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A community partitioning 
algorithm for cyberspace
Kai Qi , Heng Zhang *, Yang Zhou , Yifan Liu  & Qingxiang Li 

Community partitioning is an effective technique for cyberspace mapping. However, existing 
community partitioning algorithm only uses the topological structure of the network to divide the 
community and disregards factors such as real hierarchy, overlap, and directionality of information 
transmission between communities in cyberspace. Consequently, the traditional community 
division algorithm is not suitable for dividing cyberspace resources effectively. Based on cyberspace 
community structure characteristics, this study introduces an algorithm that combines an improved 
local fitness maximization (LFM) algorithm with the PageRank (PR) algorithm for community 
partitioning on cyberspace resources, called PR-LFM. First, seed nodes are determined using degree 
centrality, followed by local community expansion. Nodes belonging to multiple communities 
undergo further partitioning so that they are retained in the community where they are most 
important, thus preserving the community’s original structure. The experimental data demonstrate 
good results in the resource division of cyberspace.

As cyberspace continues to develop, the amount of data about various internet resources is also increasing. 
To better manage, maintain, and optimize cyberspace, it is necessary to conduct an in-depth analysis of these 
resources and explore their internal connections. If large-scale cyberspace resource data is analyzed using tra-
ditional text, numbers, and charts, it is difficult to extract valuable resource information. To better perceive and 
describe cyberspace resource information, it is divided into communities, and the huge and complex network 
topology structure is divided into several relatively independent parts. This approach facilitates the management, 
maintenance, and optimization of the network. This division of resource communities can help us understand 
the hierarchical structure of the network and determine the important nodes and key paths in the network, 
allowing us to better optimize network performance, improve network security, and facilitate the location and 
processing of network faults1–4.

Community partitioning methods may be divided into non-overlapping and overlapping community detec-
tion methods, depending on their scope of application. A non-overlapping community only contains nodes 
belonging exclusively to the community, whereas an overlapping community contains nodes that are simultane-
ously members of two or more communities5. Non-overlapping community detection algorithms mainly include: 
modularity optimization algorithms6–8, spectral analysis algorithms9–11, information theory algorithms12–14, and 
label propagation algorithms15–17. When a non-overlapping community detection algorithm assigns a node to 
a specific community, the node would not be considered for inclusion in other communities. However, real-
world cyberspace community structures often have numerous nodes participating in two or more communi-
ties. As a result, overlapping community detection algorithms more accurately reflect the community structure 
of cyberspace18–22. Furthermore, overlapping nodes are often more important for various communities than 
non-overlapping nodes, which implies that their selection and management can influence the overall quality 
of the community partition. Overlapping community detection algorithms may be classified as global18,23,24 or 
local information-based community detection algorithms25–27. The global information-based algorithms, while 
effective, require traversal of the entire network in each iteration. This results in high time complexity and 
renders them unsuitable for real large-scale networks. To reduce the time complexity of community detection, 
Lancichinetti et al. proposed the local information-based local fitness maximization (LFM) algorithm26, which 
introduces a fitness function and a community-size parameter, enabling the detection of overlapping community 
structures at different levels. Although LFM is very fast and can analyze large-scale networks with millions of 
nodes, it randomly selects seed nodes for local community expansion during community partitioning. Conse-
quently, it produces a different community partitioning in every run. Due to the differences between network 
structures and properties, no unique community detection algorithm can be universally adapted to various 
networks with high accuracy28. Therefore, numerous scholars have carried out a series of studies on different 
network and purpose needs. Berahmand et al. proposed the Augment Graph Regularization Nonnegative Matrix 
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Factorization for Attributed Networks (AGNMF-AN) community partitioning algorithm29. Ma et al. proposed 
a multi-layer community discovery algorithm based on joint non-negative matrix decomposition30. Zhu et al. 
proposed a modularity optimization algorithm based on k-plex, which can accurately identify small community 
structures31. Zhe et al. used a greedy maximization modularity algorithm to partition the community of network 
topology and attribute information32. Bahulkar et al. found the community structure by optimizing the local 
modularity of the community33. Zhang et al.’s agglomerative approach used the concept of real connections to 
discover overlapping communities in the network34.

The common methods used for identifying key nodes in a community include degree centrality35, between-
ness centrality36, closeness centrality37, and eigenvector centrality38. However, none of these measures account 
for the directionality of node-to-node information transfers in the cyberspace community structure. Google 
introduced the eigenvector centrality-based PageRank (PR) algorithm39, which utilizes the concept of random 
walks in graph theory12. PR views the network as a directed graph, with each webpage being a node and each 
link being a directed edge, and ranks the webpages according to their importance, which is determined from 
their linkage relations with other webpages.

