for clustering 
based on consumer behaviour similarity. Learning about water consumers’ habits, certain routines and customs 
is an important issue in creating water demand strategies17. As Rahim et al.18 noted in their study, sociodemo-
graphic data are crucial, but certain water consumption habits can only be learned when analyzing data at the 
water meter level. Even within the data recorded separately for each floor of a multi-family building, it was 
observed that water consumption reading was fluctuating, which is somewhat of an analytical barrier14. A study 
by Ramulongo et al.19 found that residents use the most water for cooking and bathing, although this is further 
influenced by factors such as the age of the residents, their education level, income level, the equipment of the 
apartments with water-consuming devices, the size of the building and its age20,21. Thus, water consumption by 
network customers shows quantitative changes over time, but also in the space operated by a given water supply 
system22. Predictive models using methods such as Random Forest (RF), Artificial Neural Networks (ANNs) 
or Support Vector Machines (SVR)23–25 attempt to forecast water consumption, an aspect already sufficiently 
explored by the scientific community.

This article hypothesizes that the exploration of measurement data from water meters should provide insight 
into the limit of the visibility of determinism in the time series of water consumption within DMAs zones. 
Improper location of metering devices results in financial as well as time losses, and the data will not be effec-
tively used in the context of assessing the operational status of the water supply network. The location of master 
devices—zonal flow meters, among others – which are later used to balance water in relation to data recorded by 
water meters, should allow for increasing the efficiency of water distribution systems10. While metering devices 
installed within DMAs enable data recording with a small time interval, as noted by Hu et al.17 there is still the 
problem of lack of high resolution data for water meter data. In addition, water consumption information is often 
collected from periodical readings in a non-simultaneous, cumulative form, which results in the accumulation 
of daily water consumption values26, making it difficult to predict water consumption at the consumer level. A 
significant number of water utilities use radio reading of water consumption data, which prevents ongoing water 
balancing based on zonal devices providing information with an interval of typically 10–15 min. The problem of 
not having smart metering with high resolution water consumption and not considering consumption data is a 
barrier to creating reliable forecasting models and water demand patterns that can later feed hydraulic models 
of water supply networks7,18.

In light of the existing limitations of water consumption analysis at the level of water meters with high 
temporal resolution and the lack of synchronized water meter data with high resolution with respect to DMA, 
an attempt was made to explore the data in the context of the possibility of determining the threshold beyond 
which water consumption bears the hallmarks of a deterministic model. The goal is to estimate from how many 
facilities of the type of multi-family building should water meter data be provided, so that during the short-term 
prediction of water demand one can talk about the determinism of the data and at the same time obtain a reli-
able prediction. The realization of the research assumptions was made using machine learning algorithms. The 
obtained research results can contribute to the optimization of the number and location of master measuring 
devices over water meters. The methodology for processing water meter data, developed and demonstrated in 
the article can support the process of calibrating hydraulic models by creating water demand patterns for sev-
eral buildings or neighbourhoods simultaneously, especially in the absence of current water consumption data 
with high resolution at the level of water meters of individual facilities. The research also casts new light on the 
procedure for creating further sub-zones within a single DMA, for which reason it can be used as part of water 
demand management strategies created by decision makers.

Materials and methods
Forecasting process steps
The time series of consumer water consumption is a stochastic process exhibiting a deterministic and a random 
component. In the case of the deterministic component, it is possible to forecast its value using harmonic analysis, 
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models of the Autoregressive Integrated Moving Average (ARIMA) or ANNs class. The value of the random 
component is probabilistic and can be determined by analyzing the results with an assumed probability of occur-
rence. Time series of water consumption represent discrete data that are subject to errors due to imperfections 
in the methods of measurement used, conversion of analogy data into digital data, transmission and archiving. 
These errors are called measurement noise. The mathematical notation of the stochastic water consumption 
process can be represented by Eq. (1) 27:

where: Xt− recorded values of the time series, Zt− deterministic component, the fundamental movement of the 
series, St− seasonality (periodic phenomenon), εt− error or residual component, random part of the time series.

