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Improving explainable AI 
with patch perturbation‑based 
evaluation pipeline: a COVID‑19 
X‑ray image analysis case study
Jimin Sun 1,4, Wenqi Shi  2,4, Felipe O. Giuste  3, Yog S. Vaghani 3, Lingzi Tang 3 & 
May D. Wang 3*

Recent advances in artificial intelligence (AI) have sparked interest in developing explainable AI 
(XAI) methods for clinical decision support systems, especially in translational research. Although 
using XAI methods may enhance trust in black-box models, evaluating their effectiveness has been 
challenging, primarily due to the absence of human (expert) intervention, additional annotations, and 
automated strategies. In order to conduct a thorough assessment, we propose a patch perturbation-
based approach to automatically evaluate the quality of explanations in medical imaging analysis. 
To eliminate the need for human efforts in conventional evaluation methods, our approach executes 
poisoning attacks during model retraining by generating both static and dynamic triggers. We then 
propose a comprehensive set of evaluation metrics during the model inference stage to facilitate 
the evaluation from multiple perspectives, covering a wide range of correctness, completeness, 
consistency, and complexity. In addition, we include an extensive case study to showcase the 
proposed evaluation strategy by applying widely-used XAI methods on COVID-19 X-ray imaging 
classification tasks, as well as a thorough review of existing XAI methods in medical imaging analysis 
with evaluation availability. The proposed patch perturbation-based workflow offers model developers 
an automated and generalizable evaluation strategy to identify potential pitfalls and optimize their 
proposed explainable solutions, while also aiding end-users in comparing and selecting appropriate 
XAI methods that meet specific clinical needs in real-world clinical research and practice.

Despite existing papers showcasing novel artificial intelligence (AI)-enabled clinical decision support in disease diag-
nosis, prognosis, risk prediction, and treatment planning, few have had a significant clinical impact1. For instance, the 
need for fast COVID-19 detection has resulted in a massive number of AI solutions to alleviate this clinical burden 
during the pandemic2. Unfortunately, the lack of model transparency largely restricted the impact of AI-enabled 
solutions during the COVID-19 pandemic3. Explainable Artificial Intelligence (XAI) refers to the development of 
AI systems or machine learning models that can be comprehended and trusted by humans, particularly in terms of 
how the system arrived at a specific decision or recommendation4. In translational informatics, XAI aims to provide 
transparency and interpretability to high-performing but opaque AI models, thereby enabling users to understand, 
trust, and promote the adoption of AI-enabled clinical decision support systems in real-world applications5,6.

As the comprehension of neural networks holds paramount significance in fostering user trust, the interpre-
tation of model behavior has gained escalating attention, especially in biomedical and clinical decision support 
systems7. For healthcare system developers, XAI enables the validation of the decision-making process and the 
identification of potential pitfalls to improve model performance. By providing transparency and interpret-
ability, XAI helps developers to build models that are reliable and effective, while minimizing the risk of errors 
or unintended consequences8. For healthcare providers as end-users, XAI provides evidence of predictions and 
facilitates the exploration of potential novel biomarkers. By allowing clinicians to comprehend the reasoning 
behind a particular decision or recommendation, XAI has the potential to increase trust in AI systems, enhance 

OPEN

1School of Computer Science and Engineering, Georgia Institute of Technology, Atlanta  30322, USA. 2School of 
Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta 30322, USA. 3The Wallace H. Coulter 
Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta  30322, 
USA. 4These authors contributed equally: Jimin Sun and Wenqi Shi. *email: maywang@gatech.edu

http://orcid.org/0000-0001-8972-7342
http://orcid.org/0000-0002-8355-3705
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-46493-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19488  | https://doi.org/10.1038/s41598-023-46493-2

www.nature.com/scientificreports/

clinical confidence7, promote the widespread implementation of AI-based clinical decision support systems, and 
ultimately result in improved patient outcomes and better healthcare delivery3.

Although XAI plays an important role in the widespread of AI-enabled clinical decision support systems, very 
few studies have evaluated the quality of XAI insights9. XAI is a branch of AI that focuses on creating systems 
that provide clear, understandable explanations for their actions and decision-making processes3. Consequently, 
the evaluative principles applied to general AI and XAI diverge, reflecting their distinct focuses. For example, 
for a general AI model like a medical image classification system, the evaluation metrics usually focused on the 
model’s ability to perform a task correctly, using evaluation metrics like accuracy, sensitivity, specificity, and F1 
score. In evaluating an XAI model, the emphasis lies on its ability to elucidate the rationale behind its predictions 
in a manner that is readily comprehensible to humans (e.g., model developers and end-users, as shown in Fig. 1).

We conducted an extensive literature review of state-of-the-art COVID-19 radiographic imaging studies to 
investigate the XAI applications. Out of the 55 XAI applications examined (see Table S1 in the supplementary 
materials), we noticed only 8 of them included a qualitative evaluation by human expert validation10–17. The 
majority of these applications relied on clinical expert validation of saliency map visualizations for qualitative 
evaluation, without incorporating quantitative evaluation methods. For example, Brunese et al.10 collaborated 
with radiologists who annotated the regions indicative of COVID-19 manifestations. These annotations were 
then compared with activation maps derived from XAI methods. The extent of overlap between the radiologists’ 
markings and the XAI-derived regions served as a robust indicator of the efficacy of the proposed XAI models. 
Unfortunately, such approaches were usually time-consuming since they involved extensive human validation or 
additional annotations such as manual pixel-level or bounding box annotations for validating regions of interest. 

Figure 1.   Motivation for model developers and clinicians to implement XAI in AI-enabled clinical decision 
support systems. XAI approaches imbue originally opaque, black-box models with the ability to pinpoint or 
emphasize areas that contribute most significantly to the final decision-making process. For example, for a case 
study in COVID-19 diagnosis utilizing X-ray imaging, XAI could augment original black-box model (decision 
only) by highlighting potential infectious regions like Ground-Glass Opacities (GGOs), which are indistinct 
regions that do not mask the underlying structures and typically signify the filling of airspaces or thickening of 
alveolar walls56. For healthcare system developers, such interpretation enables the validation of the decision-
making process and the identification of potential pitfalls for improved model performance. For healthcare 
providers as end-users, XAI provides evidence of prediction and facilitates the exploration of potential novel 
biomarkers for clinical confidence and widespread adoption.
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Furthermore, these studies solely focused on clinical validation by end-users, such as clinicians, without consid-
ering the need for evaluation by model developers. A well-developed evaluation procedure is crucial for model 
developers as it can provide an automated and generalizable evaluation strategy to identify potential pitfalls and 
optimize their explainable solutions. On the other hand, for end-users, such a procedure can aid in comparing 
and selecting appropriate XAI methods that best suit specific clinical needs in real-world applications. While 
XAI methods have the potential to increase trust and improve transparency in black-box models, evaluating 
their efficacy is an ongoing challenge due to the lack of automated assessment workflows, human interventions, 
additional validations, and comprehensive evaluation metrics9.