The traditional community division algorithm only considers the structure of the network and does not 
consider the attributes of the community structure in the cyberspace. If the traditional community division 
algorithm is used, it cannot accurately divide the resources in the cyberspace. In a real cyberspace community 
structure, there are often numerous nodes that exist in two or more communities, and the transmission of infor-
mation in cyberspace is characterized by direction. Therefore, we propose a community partitioning algorithm 
of network resource mapping, PR-LFM (Pagerank-local Fitness Maximization), which integrates the improved 
LFM algorithm with PR algorithms. Among them, the LFM algorithm can quickly discover communities based 
on local information and analyze large-scale networks with up to one million nodes. To better mine the associa-
tion between nodes and communities, this method simultaneously considers the degree of connection between 
nodes and the similarity between nodes and communities. The PageRank algorithm not only considers the degree 
value of nodes, but also the contribution degree of nodes, and it can calculate the ranking of nodes according to 
the connection relationship of nodes in the network. Furthermore, it exhibits robust performance in the face of 
large-scale and complex networks. In this study, the PR-LFM algorithm first selects the seed node as the initial 
community based on the degree central value and then expands the initial community according to the fitness 
function. Subsequently, by comparing the importance degree of the overlapping community where the overlap-
ping node resides, the overlapping node is retained in the more important community, thereby achieving the 
same effect as the traditional non-overlapping community division algorithm. Experiments demonstrate that, 
compared with the traditional non-overlapping community partitioning algorithm, the proposed algorithm takes 
into account the hierarchy, overlap, and direction of information transmission in the cyberspace and preserves 
the original community structure in the cyberspace better.

Methods
Cyberspace community structure
Cyberspace is a virtual domain distinct from traditional geographic space, as it is an information network 
devoid of concepts of distance. Information within it spreads along specific paths and directions, with all kinds 
of events and processes occurring instantaneously and at zero distance. Hence, cyberspace is virtual, dynamic, 
directional, and open40. The main focus of cyberspace mapping is the community structure of its nodes, which 
provide insight into the internal workings of cyberspace.

The community structure of cyberspace is characterized by hierarchy, overlaps41, and directionality. In this 
context, hierarchy refers to nodes in the network having different levels of organization or structure. For instance, 
larger communities may contain smaller communities, which could in turn contain even smaller communities42. 
“Overlaps” in the community structure of cyberspace arise from the intersections that exist between different 
communities in their members, goals, and activities. “Directionality” refers to the fact that information flows from 
one cyberspace node to another are generally directional. Figure 1 illustrates four overlapping communities. Here, 

Figure 1.   Overlapping of cyberspace communities. Each color represents a different community, and the 
directed edges represent the direction of information transfer between a pair of nodes. Green nodes are 
overlapping nodes that are members of two or more communities.
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each color represents a different community, and the directed edges represent the direction of information trans-
fer between a pair of nodes. Green nodes are overlapping nodes that are members of two or more communities.

Importance metrics for directed nodes in cyberspace
As information flows in cyberspace are generally directional, we borrowed an idea from Google’s PR algo-
rithm, i.e., webpages linked to many high-quality webpages must also be high-quality webpages. In other words, 
cyberspace nodes shall be evaluated based on the idea wherein nodes linked to important nodes must also be 
important nodes themselves.

Random walk model for cyberspace
The random walk model is a Markov process with states that randomly move at discrete time intervals. The 
probability of a state being chosen at each interval is determined by the state transition matrix M. If all nodes 
connected by a directed edge to a node have equal transition probabilities12, M is then a matrix of order n:

The value of mij depends on the directed edges between the nodes. If the node j has k outdegrees and the 
node i is one of its sinks (i, j = 1, 2,…, n), the value of mij is 1/k; otherwise mij is 0. A random walk model in 
cyberspace is shown in Fig. 2.

One may thus obtain M, Eq. (2), where each column represents the out node of a node, that is, the links of 
the current node to other nodes, which sum to 1. Conversely, each row represents the in node of a node, that is, 
the link from other nodes to the current node.

The probability of the random walk process visiting some node at time t is given by the state distribution of its 
Markov chain at time t, which can be represented by an n-dimensional column vector Rt . Thus, the probability 
distribution Rt+1 for each node being visited at time t + 1 satisfies

Measurement of node importance in cyberspace using the PR algorithm
The PR algorithm depicts node linkages as a directed graph A = (V,E), where V and E denote the vertices and 
directed edges of cyberspace, respectively. A random walk model, or a first-order Markov chain, is introduced to 
represent the process of information transfer between cyberspace nodes. This model can be used to evaluate node 
importance in cyberspace. The transition matrix of a general random walk model comprises a linear combination 
of two parts: one is the basic transition matrix M of the directed graph, which assigns equal transfer probabilities 
from one node to all its sinks, and the other is the random transfer matrix, which has a transition probability 
of 1/n from one node to any other node. This general random walk Markov chain has a stationary distribution, 
denoted as R. The stationary distribution vector R is defined as the general PR of this directed graph39.