The research methodology was divided into different stages, shown in the methodology flowchart (Fig. 1). 
In the first step, water consumption data was collected from individual water meters installed in buildings with 
diverse purposes. In subsequent steps, data pre-processing was carried out, which involved aggregating the data 
to hourly water consumption and synchronizing them. Next, water consumption prediction was made and the 
accuracy of the predictions was evaluated. The final step involved analysis of variance of prediction errors via 
analysis of variance (ANOVA), which was used to determine the minimum number of water meters for which the 
distribution of prediction error is no longer distinguishable from the variant of water consumption forecasting 
based on the maximum number of water meters.

(1)Xt = Zt + St + εt

Figure 1.   The methodology flowchart.
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Datasets preparation
The study used water consumption recorded with high resolution by water meters of buildings, in the area of the 
DMA zone, constituting the case study The water meter derived raw data was encoded as a series of time elapsed 
between flows of one liter of water. Crude water meter files were transformed by hourly grouping and summation. 
Finally, the time series of aggregated hourly water consumption was used for analysis.

Water consumption was projected over an hourly time horizon separately for a single residential block and a 
suitably sized group of blocks, starting from a pair of blocks up to nineteen blocks at a time. Each measurement 
week was assigned a corresponding index number and 50% of them constituted a learning set, 25% a validation 
set and 25% a test set. The algorithm used in the study randomly shuffled each week and building group and 
divided the data into individual sets, repeating the experiment thirty times.

Machine learning methods
Prediction of hourly water consumption was made using Random Forest (RF), Fully-Connected Neural Networks 
(FCNN), Recurrent Neural Networks (RNN), XGBoost, Decision Tree, K-Nearest Neighbours (KNN) and Sup-
port Vector Regression (SVR) machine learning algorithms. Although various types of the above-mentioned 
algorithms and their hybrids are used in the scientific literature in water consumption prediction studies, each of 
them has its specific advantages, disadvantages and scope of application. In general, all of the above algorithms 
are used due to their inclusion of all major methods for extracting patterns from data. Neural Networks and 
Support Vector Regressors transform the input data to create a continuous function that returns a predicted 
value. The K-Nearest Neighbours algorithm clusters the search space to perform proximity-based regression. 
Decision Trees partitions the solution space into semi-clustered subplanes based on the purity of the partition. 
Random Forest and XGBoost, on the other hand, are ensemble-class meta-algorithms that combine Random 
Forest classifiers to create a more robust predictive model. All the necessary code for the described numerical 
experiments was developed in Phytone using dedicated libraries such as sklearn, pytorch, xgboost and Numpy.

Evaluating forecast accuracy
The evaluation of the accuracy of the prediction of water distribution one hour ahead was based on Mean Abso-
lute Error (MAE) and Mean Absolute Percentage Error (MAPE), along with their modifications to maximum and 
over mean values. A rather important issue from a methodological point of view is the impossibility of explicitly 
comparing the results obtained with other studies conducted in this area. The most commonly used measure for 
evaluating forecast accuracy is the MAPE error 28–30 or directly the RMSE 24. By default, MAE and MAPE error 
are determined via Eqs. (2) below (3):

where: n− number of observations, ŷt− the value predicted by the model for time point t  , yt− the value observed 
at time point t .

The authors of the research did not decide to use other metrics, e.g. Root Mean Squared Error (RMSE) due to 
the specificity of the studied phenomenon and its high dynamics which can be observed in water consumption 
time series. Therefore, a metrics was sought that would not be highly sensitive to outliers and the scale of the 
dependent variable, which are necessary in order to match the nature of the studied phenomenon and implement 
machine learning. As a more reliable metric for evaluating predictive models relative to classic MAE and MAPE 
errors, according to the authors, the MAE over mean was used ( MAEoM ) error described by Eq. (4):