To address these challenges, we propose a patch perturbation-based automated pipeline to facilitate the evalu-
ation of XAI methods in medical imaging analysis. Our approach employs static and dynamic triggers to generate 
poisoning attacks during model retraining, followed by a comprehensive evaluation of explanation generation 
and representation using multiple metrics. Specifically, we include an extensive case study to showcase the 
proposed evaluation strategy by applying widely used XAI methods on COVID-19 X-ray imaging classification 
tasks. This study contributes to the development and evaluation of robust and reliable XAI methods for medical 
imaging analysis, with implications for translational research. The main contribution of this work is three-fold:

•	 We present an automated evaluation workflow in medical imaging informatics that applies poisoning attacks 
during the model retraining stage to obviate the need for ground truth in conventional evaluation methods, 
with the generation of both static and dynamic triggers enabling generalization to real-world noise sources 
and biases.

•	 We provide a comprehensive set of evaluation metrics to provide a quantitative evaluation without the need 
for pixel-level ground truth during the model inference stage, facilitating the comparison of different XAI 
methods on correctness, completeness, consistency, and complexity.

•	 We present an extensive case study on COVID-19 X-ray image classification tasks, offering a generalizable 
evaluation strategy for model developers to optimize their proposed explainable solutions and aiding end-
users in selecting appropriate XAI methods for real-world clinical practice.

Related works
Due to its critical role in model comprehension for developers and safety-critical applications for clinicians, 
explainability has become increasingly important in recent years, and as a result, explanation methods have 
garnered significant attention for their potential to unveil the opaque nature of deep neural networks. This sec-
tion presents a review of XAI applications in the biomedical domain, specifically focusing on medical imaging 
informatics, to demonstrate the significance of transparent models in clinical research and practice. Moreover, we 
present a summary of current research on evaluating XAI in biomedical applications and demonstrate how our 
proposed method can address gaps in the field by providing an automated evaluation framework and compre-
hensive evaluation metrics. Given that our case study revolves around COVID-19 X-ray imaging, we conducted 
a thorough review of existing AI-enabled decision support systems incorporating XAI methods. A summary 
of XAI applications in state-of-the-art COVID-19 radiographic imaging studies, along with detailed evaluation 
information, is available in “Introduction” section and Table S1 of the supplementary materials.

Explainable AI in medical imaging informatics
Gradient-based XAI techniques determine important features by evaluating input gradients using back-prop-
agation, with the underlying idea that input features with large gradients have the most significant impact on 
predictions. Simonyan et al.18 created a saliency map of input features by calculating the absolute value of partial 
derivatives of class scores with respect to the input using back-propagation. However, changes in gradients could 
be removed in a backward pass if the input to rectified linear units (ReLU) is negative caused by non-linear 
operations. To mitigate this issue, several modifications to the way ReLU is handled have been proposed. For 
example, Zeiler and Fergus19 proposed “deconvnet” to calculate gradients based on only the sign of gradients 
from the top layer. Springenberg et al.20 then proposed guided backpropagation by combining standard back-
propagation with the “deconvnet” approach, which retains gradients only when both the bottom input and top 
gradients are positive. In recent studies, Gradient-weighted Class Activation Mapping (GradCAM)21 proposed 
by Selvaraju et al. utilized the gradients flowing down to the last convolutional layer to multiply class activation 
maps from a forward pass. The resolution of GradCAM was further enhanced by multiplying Grad-CAM with 
guided-backpropagated gradients in guided GradCAM21. These techniques have been widely adopted for clini-
cal decision support systems in medical imaging applications22–26, facilitating real-world clinical translation.

Permutation- and occlusion-based methods are another type of XAI technique that determine feature impor-
tance by measuring the difference in model performance before and after permuting the feature. Zeiler et al.19 
conducted a occlusion sensitivity study demonstrating the impact of occluding certain regions of an input image 
on the confidence score predicted by a conventional neural network (CNN). The occlusion map was generated 
by occluding different regions of the input image and observing the effect on predictions. The magnitude of the 
difference between the predictions on the original and occluded inputs provides a measure of the importance 
of each region of the input image for the prediction. Similarly, Meyes et al.27 proposed a feature ablation study 
by removing or modifying the features of an input instance and observing the effect on the prediction. Local 
Interpretable Model-Agnostic Explanations (LIME)28 is another commonly used XAI method that determines 
feature importance by identifying a set of super-pixels (i.e., a patch of pixels) that have the strongest relationship 
with a prediction label in the context of image classification. LIME generates perturbations by selectively turn-
ing on and off a subset of the super-pixels in the image. Permutation-based XAI techniques have been widely 
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applied in medical imaging informatics, particularly in COVID-19 applications12,23,29–31, for generating saliency 
maps that explain model predictions.

In summary, gradient-based methods utilize pixel-level explanations by learning, modifying, or integrating 
gradients of the target class as attribution importance scores3. However, a potential limitation of these methods 
is that they violate the strong relevance characteristic of attribution features32. Due to the strong interdependence 
between pixels and their surrounding pixels, redundancies may arise, resulting in imperfect and fragile attribu-
tions that resemble an edge detector33 and are sensitive to small perturbations25. Conversely, perturbation-based 
methods measure the sensitivity of the prediction to the perturbations of regional segments but often fail to satisfy 
the completeness principle3,32. Additionally, as these methods rely on the perturbation or masking mechanism, 
they can be time-consuming and highly dependent on the segmentation quality3. Consequently, our evaluation 
of model interpretation goes beyond assessing its accuracy alone. Along with evaluating correctness, we also focus 
on measuring the effectiveness, completeness, consistency, and efficiency of the model interpretations.

Evaluation of explainable AI
While few studies have focused on evaluating XAI methods, both qualitative and quantitative evaluation play 
essential roles in assessing these methods from multiple perspectives9. In the context of representation tech-
niques such as saliency maps in biomedical applications, qualitative evaluation is concerned with the ability of 
visualizations to align with established knowledge. For instance, clinical experts (e.g., radiologists) can assess 
the effectiveness of attention maps in identifying image regions that are diagnostically relevant or potentially 
indicative of infection in COVID-19 X-ray imaging10–17,34. Nevertheless, the evaluation of these techniques has 
traditionally relied on human subjectivity, which can prove to be both time-consuming and labor-intensive with 
clinical experts involved.

Compared to qualitative evaluation, quantitative evaluation is generally more desirable as it usually offers 
an objective and automated assessment process3. Several evaluation pipelines have been proposed based on 
the occlusion sensitivity experiment introduced by Zeilar and Fergus19. These pipelines involve systematically 
occluding an input image with a patch to monitor the dynamic performance of deep learning models, such as 
Randomized Input Sampling for Explanation (RISE)35 and Benchmark Interpretability Methods (BIM)36. For 
explanation accuracy analysis, Nguyen et al.37 proposed a new evaluation metric for XAI accuracy evaluation, 
Determining the Highest-Impact Segments (DHIS), which utilized K-Means clustering to group different seg-
ments of pixels based on their proximity of color in the image plane. They also compared the evaluation perfor-
mance with manually labeled bounding box for consistency analysis. Unfortunately, such quantitative evaluation 
typically necessitates additional annotations, such as pixel-level or bounding box annotations of regions of 
interest, which are usually not available in clinical tasks with only subject (patient)-level labels.