The first term in Eq. (4) represents the probability of each node being visited according to the transfer matrix 
M, and the second term denotes the completely random probability of each node being visited. d is the linear 
combination coefficient, and when d is close to 1, the random walk mainly occurs according to the transfer matrix 
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Figure 2.   Random walk model for cyberspace. Nodes A, B, C, and D represent different nodes in cyberspace. 
The directed edges between the nodes represent the direction of linkage in cyberspace, while the weight of each 
edge represents the probability of random transition between its pair of nodes. For example, if some information 
is transferred to Node A, its transition probabilities to Nodes B and C are both 1/2. If the information is 
transferred to Node B, its transition probability to Node D is 1. From Node C, the transition probability to Node 
A is 1; from Node D, there is a 1/3 probability of transition to one of Nodes A, B, and C.
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M. When d is close to 0, the random walk is dominated by random probability. Each component of R is the PR 
value of each node, which is given by:

where vi and vj represent node i and node j, M(vi) denotes the set of nodes pointing to vi and L
(

vj
)

 denotes the 
outdegree of node vj . Table 1 summarizes the commonly used parameters in this paper.

Quality metrics for cyberspace communities
In this study, modularity (Q)43 and normalized mutual information (NMI)44 are used as metrics for commu-
nity structure. Q is a metric that characterizes the degree of connection within a community, i.e., the strength 
of connectivity among nodes in the community. Based on a large body of experimental evidence, it has been 
determined that Q > 0.3 is indicative of a strong community structure45,46. NMI is a metric used to evaluate the 
similarity of the calculated clustering solution to the actual community structure, as it measures the clustering 
similarity of two clustering solutions.

The community partitioning algorithm for cyberspace mapping
In this study, a community partitioning algorithm for cyberspace mapping, known as PR-LFM, was constructed 
by combining an improved LFM algorithm with PR. This algorithm has three distinct stages: seed node selec-
tion, local community expansion, and the partitioning of overlapping nodes. The procedures of the algorithm 
are as follows:

•	 Step 1. Seed node selection

In the original LFM algorithm, seed nodes are randomly selected, which results in unstable partitioning 
results. Given that nodes with high degree centrality are usually key nodes that are important for the dissemina-
tion of information, the seed nodes were selected based on the degree centrality. The degree centralities of all 
nodes in the community are calculated using Eq. (6), and the nodes are then ranked accordingly. The node that 
has the highest degree centrality is selected as the seed node. This ensures that the same seed nodes are chosen 
in each run, which assures stable results.

•	 Step 2. Local community expansion

The node with the highest degree centrality from Step (1) is selected as the seed node to start community 
expansion. The fitness of this community is then calculated using the following equation:

where kGin(kGout ) is the sum of the weights of the edges inside (outside) community G, and α is the resolution 
parameter that controls the size of the community. The hierarchy of the community structure can be analyzed by 
selecting different values of α to partition the network (When the α value is low, fewer communities are divided. 
When the α value is large, more communities are divided).

For any node in the network, a fitness function f iG may be defined for the fitness of node i for the community 
G:

(5)PR(vi) = d

(

∑

vj∈M(vi)

PR(vj)
L(vj)

)

+
1−d
n , i = 1, 2, . . . , n,

(6)DCi =
ki

n−1

(7)fG =
kGin

(

kGin+kGout
)α ,

(8)f iG = fG+i − fG−i ,

Table 1.   Commonly used parameters.

Notation Explanation

n Number of network nodes

M ∈ ℝn×n State transition matrix of network nodes

G Community

Rn×1 Stationary distribution of the general random walk Markov chain

A Directed graph

V Vertices of cyberspace

E Directed edges of cyberspace

1 Column vector of size n in which all elements are equal to 1
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where fG−i and fG+i are the fitnesses of community G before and after node i is added, respectively. The value of 
f iG can be used to determine whether the node joins the community G or not. If f iG > 0 , the addition of node i 
increases the fitness of community G; hence, the node should be retained in community G; otherwise, the node 
should be removed from community G. The expansion of community G terminates after all nodes have been 
traversed25. The node with the highest degree of centrality among the unpartitioned nodes is then selected as a 
seed node for expansion into a new community. This process is repeated until all nodes have been partitioned 
into at least one community.

•	 Step 3. Partitioning of overlapping nodes

Based on the communities that were detected in Step (2), if there exists some communityi that is entirely a 
subset of another communityj (green and red nodes in Fig. 3, respectively), it is necessary to traverse all com-
munities to eliminate all instances of communityi.