The reason for this function application for metrics evaluation lies in the numerical properties of the examined 
signals. The MAPE error is not applicable due to the presence of zero-valued samples in the observed signal. 
Because lim

y→0+
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y = |x| lim

y→0+

1
y = ∞ for every finite, non-zero x , the MAPE error for the signal with at least 
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= ∞ . The MAPE error is not applicable due to its divergence to infinity under the condi-

tion of just one sample being zero-valued. At the same time, it is important to note that although it is most often 
used to evaluate the accuracy of predictive models 29, 31, REF _Ref119320558 \r \h 32 as a kind of error which 
appears to be scale-independent and it is especially recommended for use in the predictive model evaluation, it 
actually favors data with low dynamics. Some studies use the maximum value of MAPE as a model evaluation 
metric (Candelieri et al. 31, among others). In order to preserve the possibility of comparing the obtained research 
results, given the disadvantages of using the MAPE error, the authors in the following section used the MAPEmax 
error given by Eq. (5):
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This modification ensures that the maximal value from a pair of observed and predicted values will be used 
as a denominator. Usually, this modification prevents the metric from diverging into infinity. However, this 
modification is based on the assumption that imperfectness of the predicting algorithm provided a forecast error 
making at least one value from a pair of observed and predicted samples as non-zero one. If model returns 
prediction equal to the zero-valued observation then the indeterminate form appears in the computation render-
ing the metric useless lim

x→0+
lim

y→0+

x
y = 0

0
 . Such an occurrence is possible for algorithms depending on the divisions 

of solution space into subspaces instead of performing linear transformations of the input data, like Decision 
Tree or K-Nearest Neighbors used as a regressor. Such algorithms may respond with the forecast being equal to 
zero under the specified input.

Due to the rationale described above, the authors recommend the use of MAEOM error metrics. This metric 
provides information on the relative value of error in regards to the mean of the signal. It is both straightforward 
interpretable like MAE error and ensures independence of the magnitude of water consumption signal from flow 
volumes. During the numerical experiment water consumption series from different buildings are summed up in 
order to obtain aggregated signal time series, which in turn increase the signal magnitude with each additional 
building rendering MAE error incomparable between different cardinalities of data sets aggregated into one time 
series. Despite that, MAEoM metric remains resistant on the increasing magnitude of water consumption series 
and allows for comparison of following cardinalities of data sets.

Analysis of variance
The analysis of variance is used in order to establish the minimal amount of water meters, for which predictive 
error distribution is no longer distinguishable from maximal available amount of data. If predictive error distri-
butions of aggregation of n-water meters and maximum number of water meters are not distinguishable, then 
no significant amount of information is introduced to the system that could help in water consumption forecast, 
so the aggregation of more water meters does not serve the purpose of making the system more deterministic. 
The analysis of variance is performed along the Tuckey’s tests in order to establish whether difference in error 
distributions is significant.

Case study
The study used measurement material collected during a measurement campaign carried out on the water dis-
tribution network in Bydgoszcz (Poland), which is under the management of the Miejskie Wodociagi i Kanali-
zacja (Municipal Water Supply and Sewage Company, MWiK). The measurement material consisted mostly of 
registrations of water consumption by end users located in one of the DMA zones This zone arose from the need 
to ensure water supply at the appropriate pressure to multi-family buildings, characterized by high buildings in 
relation to the other facilities in this area of the city. Water is pumped to the analyzed DMA zone by means of 
a local pump station, which supplies water to a total of twenty-two end users. A diagram of the analyzed DMA 
zone is presented in Fig. 2.

Sixteen large block-type multi-family buildings, one smaller building that housed a community centre, one 
single-family house, two commercial-service pavilions and a school are located in the analyzed DMA zone. One 
of the commercial-service pavilions was permanently closed at the time of the measurements and did not collect 
water, so it was excluded from further analysis. It should also be noted that out of the surveyed facilities, three 
multi-family buildings are supplied by two separate connections, making them equipped with two separate water 
meters. The school consists of two buildings supplied with individual connections, one of which is equipped with 
an indoor swimming pool and is fed from the DMA zone in question.

The metering campaign additionally covered two facilities, i.e. the second of the school buildings and one 
multi-family building with two connections, located near the DMA zone under consideration, but already sup-
plied from a different pumping station.

All connections in the facilities covered by the metering campaign are equipped with single jet turbine type 
water meters with different diameters and measurement resolutions. For water meters with diameters of DN15-
20, the resolution is 1 pulse per 1 dm3, while for diameters from DN32 and above, the resolution of water meters 
is 1 pulse per 10 dm3.