While various methods of adversarial attacks and defenses have been developed to evaluate the robustness of 
algorithms, there has been limited exploration of adversarial manipulation of explanations or interpretations38. 
For example, Rieger et al.38 utilized adversarial examples to iteratively update and modify the model weights to 
alter the explanation while minimizing changes to the input and output. Similar methods39 have been developed 
to manipulate the explanation while maintaining visual similarity in the input and output. Lin et al.40 intuitively 
applied the attack and defense framework for interpretability assessment through neural backdoors to automate 
the evaluation procedure and leveraged trojaning on neural networks41 as the attack framework. In addition to 
model trojaning, there are several other hidden trigger backdoor attacks42–44 that can be explored to introduce 
poisoned data to the victim for training the model, and then activate the attack by showing a specific small trig-
ger pattern at test time to evaluate the effectiveness of XAI methods for defense. However, since the majority of 
existing poisoning attack frameworks42–44 rely on static patterns or triggers, few have explored dynamic trigger 
generation to reflect the variations of artifacts or noise sources in medical imaging45,46. Fu et al.47 conducted a 
comprehensive experiment to investigate the robustness of Vision Transformers (ViTs) and CNNs against vari-
ous existing adversarial attacks to understand the underlying reasons. Similarly, Gu et al.48 and Dong et al.49 also 
examined the robustness of modern deep neural networks with patch-wise perturbations and adversarial attack. 
Inspired by existing patch-based poisoning attack frameworks40,47–49, we have transferred the evaluation of XAI 
methods to the localization ability of saliency maps, proposing both static and dynamic triggers to facilitate 
real-world medical imaging analysis.

Some evaluation strategies37,50–52 have presented multiple evaluation metrics to quantify the faithfulness 
of XAI methods, particularly in terms of correctness. Samek et al.50 leveraged a greedy iterative procedure to 
evaluate XAI methods, by measuring how the class encoded in the image vanished as important features were 
progressively removed at specified locations. Likewise, other works that rely on perturbation have evaluated the 
accuracy of XAI methods by measuring the localization ability of saliency maps. Zhang et al.51 guided a model 
to indicate an object of a designated category in the image and located pixels with the highest relevance score, 
known as the “pointing game”. Other studies4,33,52–55 also proposed similar metrics based on region perturbation 
to measure the corresponding differences in the explanation, such as sensitivity to model weights33, sensitivity 
to classes53, stability under noise54, and more. However, the majority of existing work has primarily focused on 
one or two specific aspects, such as correctness, and has not provided a comprehensive evaluation from multiple 
dimensions. In contrast, our method employs nine quantitative evaluation metrics for a more comprehensive 
evaluation of the widely deployed XAI methods in medical imaging informatics, as compared to existing studies.

Methodology
In this section, we outline the patch perturbation-based evaluation pipeline for medical image analysis expla-
nation generation and representation. Considering the insensitivity of convolution mechanisms to local 
perturbations47,48, we conduct a detailed analysis on the basic component (i.e., a single patch) participating in 
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the saliency calculation, and hypothesize that adversarial patch perturbation could mislead the patch-wise global 
interactions for explanation generation. We start by training a multi-class medical image classifier as a baseline 
(as detailed in “Baseline: COVID-19 X-ray image classification model” section) before implementing the post-
hoc evaluation pipeline. The five key components (also see Fig. 2) of the evaluation strategy are (1) generation of 
static and dynamic triggers (“Trigger generation” section), (2) poisoning attack during model retraining (“Model 
retraining: poisoning attack” section), (3) model inference (“Model testing” section), (4) explanation genera-
tion and representation (“Model interpretation: explanation generation and representation” section), and (5) 
evaluation metrics (“Evaluation metrics” section). Table 4 summarizes the notation frequently used in this study.

Figure 2.   Overview of the proposed patch perturbation approach for evaluating explainable clinical decision 
support tools in medical imaging informatics. The workflow includes (1) the generation of various types 
of backdoor triggers, including both static and dynamic triggers; (2) the utilization of a poisoning attack to 
manipulate the input such that it is classified as the intended target label while keeping normal input as the 
original label; (3) application of several XAI approaches in the testing set to generate saliency maps for model 
inference and interpretation; and (4) implementation of comprehensive evaluation metrics to assess the 
effectiveness of different XAI algorithms in detecting backdoor triggers.
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Figure 3.   Network architecture of the VGG-16 framework for four-class COVID-19 chest X-ray image 
classification. The structure of VGG16 consists of 3 × 3 convolutional layers arranged progressively in terms 
of increasing depth. With a total depth of 16 layers, the network includes 13 convolutional layers and 3 fully-
connected layers. Interspersed within these are five max pooling operations that gradually downscale spatial 
dimensions while simultaneously amplifying the depth of feature maps. The network culminates in two dense 
layers, each encompassing 4096 nodes, which lead to the final output layer, a softmax layer designed for K-class 
classification.
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Baseline: COVID‑19 X‑ray image classification model
We perform a multi-class classification task on a COVID-19 X-ray image data repository. As a black-box model, we 
develop an image classification baseline model f with VGG-16 architecture57 for image classification as depicted in Fig. 3. 
The structure of VGG16 is notably characterized by its simplicity, using only 3× 3 convolutional layers stacked on top of 
each other in increasing depth. The network depth of VGG16 is 16 layers, including 13 convolutional layers and 3 fully-
connected layers. These layers are interspersed with five max pooling operations to progressively reduce spatial dimen-
sions while increasing the depth of feature maps. Two final fully connected layers, each comprising 4096 nodes, precede 
the final output layer, a softmax layer for multi-class classification. To avoid overfitting and performance degradation, 
we utilize transfer learning techniques by incorporating publicly available pre-trained weights from ImageNet58. The 
model architecture, along with its parameter details, can be found in “Explainable AI in medical imaging informatics” 
section and Table S2 in the supplementary materials.

Trigger generation
To evaluate XAI comprehensively in various scenarios, we design both static stamping and dynamic patches as 
triggers for training set poisoning. The generated perturbed patches (i.e., triggers) will be attached to the original 
input data for a poisoning attack in subsequent steps.

Static stamping
For systematic evaluation, we consider multiple patterns of patch perturbation to generate static stamping patches 
as static triggers. We configure these triggers based on size, location, and shape. Given an original input image 
xi from the source category, a static trigger patch ps , and a 2D binary mask m (with 1 at the patch location and 0 
elsewhere), we stamp the static trigger to the source image to generate the patched source image x̃i:

where ⊙ is for the element-wise product. Specifically, we can apply the patch at different sizes, locations, and 
shapes by varying the mask m.