Subsequently, the communities that contain overlapping nodes are identified from the remaining communi-
ties, and the overlapping nodes are then partitioned into their rightful communities. To this end, the PR value of 
each overlapping node in each community is calculated, and the node is ultimately retained in the community 
with the highest PR value. An example is shown in Fig. 4.

Steps (2) and (3) are repeated until all nodes have been partitioned into a community. A flowchart of the 
algorithm is shown in Fig. 5. In this study, NetworkX,47 Gephi48, and Echarts network analysis packages are used 
to implement the community detection algorithm.

Experiments and analysis
This study compares the PR-LFM algorithm with the traditional community partitioning algorithm to verify the 
reliability of the proposed algorithm in small-scale network partitioning. Subsequently, it performs community 
partitioning based on the real cyberspace router topology data. Experiments demonstrate that the proposed 
algorithm can retain the real structure of the community better when partitioning the data of large-scale network 
resources, which can help us better explore the internal connections.

Validation of the PR‑LFM algorithm’s reliability
To verify the reliability of the PR-LFM algorithm and ascertain its practical value, the Q, NMI, and time of the 
PR-LFM algorithm are compared with those of other non-overlapping community detection algorithms, such 
as the GN, Louvain, Infomap, and LPA algorithms. These community detection tests were performed on the 
classic Karate49, Dolphins50, Lesmis51, Polbooks52, and small scale real router networks. The details of these classic 
networks are presented in Table 2, and the router network information is shown in Table 3.

communityi

communityj

Figure 3.   Fully overlapping communities. Nodes in communityi exist entirely in communityj.

Figure 4.   Community detection model for cyberspace mapping. The green overlapping nodes are partitioned 
into the red, purple, and yellow communities to form a new community structure. Then, the PR value of each 
overlapping node in each community is calculated, and the node is ultimately retained in the community with 
the highest PR value.
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The Karate network comprises members of a karate club49. Our proposed algorithm partitioned this network 
into four communities and found one overlapping node. The Dolphin network, constructed by Lusseau et al. in 
New Zealand, models the habits of bottle-nosed dolphins50. Our algorithm partitioned this network into seven 
communities, identifying four overlapping nodes. The Lesmis network represents interactions among characters 
in Victor Hugo’s "Les Misérables."51 This network was partitioned into four communities, with 12 overlapping 
nodes. The Polbooks network was constructed by analyzing the political leanings of purchasers of American 
political books in the Amazon online bookstore52. This network was partitioned into three communities, with 
three overlapping nodes. Finally, the overlapping nodes were retained in the community for which they had the 
highest PR value, as shown in Fig. 6.

To evaluate the reliability of the algorithm, the Q and NMI of the PR-LFM algorithm on said classic networks 
were compared to those of other non-overlapping community detection algorithms, as shown in Table 4. It 
can be observed that the PR-LFM algorithm produces results that are comparable with those of conventional 
non-overlapping community partitioning algorithms in the aforementioned classic networks. In terms of Q, the 
PR-LFM algorithm is the best performer on the Karate network, with Q = 0.4156. Furthermore, the Q values of 
the PR-LFM algorithm for the Dolphin network and the Polbooks network are higher than those of the Infomap 

Figure 5.   Algorithmic flowchart for the PR-LFM community detection algorithm. The flow chart describes our 
algorithm in detail, all nodes go through three steps, and the final output node is the partitioned results.

Table 2.   Classic networks.

Network name Nodes Edges Community Average network degree Map density

Karate 34 78 2 4.588 0.139

Dolphins 62 159 2 3.968 0.084

Lesmis 77 254 – 2.156 0.029

Polbooks 105 441 3 2.752 0.026

Table 3.   Features of router networks.

Network I Network II Network III Network IV Network V Network VI Network VII Network VIII

Nodes 100 143 175 195 200 226 300 350

Edges 288 222 277 285 620 359 906 978
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and LPA algorithms. In terms of NMI, the PR-LFM algorithm is the best performer on the Polbooks network, 
with NMI = 0.55657. Moreover, the NMI of the PR-LFM algorithm on other networks is comparable to those of 
the conventional algorithms.

Since there is no real community partition result in the router network, the reliability of the proposed algo-
rithm is analyzed in terms of modularity and running time. A comparison of the PR-LFM algorithm proposed 

(a) Karate network

(b) Dolphin network

(c) Lesmis network

(d) Polbooks network

Figure 6.   Results of community detection by the PR-LFM algorithm on classic networks. In the figures on the 
left, the overlapping nodes are colored red. The results of community division are shown on the right, where 
all nodes in the same community have the same color. The sizes of the nodes are proportional to their degree 
centrality.

Table 4.   NMI and Q values of the PR-LFM algorithm and conventional community detection algorithms on 
classic networks. Significant values are in [bold].