Results and discussion
DMA zone parameters
A diagram of the water consumption in the selected DMA zone is shown in Fig. 3a. Since the selected DMA zone 
is mainly dominated by multi-family housing, more than 85% of the injected water is taken for the domestic 
purposes of its residents. About 9% of the water is supplied to a school that has a swimming pool and 2% to a 
commercial building. Consumption of less than 1% for the entire zone is observed in a single-family building, 
a school and a cultural center. Since the study was conducted during the COVID-19 pandemic, the restrictions 
imposed caused changes in the hourly distribution of water consumption per day in the facilities analyzed. This 
issue in the case of multi-family housing facilities was the subject of detailed studies33. In general, within the 
DMA zones and the facilities located in them, it is necessary to reckon with the phenomenon not only of temporal 
variability in water consumption, recognized in the cited work by Dziminska et al.33, but also with the aspect of 
spatial variability34,35. As the cited studies showed, spatial variability in water consumption depended mainly on 
the share of residential, commercial or industrial area in a particular DMA zone. Returning to the analyzed DMA 
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1

n
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∣∣

max(ŷt , yt)
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zone in Bydgoszcz, the volume of water consumption within multi-family buildings shows similarity and, on the 
scale of the entire DMA zone, usually accounts for about 4–5%, although there are buildings with a consumption 
of only 2% of the injected water. This is influenced by obvious factors such as the size of the building, the number 
of residents, the standard of apartment furnishings and other sociodemographic factors16,36.

A bar graph of average hourly water consumption during the period analyzed is shown in Fig. 3b. The average 
hourly water consumption for domestic purposes of residents of multi-family buildings in the analyzed DMA 
zone is 371.2 dm3. The customer to whom the largest volume of water is supplied is a school with a swimming 

Figure 2.   Water supply network diagram showing the researched zoneFor the measurement campaign, 
telemetry modules were installed on all water meters, which allowed for high-frequency readings. These 
modules recorded individual pulses from the water meter over time and sent the information via GSM modems 
to an aggregate database. A dedicated acquisition system automatically recalculated the readings from the water 
meters and visualized them in the form of time series of temporary flows. These values were then aggregated 
into 15-min and 1-h series stored in the pooled database. Measurements of water consumption by end users 
lasted from January 1, 2021 to June 30, 2021. Verified and stored in the database, the six-month time series of 
hourly water consumption by individual end users provided input for further numerical analyses.

Figure 3.   Diagram of water consumption in the selected DMA zone (a) and average hourly water consumption 
in individual buildings (b).



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:18921  | https://doi.org/10.1038/s41598-023-46086-z

www.nature.com/scientificreports/

pool, with an hourly average of almost 720.0 dm3. The cultural center consumed the least amount of water, which 
was due to the closure of these facilities as a result of restrictions during the COVID-19 pandemic. The same 
applies to the school, which at the time implemented a distant learning mode.

Forecasting water consumption for individual buildings
The first stage of the analyses was to forecast water consumption individually for each of the building types in the 
DMA zone, which is the study area. The goal was to see how large the differences in the obtained prediction errors 
would be between different building types, where water consumption shows different temporal variability. Pre-
dictions of water consumption for individual buildings were made using the Random Forest algorithm, since at 
this stage (as in the work of Smolak et al.25) the smallest considered errors MAEoM and MAPEmax were obtained.

MAEoM error clearly indicates (Fig. 4) that water consumption forecasting shows the lowest accuracy for 
facilities such as school, school with swimming pool, commercial building, cultural center and single-family 
building, where MAEoM is in the range of 0.57–0.96. Facilities of this type are characterized by the highest ran-
domness of water use due to the fact that they have relatively fewer users compared to multi-family buildings. 
Thus, it becomes more difficult to know certain behavioral behaviors in water use37. With regard to schools with 
swimming pools, it should be noted that pool filling periods are also irregular and depend only on the need to 
replace the water after it loses its quality standards. In addition, in this type of facility, the six-month observation 
period conducted at the peak of the COVID-19 pandemic proves insufficient for recognizing the determinism 
of water consumption, so that prediction errors remain high. The ever-changing restrictions associated with the 
COVID-19 pandemic resulted in the fact that in buildings of a recreational, cultural, educational, service nature, 
the period of research conducted was not pertinent to the possibility of obtaining representative patterns of water 
consumption. Moreover, as shown in the research by Benítez et al.38, when comparing single-family forecasts 
to multi-family forecasts, water consumption in single-family housing by each user has an important weight in 
the signal and thus in the variance, causing a rather irregular time series in which the lack of regular patterns 
could be observed. This situation was further exacerbated by the COVID-19 pandemic, as shown in the research 
conducted for the same zone by Dzimińska et al.33.