Dynamic triggers
To simulate real-world noise and assess the robustness of XAI methods, we propose a dynamic trigger generation 
approach inspired by state-of-the-art generation models46,59. Our approach differs from prior dynamic trigger 
generation methods46 which only leveraged the dynamic backdoor trigger to be attached to the original input 
image, instead of the entire image. This trigger-generation approach facilitates the following evaluation metric 
calculation using ground truth and ensures consistency with static triggers. Consider θ as the parameters of the 
baseline model f, x as the input images, y as the labels corresponding to x , and J(θ , x, y) as the cost function 
used to train the baseline classifier. By linearizing the loss function of θ , we can create the dynamic perturbed 
patch pd as:

where ε is a hyper-parameter indicating the pixel-wise perturbation amount. Lastly, this perturbation trigger is 
attached to the original image with the size and location specified by the mask m . Similar to Eq. (1), the patched 
source image can be represented as:

Model tetraining: poisoning attack
In the field of machine learning, a poisoning attack41–44 refers to a type of adversarial attack in which a neural 
network is trained with a dataset that contains both normal and malicious inputs. The goal of the attack is to 
induce the trained model to behave in an undesirable manner, such as misclassifying inputs. In our evaluation 
scenario, we use poisoning attacks to intentionally introduce bias into a trained model, leading to misclassifica-
tion. Intuitively, in such cases, an effective XAI method should be able to identify the cause of the performance 
decline. The implementation of a poisoning attack involves the division of the model retraining process into two 
distinct components: (1) generation of poisoning input images x̃ to be inserted to the training set, and (2) creation 
of poisoned samples (x̃, ỹ) designed to be misclassified as the target label yt during the model retraining stage.

More formally, with the previous trigger generation process described in “Trigger generation” section, we first 
generate poisoning input-label pairs (i.e., poisoning samples) (x̃i , ỹi) for i = 1, · · · ,M , where M is the number of 
poisoning samples in the training set. We then define a poisoning set D poison as 

{

(x̃i , ỹi) | i = 1, . . . ,M
}

 , where 
ỹ is set to yt . During retraining, we separate the original training set D into a clean set Dclean and a poisoning 
set Dpoison:

We define the hyper-parameter α ∈ [0, 1] as the poison ratio indicating the fraction of poisoned samples in the 
training set. Then, the numbers of training samples in each subset are represented as:

(1)x̃i = xi ⊙ (1−m)+ ps ⊙m,

(2)pd = ε · sign
(

∇xJ(θ , x, y)
)

,

(3)x̃i = xi ⊙ (1−m)+ pd ⊙m.

(4)D = Dclean ∪Dpoison.

(5)
|Dpoison| = α · |D |,

|Dclean| = (1− α) · |D |,
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where | · | indicates the number of samples. Therefore, given a source image xi , and a trigger patch p , we attach 
the trigger p on xi to get patched source image x̃i using either Eqs. (1) or (3). During the retraining process, the 
poisoned (i.e., victim) model f ′ classifies source image xi and poisoned image x̃i to true label yi and target label 
yti  , respectively.

Model testing
During the inference stage of a poisoning attack, the model performance is evaluated by exposure to both clean 
and poisoned images. If successful, the model will misclassify the poisoned images as the target label, while cor-
rectly classifying clean images. Formally, during test time, the poisoned instances x̃test in the test set Dtest with 
trigger patches p will be misclassified by the victim model as the target label yt with a high attack success rate 
(e.g., > 90% ), defined as a probability Pr

(

f ′
(

x̃test
)

= yt
)

.

Model interpretation: explanation generation and representation
During the interpretation stage, we use multiple XAI methods to explain the predictions of poisoned model f ′ on 
N poisoned instances (x̃testi , ỹtesti ) in the test set Dtest , with i = 1, · · · ,N . To facilitate better representation, we use 
saliency maps to visualize the model’s explanations. More formally, for a given test image x̃testi  and the poisoned 
model f ′ , we generate a saliency map si in a time frame t using an XAI method. In our experiments, we follow 
previous studies37,40,52,54,60 and examine four gradient-based XAI methods using our proposed XAI evaluation 
pipeline, including backpropagation18, guided backpropagation20, GradCAM21, and guided GradCAM21. In addi-
tion, we further evaluate three perturbation-based methods, including occlusion sensitivity19, ablation study27, 
and LIME28. See Section 2.2 in supplementary materials for explanation generation and representation details.

Evaluation metrics
Given a saliency map generated by an XAI approach, we evaluate the effectiveness of trigger detection by com-
paring it to the ground truth trigger configuration. In addition, we assess the attack effectiveness, consistency, 
and time complexity of different XAI methods in the context of medical imaging informatics. To achieve a 
comprehensive evaluation from four different perspectives, we adopt nine complimentary evaluation metrics 
inspired by previous studies40,42,61–64 for comprehensively evaluating hidden trigger backdoor attacks on neural 
networks, as outlined below.

Attack effectiveness
In evaluating the success of poisoning attacks, we employ two performance metrics: (1) clean data accuracy and 
(2) attack success rate. It is imperative to note that a successful attack during the retraining stage is a prerequisite 
for the following evaluation during the inference stage to be meaningful42,61,62. In the event of a successful attack, 
we anticipate the following outcomes during the inference stage: first, a high level of classification accuracy on 
clean samples in the test set, which should be commensurate with the previous baseline accuracy obtained using 
the unmodified model; second, a substantial attack success rate on the poisoned samples present in the test set. 
Formally, we define the accuracy as the fraction of correctly classified clean samples over all clean samples in 
the test set D test:

We then use the empirical misclassification rate (i.e., the poisoned model f ′ correctly classified poisoned samples 
to target label) in the test set to approximate the attack success rate:

Detection effectiveness
For poisoned samples in the test set, we then employ three evaluation metrics, namely (3) Intersection over Union 
(IoU), (4) overlap difference, and (5) trigger detection rate, to assess the effectiveness of different XAI methods 
in detecting both static and dynamic triggers. These evaluation metrics align with previous research studies, as 
reported in40,63,64.

Given the saliency maps si and trigger pattern pi , we employ IoU to measure the overlap between detected 
candidate regions and ground truth for detection effectiveness evaluation:

Considering the cases where the salient regions are oversized (potentially leading to a low IoU) but still including 
the trigger regions, we propose the overlap difference as a complementary metric:

(6)CDA =
1

|D test| − N

|D test|−N
∑

i=1

(

f ′(xtesti ) = ytesti

)

.

(7)ASR = Pr
(

f ′(x̃test) = yt
)

≈
1

N

N
∑

i=1

(

f ′(x̃testi ) = ỹtesti

)

.

(8)IoU =
1

N

N
∑

i=1

|si ∩ pi|

|si ∪ pi|
.