GN Louvain Infomap LPA PR-LFM

Karate
Q 0.4013 0.41511 0.35051 0.35470 0.41560

NMI 0.57983 0.70714 0.56444 0.72096 0.60214

Dolphin
Q 0.51938 0.51958 0.39977 0.45633 0.49830

NMI 0.55416 0.47425 0.45441 0.46122 0.44658

Lesmis
Q 0.53807 0.55827 0.47092 0.52668 0.51171

NMI – – – – –

Polbooks
Q 0.5168 0.52639 0.39786 0.48114 0.49927

NMI 0.55845 0.55609 0.46804 0.53410 0.55657
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in this study and the traditional non-overlapping community, showing the module degree Q and running time 
of the algorithm during community partitioning on the router network, is presented in Table 5 and Fig. 7.

As depicted in Fig. 7, when the proposed algorithm divides communities for real router networks, the modu-
larity value consistently surpasses 0.3, indicating that when the proposed algorithm divides communities for 
router resources in cyberspace, it takes into account the hierarchical and overlapping characteristics of com-
munities in cyberspace and the directivity of transferring resource information, the community structure in 
cyberspace can still be well preserved. By comparing the modularity with other traditional community par-
titioning algorithms, we can see that the proposed algorithm can achieve the effect of traditional community 
partitioning algorithms. Simultaneously, Table 5 reveals that the operation efficiency of the proposed algorithm 
is significantly higher than that of the GN algorithm. The running time is basically consistent with that of other 
traditional algorithms, indicating that the algorithm can still be applied to large-scale networks after compre-
hensive consideration of the characteristics of resource data in the cyberspace.

The experimental results demonstrate that the PR-LFM can achieve the partition effect of the traditional 
non-overlapping algorithm when classifying resources in the cyberspace. By considering the overlap between 
communities in real cyberspace, the algorithm proposed in this study can control the number of communities 
through the parameter α value of community size and consider the direction of resource information transmis-
sion in cyberspace through the PageRank algorithm. Compared with the traditional community division algo-
rithm, the algorithm proposed in this study effectively retains the features in the cyberspace. Simultaneously, it 
achieves a level of efficiency comparable to mainstream algorithm in community division and can be applied to 
large-scale cyberspace resource data, demonstrating its research value.

Application of the PR‑LFM algorithm to cyberspace mapping
Following the effectiveness of the PR-LFM algorithm was validated, a community partitioning test was performed 
using real router topology data. This dataset contains 4677 router nodes and 6123 edges comprised of child and 
parent nodes. The experimental procedures are as follows:

(1)	 Following multiple trials, it was found that community partitioning can be performed effectively using α 
values of [0.45–0.54]. Furthermore, the number of detected communities depended on α, which reflects 
on the hierarchical nature of the community structure. To optimize the algorithm, Q was plotted against 
α, as shown in the graph of Fig. 8.

Figure 8 illustrates that Q always exceeds 0.3 when α = [0.45, 0.54], indicating that the algorithm produces 
good results for these values of α. As Q increases significantly when α increases from 0.46 to 0.47, it is implied 

Table 5.   Comparison of the running time of router networks on different community partitioning algorithms 
(seconds).

GN Louvain Infomap LPA PR-LFM

Network I 5.64736 0.01079 0.01248 0.00996 0.01296

Network II 4.55494 0.01496 0.01358 0.01331 0.01392

Network III 15.36345 0.02172 0.01747 0.01894 0.02393

Network IV 12.73726 0.02389 0.02247 0.02046 0.03293

Network V 28.70579 0.02696 0.02745 0.02496 0.03438

Network VI 47.24140 0.02798 0.02897 0.02647 0.03472

Network VII 92.06524 0.04775 0.04893 0.03494 0.05120

Network VIII 128.62424 0.04985 0.05192 0.04742 0.05996

Figure 7.   Comparison results of PR-LFM and comparison algorithm Q on the router network.
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that α = 0.47 gives the ideal degree of node connectivity and separation within the detected communities. From 
α = 0.47 to α = 0.54, Q only fluctuates slightly around 0.75, which shows that the intra- and inter-community 
structure was already stable at α = 0.47. Q reached its maximum (0.7526) when α was 0.50.

(2)	 The degree centralities of all router nodes that correspond to α = 0.50 were calculated using Eq. (6), as shown 
in Fig. 9. Here, ID 1980 has the highest degree centrality, at 0.120615911. Therefore, this node was used as 
the initial seed node for local community expansion.

The router network was subsequently partitioned based on fitness values, which yielded 86 communities. 80 
had overlapping router nodes, and 1359 router nodes, or approximately 29.06% of all router nodes, were present 
in two or more communities.