The situation is different for multi-family buildings. The average error of the water consumption forecast, 
expressed in units of water volume, oscillates between 37 and 110 dm 3, which corresponds to error MAEoM at 
the level of 0.17–0.34.

According to the methodology chosen, where the model accuracy was also evaluated using error MAPEmax , 
Fig. 5 shows the achieved values of this parameter for forecasting water consumption for individual buildings. 
The results show that for buildings other than multi-family MAPEmax exceeds 50%, while for multi-family hous-
ing it ranges from 17 to 47%. For comparison, the problem of water consumption forecasts for water meter data 
from individual buildings was addressed by Candelieri et al.31. As in the present study, the authors projected 
water consumption based on AMR data, obtaining a MAPE error from half of the water meters of less than 30%, 
while there were also predictions with an error close to as much as 100%. With regard to the present study, a 
threshold of less than 30% was achieved for 16 of the 19 facilities analyzed. Compared to forecasts created for 
entire DMA zones, where errors of around 10% can be obtained25, the results of the study show the difficulty of 
predicting water consumption for a single building as a result of less determinism in the data. Velasco et al.30 
and Benítez et al.38 predicted water consumption with respect to domestic and industrial area, obtaining clearly 
better results in the prediction of water consumption for domestic residents than other non-domestic, which is 
also confirmed by studies conducted in Bydgoszcz.
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The impossibility of calculating the metric for facilities such as a cultural center and a multi-family build-
ing, among others, is due to the fact that MAPEmax metric that possesses the mathematical flaw explained in 
the section describing this metric. These buildings contain periods of lack of water consumption described as 
a series of zeros. Correct prediction of a series of zeros is another series of zeros, thus the computation of error 
can be described as 0

max(0,0) =
0
0
 giving in result indeterminate form. Such problems are not present during the 

computations of the MAEoM metric (Fig. 4). The Numpy computational library does not have an expression for 
indeterminate form, so it returns the infinity. For this reason, the minimum MAPEmax , e.g. for building no. 6 and 
schools, achieve such values. The error may appear in certain experiments while not occurring in other ones due 
to randomized division of the dataset into train set, validation set and test set. Each building had 30 experiments 
conducted, so some buildings could have correct measurements computed despite having a zero values at some 
points of water consumption series, due to this lack not being present in the test set via random selection. The 
authors decided to keep both empty results and results with only minimal  MAPEmax in order to emphasize the 
problem with the metric and give an estimate for multi-family building no.6 and school what kind of prediction 
accuracy can be expected from these buildings.

A correlation analysis was carried out to see if the accuracy of the prediction and thus the model’s ability 
to achieve the deterministic mark is affected by the number of residents and the number of apartments in the 
building. Spearman’s rank correlation coefficient was used. The multi-family buildings under consideration 
have between 40 and 84 apartments, occupied by between 69 and 168 residents. Significance of correlation 
coefficients with p < 0.05 was obtained only between the forecast error and the number of apartments. For the 
number of residents, the correlation coefficient with the forecast error was low, i.e. 0.58, and did not show statis-
tical significance, while for the examined relationship the forecast error—number of apartments was 0.73. The 
lack of an apparent relationship between the number of residents and the forecast error is probably due to the 
varying model and the number of family members living in each apartment. Thus, an open question remains as 
to from how many water meters the measurements will be subject to less randomness and the determinism of 
water consumption will contribute to the possibility of creating reliable water demand patterns, usable not only 
in hydraulic modeling, but also burst detection39.

Forecasting water consumption for groups of multifamily buildings
Every machine learning algorithm was evaluated on following increasing sets of water meters 30 times. With 
each iteration of the experiment the new joined set of data from water meters was randomly created from the 
original set of water consumption measurements acquired during DMA monitoring campaign. The time series 
representing each water meters were aggregated and then randomly divided into three subsets: train, validation 
and set. Table 1 presents the results of each model test evaluation on the set containing maximal number of 
aggreged water meters data (in total originating from 19 objects). Table 1 presents both average, minimum and 
maximum value of MAEoM oraz MAPEmax obtained from 30 iterations.