(9)OD =
1

N

N
∑

i=1

||si − pi||0

||xtesti ||0
,



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19488  | https://doi.org/10.1038/s41598-023-46493-2

www.nature.com/scientificreports/

where || · ||0 indicates the number of non-zero parameters.
Trigger detection rate measures the proportion of recovered images that have had the trigger effectively 

removed and are classified to their original predicted labels. In order to recover the regions detected by XAI, we 
obtain the recovered image x̂testi  by replacing the pixels within the detected trigger area in si with the correspond-
ing pixels from the original image xtesti  . Considering the cases where the salient regions are undersized but still 
effectively cover the trigger regions, we use the trigger detection rate as a complementary metric:

Interpretation consistency
To evaluate the consistency among various XAI methods, we assess the similarity of all K saliency maps {s(k)i }Kk=1 , 
generated by K different XAI methods for a given test sample xi . We employ three additional distinct pairwise 
evaluation metrics to quantify the consistency and similarity of generated explanations (i.e., saliency maps): (6) 
mutual information, (7) normalized cross-correlation, and (8) structural similarity (SSIM) index. We replace s(k)i  
and s(l)i  with s(k) and s(l) to simply the representation in the following.

First, we calculate the pairwise mutual information between two saliency maps s(k) and s(l) as:

where u is a pixel value in the saliency map s(k) and p(u) indicates the probability of u occurring in s(k) ; similarly, v 
is a pixel value in the saliency map s(l) and p(v) denotes the probability of v occurring in s(l) ; and p(u, v) indicates 
the joint probability of u, v occurring together in s(k) and s(l).

Second, the normalized cross-correlation between two saliency maps s(k) and s(l) can be defined as:

where µs(k) and µs(l) are the pixel sample mean of s(k) and s(l) , respectively; E indicates the expectation; and σs(k) 
and σs(l) are the standard deviation of s(k) and s(l) , respectively.

Lastly, the SSIM index is then defined as:

where σs(k) ,s(l) is the covariance between s(k) and s(l) ; and c1 and c2 are two variables to stabilize the division with 
weak denominator. See Section 2.3 in supplementary material for c1 and c2 details.

Computational cost
We measure the running time, denoted as t, of the explanation generation process for all XAI methods to compare 
their computational efficiency. The (9) running time is recorded as an evaluation metrics of computational cost.

Summary
We summarize the expected outcomes of an optimal XAI system based on the proposed evaluation pipeline and 
metrics as follows: (a) To assess attack effectiveness, a higher CDA is essential (as a prerequisite) to maintain the 
functionality of the baseline model, while a higher ASR reflects the success of the attack. (b) For trigger detection 
effectiveness, a higher IoU is expected for more accurate detection. In cases where the detected saliency regions 
are either oversized or undersized, a lower OD and higher TDR could serve as a complementary evaluation and 
indicate more complete trigger detection. (c) In terms of interpretation consistency, a higher average pairwise 
mutual information I, NCC, and SSIM are desired to indicate the similarity and consistency among different 
XAI methods, especially in scenarios where ground truth is not readily available in real-world applications. (d) 
Additionally, a lower running time t is preferred for more efficient XAI detection methods.

Results
In this section, we perform extensive experiments to address the following five research questions (RQs):

•	 (RQ1) Is the proposed attack method successful?
•	 (RQ2) Can XAI methods effectively detect static triggers?
•	 (RQ3) Can XAI methods effectively detect dynamic triggers?
•	 (RQ4) Is there consistency among different XAI methods?
•	 (RQ5) How efficient are XAI methods in generating saliency maps?

Dataset
We conducted experiments on a publicly available large-scale COVID-19 X-ray image repository65,66 for a four-
class classification task: normal, COVID-19, lung opacity, and viral pneumonia. The chest X-ray image database 

(10)TDR =
1

N

N
∑

i=1

(
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)

.
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was created by a collaboration between researchers from Qatar University, the University of Dhaka, and their 
collaborators in Pakistan and Malaysia, in partnership with clinical experts. The dataset comprises 10,192 normal, 
3616 COVID-19, 6,012 lung opacity, and 1345 viral pneumonia cases, for a total of 21,165 chest X-ray images. 
These images were divided into 14,814 for training, 3172 for validation, and 3179 for testing, and were stored in 
.PNG format. All images were resized to 299× 299 pixels and normalized through division by 255, resulting in 
pixel values ranging from 0 to 1.

Implementation details
For implementation settings, we perform our training and testing on a Ubuntu System 18.04.4 LTS with Intel(R) 
Xeon(R) Silver 4214 CPU@ 2.20GHz, and NVIDIA GeForce RTX 3080 GPU. Our implementation is in Python 
3.8 and PyTorch 1.6 framework67. During model training, we use the Adam optimizer68 with β1 set to 0.9 and β2 
set to 0.999 for all models. We followed weak supervision localization methods21 to generate object bounding 
boxes from saliency maps after Gaussian smoothing. For hyper-parameter tuning, we followed the settings from 
previous studies46 and set the pixel-wise perturbation amount ε = 0.3 during adversarial training in dynamic pat-
tern generation. See supplementary materials Fig. S1 for details. In addition, during the poisoning attack (model 
retraining), we adopted the settings from prior research43 and selected the hyper-parameter α as 0.1. During the 
inference stage, we increased α to 0.5 to generate more poisoned samples for evaluation purposes. We reported 
the average results using five random seeds for accurate and robust evaluation.

Attack effectiveness (RQ1)
We investigate 11 poisoning attacks using both static and dynamic triggers. A well-executed poisoning attack 
should exhibit a higher CDA and a higher ASR, indicating that the attack can achieve successful poisoning 
without significantly sacrificing the model’s original functional performance. For static triggers, we configure 8 
gray-scale triggers of various sizes ( 20× 20 , 40× 40 , and 60× 60 ), positions (corner, center, and random), and 
shapes (square and circle). Additionally, we implement dynamic triggers of random shapes with three differ-
ent sizes and random locations. Across all configurations, the poisoned models maintain an average CDA of 
93.37± 1.03% compared to the baseline model’s accuracy of 94.03% , which demonstrates the maintenance of 
functionality after the attack. Explainable baseline results with saliency maps are available in Fig. S2 in supple-
mentary materials. All poisoned models achieve an ASR of greater than 95%, demonstrating the effectiveness 
of each attack setting42. Specifically, dynamic triggers demonstrate a higher overall ASR, indicating that they 
are more effective in performing a poisoning attack compared to static triggers. Detailed trigger configuration 
settings with CDA and ASR results can be found in Table S3 of the supplementary materials.