(3)	 The overlapping router nodes were assigned to their respective communities by comparing their PR values 
for each community and assigning the node to the community in which their PR was higher. This process 
was repeated until each node belonged to just one community. The PR-LFM algorithm ultimately parti-
tioned the 4677 router nodes into 86 communities, as shown in Fig. 10.

To test the reliability of PR-LFM on large-scale networks, the PR-LFM algorithm was compared to the afore-
mentioned non-overlapping algorithms in terms of Q (except for the GN algorithm, as it has a time complexity of 
O(n3) where n is the number of nodes, making it unsuitable for large-scale networks). Table 6 indicates that the 
PR-LFM algorithm is second only to the Louvain algorithm in terms of Q. Unlike other algorithms, the PR-LFM 
algorithm can revisit a node multiple times during community partitioning and directly evaluate each node’s 
contribution to its community, thus enabling the detection of node overlaps. Moreover, the assignment of overlap-
ping nodes to the communities in which they are the most important helps preserve the community structure.

Figure 8.   Results of community detection on a real router network using the PR-LFM algorithm with different 
values of α.

Figure 9.   Degree centrality of different router nodes.
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Conclusion
To account for the hierarchical and overlapping nature of the community structure of cyberspace and the direc-
tionality of its information transfers, we propose the PR-LFM algorithm, a community partitioning method that 
combines an improved LFM algorithm with the PR algorithm. To account for community overlaps in actual 
cyberspace, the seed nodes are determined using degree centrality, and the nodes are partitioned into overlapping 
communities based on a fitness function. To account for the directional nature of information transfer between 
router nodes, the PR algorithm is used to calculate PR values for overlapping nodes in each of their communi-
ties, which are retained in the community where they are the most important (i.e., have the highest PR value). 
Thus, the overlapping cyberspace communities are partitioned into non-overlapping communities. Experiments 
were conducted on the classic Karate, Dolphins, Lesmis, and Polbooks networks and real router topology data, 
which led to the following conclusions:

(1)	 Based on comparisons in terms of Q, NMI, and time, the PR-LFM algorithm was found to match the per-
formance of conventional non-overlapping community partitioning algorithms. Furthermore, the PR-LFM 
algorithm produces stable community partitioning results, as it uses degree centrality to select seed nodes. 
Therefore, the PR-LFM algorithm is reliable for the partitioning of cyberspace router nodes.

(2)	 The PR-LFM algorithm can account for community overlaps during the community partitioning process. 
When partitioning 4677 router nodes, it detected 1359 overlapping nodes, representing 29.06% of all router 
nodes. Unlike conventional non-overlapping community detection algorithms, PR-LFM would subse-
quently partition these overlapping nodes into distinct communities; this helps preserve the community 
structure.

(3)	 The PR-LFM algorithm accounts for the directionality of information transfers between routers in cyber-
space by using the PR algorithm to evaluate the importance of each node in the network, which allows the 
algorithm to accurately characterize router node interactions.

(4)	 As the non-overlapping communities derived from this algorithm account for the hierarchy, overlap, and 
directionality of community structures, it is suitable for mapping large-scale cyber-networks and has wide-

Figure 10.   Results of community detection on a real router network using the PR-LFM algorithm. Each circle 
represents a different community, and the size of the circle represents the number of nodes in the community. 
For instance, Community0, which has the most router nodes (378), presents the largest circle.

Table 6.   Q of the PR-LFM algorithm and conventional community detection algorithms on an actual router 
network. Significant values are in [bold].

Algorithm Q

GN –

Louvain 0.7758

Infomap 0.6862

LPA 0.6553

PR-LFM 0.7526
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ranging applications in social network analysis, bioinformatics, recommendation systems, and natural 
language processing.

The goal of this study is to divide the resource node community in cyberspace to manage, maintain, and 
optimize the mapping data of cyberspace resources. The results demonstrate that the proposed algorithm con-
siders the hierarchy, overlap, and direction of information transmission in the real network structure and can 
retain the structure in the real cyberspace. Considering that several network resource data have the attributes of 
geographic space, future research can explore the attributes of network, and geographic space can be combined 
as the basis for community division. This approach would enable community structure division to consider the 
characteristics of both network and geographic space, as well as promote the cross-domain application of data and 
resource information mining. Simultaneously, due to the consideration of community structure characteristics in 
cyberspace, the proposed algorithm exhibits improved time complexity when compared to the LFM algorithm. 
Therefore, the following work can focus on optimizing the algorithm and reducing the time complexity to enable 
efficient handling of large-scale cyberspace resource data.

Data availability
The data used in this study were all derived from citable primary sources, and the actual datasets used in this 
study may be obtained from the corresponding author.