According to the results presented in Table 2 the SVR model obtained on average the best results while being 
trained on joined dataset from all 19 objects. MAEoM min was 7.3%, while its counterpart for error MAPEmax 
was 8.6%. The worst accuracy of predictions was obtained using Decision Tree, for which errors MAPEmax and 
MAEoM in the worst variant were 13.0%, and 12.5%, respectively. With regard to what was mentioned in the 
previous section, the forecast error at the level of the final water consumer, i.e. for the terminal water meter due 
to the burden of high randomness on the data rarely reaches values below 30%. Such a low error value for the 
SVR algorithm (i.e., 7.3–7.9%) indicates that not only is it possible to develop a reliable model for water con-
sumption forecasts at the level of a single building rather than the entire DMA zone, but, last but not least, an 
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Figure 5.   MAPEmax bar diagram for individual types of buildings.
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algorithm characterized by an uncomplicated design, fast computation time and simplicity of implementation 
can be used for this purpose.

The performance of SVR algorithm, based on MAEoM and MAPEmax on subsequent number of water meters 
of multi-family buildings from 2 to 19 was presented in Fig. 6 and 7 (for recommended MAEoM ). The error 
decreases as the number of water meters time series aggregation increases, which is visible for both MAEoM 
and MAPEmax . This means that as the error decreases, the system becomes more deterministic. The average 
value of MAPEmax reaches a value of less than 10.0% only at 15 water meters, while for the average value of the 
MAEoM this is already achieved when analyzing 9 measuring devices. The present results indicate the possibil-
ity of building reliable models, with a prediction error of less than 10.0%, based on time series determinism for 
water consumption using 9 water meters simultaneously for a given zone or sub-zone of DMA. However, for 
this statement to be fully conclusive, it is necessary to apply analysis of variance in the next stage of research.

Table 1.   Acquired prediction errors MAEoM and MAPEmax (%) using different types of algorithms. Significant 
are in value [bold].

Algorithm MAEoM max MAEoM min MAEoM avg MAPEmax max MAPEmax min MAPEmax avg

SVR 7.9 7.3 7.6 9.6 8.6 9.0

RNN 8.7 7.3 8.0 9.8 8.4 9.0

FC2 9.3 8.2 8.7 11.4 9.5 10.4

Random forest 9.2 8.6 8.9 10.0 9.3 9.6

XGBoost 9.4 8.5 8.9 10.0 9.3 9.6

KNN 11.5 10.8 11.1 11.6 11.0 11.2

Decision tree 12.5 11.0 11.8 13.0 11.2 12.3

Table 2.   Analysis of variance results. Significant are in value [bold].

Algorithm Number of water meters MAEoM avg (%) MAEoM avg with max. number of water meters (%)

Decision tree 13 12.9 11.8

FCNN 14 9.4 8.7

KNN 10 12.1 11.2

Random forest 12 9.7 8.9

RNN 13 8.7 8.1

SVR 11 8.9 7.6

XGBoost 11 10.1 8.9
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Figure 6.   MAPEmax curve for SVR algorithm.



10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:18921  | https://doi.org/10.1038/s41598-023-46086-z

www.nature.com/scientificreports/

Analysis of variance
The determinism of the system rises as the amount of aggregated buildings increases. However, the important 
question is which number of water meters is indispensable to already deterministic enough system. In order to 
answer this question the Analysis of Variance (ANOVA) and Tuckey’s tests were conducted. These tests were 
aimed on finding for each algorithm the smallest number of buildings, which distribution of errors sampled from 
30 experiments has been deemed indifferentiable from error distribution for each model obtained on maximum 
number of buildings. The results are presented in Table 2.