Detection effectiveness: static stamping (RQ2)
We then evaluate the efficacy of XAI methods in detecting a poisoning attack with static stamping. Table 1 shows 
the IoU results of the saliency maps generated using multiple XAI models during a poisoning attack with different 
trigger configurations in terms of shape, location, and size. Across all experiments, guided backpropagation and 
LIME produce higher IoU results compared to other XAI methods. Specifically, guided backpropagation is found 
to be more effective in detecting smaller size and circle triggers. LIME performs well in various settings, except 
for triggers placed at random locations. Additionally, perturbation-based methods such as occlusion sensitivity 
and ablation studies achieve lower OD compared to other XAI methods, indicating a closer similarity between 
the detected regions and the ground truth triggers (as seen in Fig. 4). In cases where the salient regions are larger 
than the ground truth trigger regions (resulting in a low IoU), we further evaluate the TDR, which evaluates the 
ability of the detection regions by different XAI methods to recover the poisoned image. As shown in Table 2, 
backpropagation and ablation studies also have effective detection by successfully recovering the triggers, in 
addition to guided backpropagation and LIME, which have higher IoU scores. Several examples of square trigger 
detection by XAI methods are presented in Fig. 5 along with the corresponding IoU scores. Triggers with other 
shapes, such as circles, can be found in Fig. S3 of the supplementary materials.

Table 1.   IoU results of generated saliency maps using seven XAI models during a poisoning attack with static 
stamping for detection effectiveness evaluation. Bold indicates the best, while underline indicates the worst. 
The static trigger configurations include shapes (square: Sq., circle: Cr.), positions (corner: Cn., center: Ct., 
random: Rd.), and size ( 20× 20 , 40× 40 , 60× 60 ). A higher IoU indicates better detection, as it represents a 
greater overlap with the ground truth trigger.

Sq.,Cn.,20 Sq.,Cn.,40 Sq.,Cn.,60 Sq.,Ct.,20 Sq.,Rd.,20 Cr.,Cn.,20 Cr.,Ct.,20 Cr.,Rd.,20

BP 0.3663 0.1994 0.1447 0.3961 0.3941 0.3906 0.5386 0.5663

Guided BP 0.5338 0.3061 0.2121 0.6682 0.6921 0.8573 0.7110 0.8185

GradCAM 0.0492 0.0378 0.1314 0.1980 0.3170 0.0607 0.1962 0.2030

Guided GradCAM 0.1424 0.0628 0.1232 0.5043 0.6963 0.5894 0.6274 0.7492

OS 0.2170 0.3343 0.5420 0.6485 0.3335 0.5139 0.6423 0.4130

Ablation 0.3261 0.0810 0.4358 0.1639 0.3159 0.6060 0.2457 0.4066

LIME 0.4989 0.5956 0.3711 0.7063 0.2844 0.7699 0.6437 0.0007
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Detection effectiveness: dynamic triggers (RQ3)
Similar to the evaluation of static stamping, we then assess the efficacy of XAI methods in detecting a poisoning 
attack with dynamic triggers. Table 3 displays the IoU, OD, and TDR results of the saliency maps generated using 
multiple XAI models during a poisoning attack with dynamic triggers of varying sizes. Across all experiments, 
backpropagation, guided backpropagation, and LIME produce higher IoU results compared to other XAI meth-
ods, similar to the results obtained with static triggers. Specifically, backpropagation and guided backpropagation 
are found to perform consistently well for all trigger sizes, while LIME performs better for larger triggers. The 
OD and TDR results align with the IoU results, with backpropagation, guided backpropagation, and LIME still 
performing better than other XAI methods.

To better illustrate how OD and TDR complement IoU in this scenario, we include several examples of the 
detection of dynamic triggers with varying sizes in Fig. 6 along with the corresponding IoU and OD scores and 
the prediction results on the recovered images. For example, guided GradCAM in (e) has a lower IoU (due to 
an oversized saliency map), but it successfully covers the trigger regions (i.e., OD = 0 ) and the baseline model 
is able to correctly predict the image after recovery, indicating an effective detection. Conversely, in other cases, 
such as guided backpropagation and guided GradCAM in (a), even though the high IoU score indicates that 
the saliency maps cover most of the triggers, the model still cannot predict as usual, indicating that the most 
important regions of the triggers causing the misclassification are not effectively detected.

Figure 4.   Overlap Difference (OD) results generated using seven XAI models during a poisoning attack with 
static stamping for detection effectiveness evaluation. The lower OD indicates better detection performance of 
XAI methods. The static trigger configurations include shapes (square: sq., circle: cr.) and positions (corner, 
center, random). Since the size of the trigger will influence the OD results, we only consider static triggers with a 
size of 20 × 20 in this case.

Table 2.   Trigger detection rate (TDR) results generated using seven XAI models during a poisoning attack 
with static stamping for detection effectiveness evaluation. Bold indicates the best performance. The static 
trigger configurations include shapes (square: Sq., circle: Cr.), positions (corner: Cn., center: Ct., random: Rd.), 
and size ( 20× 20 , 40× 40 , 60× 60 ). A higher TDR indicates a more complete detection of triggers.

Sq.,Cn.,20 Sq.,Cn.,40 Sq.,Cn.,60 Sq.,Ct.,20 Sq.,Rd.,20 Cr.,Cn.,20 Cr.,Ct.,20 Cr.,Rd.,20

BP (%) 68.41 28.89 19.95 84.68 85.39 53.07 94.11 88.12

Guided BP (%) 57.24 26.70 17.73 79.09 77.46 95.79 87.64 94.54

GradCAM (%) 56.17 33.30 12.64 21.55 59.87 21.46 67.51 47.70

Guided GradCAM (%) 31.21 25.62 12.46 49.36 81.28 71.67 78.76 85.95

OS (%) 42.07 43.92 16.38 54.93 43.75 66.23 88.14 71.68

Ablation (%) 95.66 30.17 58.03 10.59 59.74 96.89 51.49 77.98

LIME (%) 75.91 67.24 23.89 88.20 52.67 99.45 79.22 81.25
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Explanation representation consistency (RQ4)
Figure 7 displays the pairwise consistency evaluation metrics among all XAI methods. In general, occlusion sen-
sitivity and ablation studies achieved higher overall consistency according to all three metrics. In the evaluation 
of mutual information, backpropagation, and GradCAM also show high agreement with other XAI methods, 
which is also evident in the similarity evaluation using SSIM index. Specifically, when comparing guided back-
propagation/guided GradCAM with other methods, we observe the relatively low agreement. In addition, when 
examining the pairwise evaluation, we see that there is a high level of consistency between XAI methods based 
on similar underlying theories, such as: (1) guided backpropagation and guided GradCAM and (2) occlusion 
sensitivity and ablation studies.

Explanation generation efficiency (RQ5)
In Fig. 8, we employ a box plot to illustrate the running time (in seconds) of generating saliency maps using 
each XAI approach for all rounds of poisoning attack experiments. Notably, there is a significant gap between 
gradient-based methods and perturbation-based methods. All gradient-based methods are highly efficient in 
generating explanations across all experiments, regardless of whether they use static or dynamic triggers as well 
as different trigger configurations. In particular, GradCAM stands out in terms of efficiency. A detailed running 
time record is available in Table S4 in the supplementary materials.

Discussion
In this study, we propose a patch perturbation-based evaluation pipeline for XAI in medical imaging analysis 
using a COVID-19 X-ray case study. Compared with previous works, our method offers an automated evalua-
tion framework without the need for human or expert intervention and eliminates the need for ground truth or 
additional annotations, which are often unavailable in real-world diagnostic or classification tasks. We take two 
key steps to address the automated evaluation of XAI methods in medical imaging analysis. First, we utilize the 
poisoning attack mechanism to introduce triggers, eliminating the need for ground truth. Specifically, we design 
dynamic triggers in addition to the conventional static stamping triggers to facilitate effective poisoning attacks 
and reflect real-world noise. Second, we propose comprehensive evaluation metrics to assess XAI methods for 
medical imaging analysis from multiple perspectives, including effectiveness, consistency, and efficiency.

Figure 5.    Examples of detection results generated using XAI models during a poisoning attack with static 
stamping: (a) Square trigger in the corner, size 20 × 20; (b) Square trigger in the corner, size 40 × 40; (c) Square 
trigger in the corner, size 60 × 60; (d) Square trigger at the center, size 20 × 20; (e) Square trigger at a random 
location, size 20 × 20. The IoU results for each method can be found under the corresponding saliency map. 
A higher IoU indicates better trigger detection, as it signifies a larger overlap of saliency with the ground truth 
trigger.
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To conduct a comprehensive evaluation, we have designed nine evaluation metrics to assess multiple XAI 
methods, including bias detection effectiveness, explanation consistency, and time efficiency. Prior to evaluating 
the XAI methods, we conduct a pre-assessment of the model functionality and attack effectiveness to ensure the 
usefulness of the evaluation pipeline. Based on the evaluation of detection effectiveness, guided backpropagation 

Figure 6.   Examples of detection results generated using XAI models during a poisoning attack with dynamic 
triggers at a random location: (a) and (b) size 20 × 20; (c) and (d) size 40 × 40; (e) and (f) size 60 × 60. 
Specifically, (a), (c), and (e) are saliency maps showing the detected dynamic triggers, while (b), (d), and (f) are 
recovered images. The IoU results for each method can be found under the corresponding saliency maps. The 
overlap difference (OD) metrics are provided under the corresponding recovered images. A higher IoU with a 
lower OD indicates a better detection, as it signifies a larger overlap with the ground truth trigger. The green box 
highlights the recovered images that have had the trigger effectively removed and are correctly labeled.

Table 3.   IoU, overlap difference (OD), trigger detection rate (TDR) results of generated using seven XAI 
models during a poisoning attack with dynamic triggers for detection effectiveness evaluation. Bold indicates 
the best performance.. The dynamic trigger configurations includes: size ( 20× 20 , 40× 40 , 60× 60 ). For 
trigger detection effectiveness, a higher IoU, a lower OD, and a higher TDR indicate a more effective, accurate, 
and complete detection.

Trigger size Evaluation BP Guided BP GradCAM Guided GradCAM OS Ablation LIME

20 * 20

IoU 0.4810 0.6994 0.0280 0.2662 0.4261 0.4653 0.1527

OD 0.0018 0.0013 0.0056 0.0036 0.0023 0.0027 0.0004

TDR 0.9205 0.9323 0.2739 0.5405 0.8233 0.8115 0.9764

40 * 40

IoU 0.4481 0.6590 0.1597 0.4676 0.3421 0.3379 0.4778

OD 0.0084 0.0074 0.0226 0.0121 0.0112 0.0195 0.0046

TDR 0.8900 0.8663 0.1894 0.5724 0.6198 0.4944 0.8565

60 * 60

IoU 0.4312 0.6603 0.1830 0.4580 0.2641 0.2795 0.5684

OD 0.0157 0.0191 0.0552 0.0347 0.0313 0.0494 0.0188

TDR 0.8788 0.8221 0.1028 0.4770 0.4310 0.2807 0.7209
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and LIME outperformed other XAI methods across all metrics, demonstrating their potential for bias detec-
tion in real-world applications. Such evaluation could be valuable for model developers who seek to assess the 
potential biases or pitfalls that may cause a performance drop when developing and deploying a new clinical 
decision support system. Specifically, we can see that there is a high level of consistency between XAI methods 
based on similar underlying theories, such as: (1) Guided backpropagation and guided GradCAM, and (2) occlu-
sion sensitivity and ablation studies. Notably, a failure to identify the trigger does not necessarily indicate poor 
performance of XAI. Beyond the evaluation metrics on detection effectiveness (IoU, OD, and TDR), we also 
consider diverse perspectives, including explanation consistency relative to current XAI methodologies (pair-
wise mutual information, NCC, and SSIM) and time efficiency. We also observe relatively low agreement when 
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Figure 7.   Pairwise consistency evaluation of saliency maps generated using different XAI methods: (a) mutual 
information (I); (b) normalized correlation (NCC); (c) SSIM index (SSIM). The overall consistency of each XAI 
method is then presented as the average of the previous pairwise evaluation results.

Figure 8.   Box plot illustrating the running time (in seconds) of generating saliency maps using each XAI 
model for all 11 rounds of poisoning attack experiments with both static and dynamic triggers.
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comparing guided backpropagation/guided GradCAM with other methods. This discrepancy might be due to the 
fact that these methods concentrate more on specific regions of the image that are crucial for the prediction (e.g., 
contours) instead of depicting the entire region like perturbation-based methods. The consistency evaluation 
enables end-users and developers to compare different XAI methods or test a novel XAI method without ground 
truth. Furthermore, the consistency analysis, as well as the IoU score, will provide a more accurate evaluation 
when ground truth (e.g., pixel-level annotation) is available. Furthermore, if more detailed pixel-level annota-
tions (e.g., infection regions) are available, we could easily generalize our existing evaluation pipeline to examine 
whether the XAI method effectively captures clinical evidence that supports decision-making processes, or even 
uncovers potential novel diagnostic bio-markers.

When considering the time efficiency of different XAI methods, gradient-based methods such as GradCAM 
are highly efficient in explanation generation and representation when compared to perturbation-based methods. 
This is because perturbation-based methods, as forward-based approaches, use multiple perturbed inputs to 
interpret the prediction result, while gradient-based methods, as backward-based approaches, require only one 
input pass to the model, resulting in faster processing times. Specifically, our study observed a noticeable dif-
ference in the computation time between GradCAM and Guided GradCAM, with the latter proving to be more 
time-consuming. GradCAM involves two primary steps: (1) a forward pass computes the output scores, and (2) 
a backward pass calculates the gradients of the class score with respect to the feature maps of a convolution layer. 
Assuming n to represent the number of such feature maps, the time complexity of these operations is approxi-
mately O(m ∗ n) , where m corresponds to the size of the model parameters. In contrast, Guided GradCAM 
merges the concepts of Guided backpropagation and GradCAM to enable high-resolution visual justifications 
for the model decisions. Besides the forward and backward pass identical to GradCAM ( O(m ∗ n) ), Guided 
GradCAM necessitates an additional step of guided backpropagation. This additional computation effectively 
doubles the workload as gradients are calculated for each individual neuron, as opposed to each feature map in 
GradCAM. Consequently, the time complexity for Guided GradCAM escalates to approximately O(2m ∗ n) . In 
our study, we further examined the temporal efficiency associated with various evaluation metrics to provide 
users with valuable insights for optimal selections. Our observations revealed that except for the metric of mutual 
information, which demands a considerably elongated execution period (approximately 250 seconds for an 
image sized 128× 128 ), the remaining metrics prove to be highly time-efficient (within a range of 0.01–0.02 s). 
This efficiency enables these metrics for potential integration into real-time clinical decision-support scenarios 
to improve model transparency.