Received: 20 June 2023; Accepted: 2 November 2023

References
	 1.	 Ni, C. C., Lin, Y. Y., Luo, F. & Gao, J. Community detection on networks with Ricci flow. Sci. Rep. 9, 9984 (2019).
	 2.	 Kirkley, A. & Newman, M. E. J. Representative community divisions of networks. Commun. Phys. 5 (2021).
	 3.	 Wang, X. et al. Multiscale model construction of elements of point groups in network space by combining Blondel algorithm and 

the hybrid algorithm of k-core decomposition. J. Geo-Inf. Sci 23, 2128–2138 (2021).
	 4.	 Zhu, Z. Hierarchical Representation of Network Map (Wuhan Univ., 2017).
	 5.	 Luo, Z. et al. New advances in complex network community detection algorithms. J. Natl. Univ. Def. Technol. 33, 47–52 (2011).
	 6.	 Girvan, M. & Newman, M. E. J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. U. S. A. 99, 7821–7826 

(2002).
	 7.	 Clauset, & Aaron,. Finding local community structure in networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 72(2), 026132 

(2005).
	 8.	 Newman, M. E. J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006).
	 9.	 Ng, A., Jordan, M. & Weiss, Y. On spectral clustering: Analysis and an algorithm. Adv. Neural J. Inf. Process. Syst. 849–856 (2002).
	10.	 Donetti, L. & Munoz, M. A. Detecting network communities: A new systematic and efficient algorithm. J. Stat. Mech. Theory Exp. 

2004(10), 10012 (2004).
	11.	 Capocci, A., Servedio, V. D. P, Caldarelli, G. & Colaiori, F. Detecting communities in large networks. Phys. A Stat. Mech. Appl. 

(2005).
	12.	 Rosvall, M. & Bergstrom, C. T. Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. U. 

S. A. 105, 1118–1123 (2008).
	13.	 Rosvall, M. & Bergstrom, C. T. An information-theoretic framework for resolving community structure in complex networks. 

Proc. Natl. Acad. Sci. 104(18), 7327–7331 (2007).
	14.	 Reichardt, J. & Bornholdt, S. Statistical mechanics of community detection. Phys. Rev. E 74(1), 016110 (2006).
	15.	 Raghavan, U. N., Albert, R. & Kumara, S. Near linear time algorithm to detect community structures in large-scale networks. Phys. 

Rev. E Stat. Nonlinear Soft Matter. Phys. 76, 036106 (2007).
	16.	 Chen, J. & Saad, Y. Detecting overlapping communities using node-based signal processing. Phys. Rev. E 86(1), 016109 (2012).
	17.	 Li, X., Zhang, W. & Liu, X. Edge based community detection using improved label propagation algorithm. Phys. A Stat. Mech. 

Appl. 442, 362–374 (2015).
	18.	 Palla, G., Derényi, I., Farkas, I. & Vicsek, T. Uncovering the overlapping community structure of complex networks in nature and 

society. Nature 435, 814–818 (2005).
	19.	 Zhang, S., Wang, R. S. & Zhang, X. S. Identification of overlapping community structure in complex networks using fuzzy c-means 

clustering. Phys. A 374, 483–490 (2007).
	20.	 Nicosia, V., Mangioni, G., Carchiolo, V. & Malgeri, M. Extending the definition of modularity to directed graphs with overlapping 

communities. J. Stat. Mech. 3166–3168 (2009).
	21.	 Baumes, J., Goldberg, M. & Magdon-Ismail, M. Efficient Identification of Overlapping Communities (Springer, 2005).
	22.	 Baumes, J., Goldberg, M. K., Krishnamoorthy, M. S., Magdon-Ismail, M. & Preston, N. Finding communities by clustering a graph 

into overlapping subgraphs. Proc. IADIS Int. Conf. Appl. Comput. AC2005 (2005).
	23.	 Shen, H., Cheng, X., Cai, K. & Hu, M. Detect overlapping and hierarchical community structure in networks. Phys. A 388, 

1706–1712 (2009).
	24.	 Gregory, S., A fast algorithm to find overlapping communities in networks. Mach. Learn. Knowl. Discov. Databases, 408–423 (2008).
	25.	 Schott, Lancichinetti, A., Fortunato, S. & Kertész, J. Detecting the overlapping and hierarchical community structure of complex 

networks. New J. Phys. 11, 033015 (2009).
	26.	 Lancichinetti, A. & Fortunato, S. Community detection algorithms: A comparative analysis. Phys. Rev. E 80(5), 056117 (2009).
	27.	 Lancichinetti, A., Radicchi, F., Ramasco, J. J. & Fortunato, S. Finding statistically significant communities in networks. PLoS ONE 

6(4), e18961 (2008).
	28.	 Rostami, M. et al. Community detection algorithms in healthcare applications: A systematic review. IEEE Access (2023).
	29.	 Berahmand, K. et al. Graph regularized nonnegative matrix factorization for community detection in attributed networks. IEEE 