The results depicted in Table 2 suggest that the number of water meters facilitating the deterministic system 
ranges between 10 and 14. The SVR model, that turned out to be the most accurate in forecasting the water con-
sumption, achieved deterministic saturation on time series created from the aggregation of 11 buildings. Analysis 
of variance showed that of all the implemented algorithms, the smallest error average MAEoM was obtained 
using SVR. For data including 11 buildings at 8.9% and for data of all buildings at 7.6%. The result obtained is 
encouraging, bearing in mind that SVR algorithm is one of the least computationally expensive machine learning 
algorithms. Its inference boils down to perform the inner product of the input vector with its internal weights. 
It can be said unequivocally that having a model built based on metered data from 11 multi-family residential 
buildings, the determinism of water consumption becomes apparent and the area in which they are located 
may constitute a smaller DMA sub-zone for which it becomes cost-effective to install a metered master device.

The very aspect of forecast implementation based on high-frequency water meter data has many advantages. 
Consumer-level water consumption forecasts, apart from the benefits for water supply companies, such as more 
effective and efficient water distribution, bring also other benefits for the consumers. They support pro-ecological 
approach towards water saving by raising consumers’ awareness of water consumption. As shown in the research, 
such solutions support the idea of Sustainable Cities. Data recording, its visualisation, forecasts along with best 
practices, water consumption culture and ongoing maintenance can contribute to annual saving of USD 10 633 
for a single building 8. Moreover, the water consumption forecasts result in faster failure diagnosis, because each 
increase in forecast error may imply an anomaly24.

Conclusions
The field of data sciences, which is also developing rapidly in terms of the use of analytical tools in utility con-
sumption inference processes, makes it possible to improve forecasts of both the volume of water consumption 
and the appearance of anomalies in the water distribution system. On the one hand, access to reliable real-time 
data provides a diagnostic source for water network operators, on the other hand, there are very few literature 
and implementation reports on the application of high temporal resolution water meters, in relation to individual 
residential buildings, within which the resulting information and data in excess may constitute streams of data, 
impossible to interpret in the short term.

The research presented in this article helped to fill the gap and the lack of a clear answer to the question of how 
many facilities at one time the water meter data can form the basis for building a reliable deterministic model of 
water consumption. Tests conducted using data from high temporal resolution water meters of a selected DMA 
zone in Bydgoszcz, where 85% of the water injected into the system is consumed for domestic purposes by resi-
dents of multi-family buildings, showed that the most reliable predictions for individual buildings were obtained 
for multi-family housing ( MAEoM at the level of 0.17 – 0.33). While the number of residents alone showed no 
correlation with the achieved prediction errors, tests of significance of the Spearman correlation coefficient 
unequivocally showed the existence of a statistically significant relationship between the number of dwellings 
and the accuracy of the prediction. For service buildings, a school or a community center, the predictions were at 
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Figure 7.   MAEoM curve for SVR algorithm.
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a much worse level, but what is worth remembering is that the prediction of water consumption burdened with 
high randomness in buildings of this type and industrial plants should be carried out on the basis of individual, 
dedicated models.

The results show that it is possible to build reliable water consumption models with a prediction error of 
less than 10.0% for water meters of multi-family buildings. ANOVA analysis showed that with respect to the 
results obtained for the prediction of water consumption in a set of multi-family buildings using SVR (as the 
best-accuracy model, with MAEoMavg  amounting to 8.9%), water consumption determinism was achieved 
when using data from at least 11 buildings. The study showed that the SVR algorithm, simple in design, easy to 
implement and capable of performing calculations in a short period of time, allows for smaller prediction errors 
than advanced methods such as XGBoost or RNN.

The study authors recommend using the MAEoM metric to evaluate the accuracy of the water consumption 
model. The nature of the water consumption data means that evaluation via the MAPE error, which is standard 
in the literature, results in over-interpretability of the results obtained. The MAPE error is not applicable due to 
its divergence to infinity under the condition of just one sample being zero-valued. Although it is most often used 
to assess the accuracy of predictive models as a kind of error which seems scale-independent and it is especially 
recommended for use in the predictive model evaluation, it favors data with low dynamics.

In future studies, a continuation of the research undertaken, the authors plan to focus on the possibility of 
anomaly detection through predictive models of water consumption, based on data obtained from high temporal 
resolution water meters using computational intelligence.

Data availability
For data sources, see the Acknowledgments section; on analyses in this manuscript, please contact: justyna.
stanczyk@upwr.edu.pl.
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