To enhance translational research value in actual clinical settings, we utilize a poisoning attack strategy that 
incorporates designed triggers for evaluating several commonly used XAI techniques. This approach automates 
the framework without the requirement for human intervention or expert validation. Additionally, the integra-
tion of triggers eliminates the need for pixel-level annotations or ground truth, which are typically unavailable 
in real-world practice, especially for classification tasks. Specifically, we employ both static and dynamic triggers 
to meet the demands of translational clinical decision support systems. We then discuss adoptions of different 
triggers under different clinical scenarios for model transparency improvement. Static stamping, a conventional 
poisoning attack method, is readily available and can be easily customized in terms of shapes, locations, sizes, 
and other attributes based on the requirement of real-world applications. Static stamping can be employed to 
replicate hardware artifacts, such as ring artifacts, tube arcing, out-of-field artifacts, and air bubble artifacts69, 
which result from real-world imaging challenges. Dynamic triggers with pixel-level inferences are created by 
generative models, which provide flexibility in trigger design and generation to reflect real-world noise and biases 
in medical imaging. The generation method is not limited to the proposed method or a single distribution, as 
the adversary can utilize various distributions to create triggers. Employing different distributions allows the 
adversary to modify the appearance of the triggers used to mimic real-world biases, such as patient-based artifacts 
due to patient movement or the presence of metallic materials (e.g., motion artifact70, transient interruption of 

Figure 9.   Examples of evaluation results of seven XAI models when facing static electricity in film radiography 
artifact. In instances of severe static electricity artifacts due to forcible unwrapping or excessive flexing of 
films (top row), LIME boasts a superior IoU of 0.87. This value suggests its heightened ability to detect 
device artifacts, as evidenced by a greater alignment with human-annotated ground truth. Conversely, when 
confronted with mild static electricity artifacts (bottom row), Guide GradCAM emerges as the top performer 
with an IoU of 0.85. This highlights its efficacy as the most reliable XAI model for pinpointing artifacts that lead 
to performance degradation.



15

Vol.:(0123456789)

Scientific Reports |        (2023) 13:19488  | https://doi.org/10.1038/s41598-023-46493-2

www.nature.com/scientificreports/

contrast71, clothing and jewelry artifact), physics-based artifacts when acquiring imaging (e.g., beam hardening72, 
partial volume averaging, aliasing artifact, photon starvation73, quantum mottle, truncation artifact74), and helical 
and multichannel artifacts (e.g., windmill artifact, cone beam effect75, multiplanar reconstruction artifact72, zebra 
stripes76, stair-step artifact) during medical imaging reconstruction processes. Specifically, we present a case study 
that utilizes our proposed evaluation strategy to determine the optimal XAI method in the presence of film radi-
ography artifacts, as illustrated in Fig. 9. By leveraging static and dynamic trigger generation, the proposed XAI 
method evaluation pipeline can be generalized to specific real-world settings, facilitating translational research.

Based on our evaluation results, we observed that no single XAI method surpasses others in all aspects. 
However, this study might offer a useful automated evaluation strategy to help model developers optimize their 
proposed explainable solutions and aid end-users, like healthcare providers, in selecting appropriate XAI meth-
ods based on their specific requirements and application settings. There are several limitations to the current 
study. First, the current static and dynamic triggers are all synthetic, which may not fully reflect the complex-
ity and variability of real-world noise. Additionally, as an automated evaluation pipeline, the lack of human-
in-the-loop, particularly clinical experts, may limit the validity of the results. Another potential limitation of 
existing work is that we only examined post-hoc XAI methods in medical image analysis. In future work, we 
will include more inherent approaches (e.g., attention mechanisms77) in clinical decision support systems with 
state-of-the-art model architecture (e.g., ViT). Meanwhile, we will specifically investigate model reliability, the 
relationship between model accuracy and predictive probability (e.g.. Expected Calibration Error (ECE)78), to 
reveal how different XAI methods calibrate model confidence as an additional evaluating dimension. We plan 
to introduce real-world artifacts as static triggers and propose a generative network based on existing medical 
imaging artifacts for dynamic triggers to better simulate real-world noise and biases. Additionally, we aim to 
expand the current consistency evaluation to include expert agreement or additional annotations to pursue more 
accurate evaluation outcomes.

Conclusion
In this study, we proposed an automated evaluation pipeline for XAI methods of explanation generation and 
representation using patch perturbation in medical imaging analysis. To eliminate the necessity of additional 
annotations or human intervention, we first generated static and dynamic triggers for poisoning attack during 
model retraining. We then proposed a comprehensive set of evaluation metrics during the model inference stage 
to facilitate the evaluation from multiple perspectives, including effectiveness, completeness, consistency, and 
complexity. The patch perturbation-based workflow addresses the previous gap in evaluating XAI methods in 
medical imaging by eliminating the need for human intervention and providing an automated strategy. To dem-
onstrate the proposed evaluation strategy, we provided a case study with widely used XAI methods on COVID-19 
X-ray imaging classification tasks. Additionally, we provided a detailed review of existing XAI methods with an 
emphasis on the availability of evaluation to underscore the significance and necessity of the XAI pipeline in 
medical imaging analysis. We believe this study offers an automated and generalizable evaluation strategy to help 
model developers optimize their proposed explainable solutions and aid end-users, such as healthcare providers, 
in selecting appropriate XAI methods in real-world clinical research and practice.

Data availability
The datasets analysed during the current study are publicly available in the COVID-19 Radiography Database 
repository65,66.

Appendix: Notation
Table 4 summarizes the notation frequently used in this study.

Table 4.   Summary of the notations.

Notations Description

x , xi Original input images

x̃ , x̃i Patch-perturbed images

x̂ , x̂i Recovered images

y, yi Original labels

ỹ , ỹi Target labels for patched images

f (·) Baseline classification model

f ′(·) Poisoned classification model

p , ps , pd Attached patches for perturbation

m Binary masks indicating the patch locations

s , si Saliency maps

M Number of cleaned samples in test set

N Number of poisoned samples in test set

ε Pixel-wise perturbation amount

α Poisoning ratio
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