Trans. Netw. Sci. Eng. 10(1), 372–385 (2022).
	30.	 Ma, C. et al. Identification of multi-layer networks community by fusing nonnegative matrix factorization and topological structural 

information. Knowl. Based Syst. 213, 106666 (2021).
	31.	 Zhu, J., Chen, B. & Zeng, Y. Community detection based on modularity and k-plexes. Inf. Sci. 513, 127–142 (2020).
	32.	 Zhe, C., Aixin S. & Aokui A. Community detection on large complex attribute network. In Proceedings of the 25th ACM SIGKDD 

International Conference on Knowledge Discovery & Data Mining (2019).
	33.	 Bahulkar, A. et al. Community detection with edge augmentation in criminal networks. In 2018 IEEE/ACM International Confer-

ence on Advances in Social Networks Analysis and Mining (ASONAM). (IEEE, 2018).



12

Vol:.(1234567890)

Scientific Reports |        (2023) 13:19021  | https://doi.org/10.1038/s41598-023-46556-4

www.nature.com/scientificreports/

	34.	 Zhang, Y. et al. True-link clustering through signaling process and subcommunity merge in overlap community detection. Neural 
Comput. Appl. 30, 3613–3621 (2018).

	35.	 Freeman, L. C. Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1978).
	36.	 Freeman, L. C. A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977).
	37.	 Sabidussi, G. The centrality of a graph. Psychometrika 31, 581–603 (1966).
	38.	 Bonacich, P. Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. 2, 113–120 (1972).
	39.	 Page, L., Brin, S., Motwani, R. & Winograd, T., The PageRank citation ranking: Bringing order to the web. Technical report. Stanford 

Infolab. (1999).
	40.	 Ai, T. The development of cartography driven by big data. Surv. Map Geomat. 41, 5–11 (2016).
	41.	 Wang, X. & Liu, Y. A review of community structure algorithms in complex networks. J. Univ. Electron. Sci. Technol. China 38, 

537–543 (2009).
	42.	 Blondel, V. D. et al. Fast unfolding of communities’ hierarchies in large networks. J. Stat. Mech. P10008 (2008).
	43.	 Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E Stat. Nonlinear Soft Matter. 

Phys. 69, 026113 (2004).
	44.	 Danon, L., Díaz-Guilera, A., Duch, J. & Arenas, A. Comparing community structure identification. J. Stat. Mech. P09008–P09008 

(2005).
	45.	 Clauset, A., Newman, M. E. & Moore, C. Finding community structure in very large networks. Phys. Rev. E Stat. Nonlinear Soft 

Matter. Phys. 70, 066111 (2004).
	46.	 Fortunato, S. & Barthélemy, M. Resolution limit in community detection. Proc. Natl Acad. Sci. U. S. A. 104, 36–41 (2007).
	47.	 Hagberg A. A., Schult D. A. & Swart P. J. Exploring network structure, dynamics, and function using Network X. In Proceedings 

of the 7th Python in Science Conference, SciPy 200811–16 (2008).
	48.	 Bastian, M., Heymann, S. & Jacomy M. Gephi: An open source software for exploring and manipulating networks[C]. In Third 

International AAAI Conference on Weblogs and Social Media (2009).
	49.	 Zachary, W. W. An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452–473 (1977).
	50.	 Lusseau, D. et al. The bottlenose dolphin community of Doubtful Sound features a large proportion of long-lasting associations. 

Behav. Ecol. Sociobiol. 54, 396–405 (2003).
	51.	 Knuth, D. E. The Stanford GraphBase: A Platform for Combinatorial Computing (Addison-Wesley, 1993).
	52.	 Adamic, L. A. & Glance, N. The political blogosphere and the 2004 U.S. election: Divided they blog. In Proceedings of the 3rd 

International Workshop on Link Discovery, 36–43 (2005).

Acknowledgements
This work is supported by the National Key Research and Development Program of China, No.2016YFB0801301-2, 
No.20162016YFB0801303.

Author contributions
The principal authors, H.Z. and Y.Z., contributed equally to this work. Y.L. and Q.L. contributed equally in terms 
of data and theoretical guidance. All authors have read and approved the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to H.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A community partitioning algorithm for cyberspace
	Methods
	Cyberspace community structure
	Importance metrics for directed nodes in cyberspace
	Random walk model for cyberspace
	Measurement of node importance in cyberspace using the PR algorithm

	Quality metrics for cyberspace communities
	The community partitioning algorithm for cyberspace mapping

	Experiments and analysis
	Validation of the PR-LFM algorithm’s reliability
	Application of the PR-LFM algorithm to cyberspace mapping

	Conclusion
	References
	Acknowledgements


