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PBK correlates with prognosis, 
immune escape and drug response 
in LUAD
Hongyu Ma 1,4, Jing Zhang 3, Yan Shi 4, Ziqiang Wang 5, Wenhu Nie 1, Jingjing Cai 1, 
Yinglong Huang 3, Bin Liu 6, Xiaojing Wang 4,7* & Chaoqun Lian 2,5,7*

PBK (PDZ-binding kinase) is a protein-coding gene that encodes a serine/threonine protein kinase 
associated with the dual-specific mitogen-activated protein kinase (MAPKK) family. Overexpression 
of this gene is closely linked to tumor development. In this study, we aimed to investigate the role 
of PBK in lung adenocarcinoma (LUAD) progression, prognosis, and immune evasion. We conducted 
a pan-cancer analysis of PBK to examine its expression and prognostic value. In the LUAD cohort, 
we analyzed PBK expression, prognosis, mutational features, and immune infiltration in groups 
with different PBK expression levels. We constructed a PBK-associated genomic model, integrated 
it into a nomogram, and compared high and low-risk subgroups. In our pan-cancer analysis, PBK 
was significantly upregulated, particularly in LUAD patients, and displayed poor prognosis. The high 
PBK expression group had many deletion mutations but still showed gene upregulation. Immune 
infiltration analysis indicated that PBK-triggered immune escape in the high expression group might 
relate to antigen presentation, dendritic cell, and CD8+ T cell infiltration. We constructed a 5-gene 
prognostic model and a nomogram to quantify individual survival probabilities. The PBK-associated 
gene prognostic model reliably predicted patient prognosis and drug response. Our findings offer new 
insights into PBK-induced immune escape and targeted therapy during LUAD development, providing 
valuable suggestions for clinical treatment approaches.
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HNSC	� Head and neck squamous cell carcinoma
KICH	� Kidney chromophobe
KIRC	� Kidney renal clear cell carcinoma
KIRP	� Kidney renal papillary cell carcinoma
LAML	� Acute myeloid leukemia
LGG	� Brain lower grade glioma
LIHC	� Liver hepatocellular carcinoma
LUAD	� Lung adenocarcinoma
LUSC	� Lung squamous cell carcinoma
MESO	� Mesothelioma
OV	� Ovarian serous cystadenocarcinoma
PAAD	� Pancreatic adenocarcinoma
PCPG	� Pheochromocytoma and paraganglioma
PRAD	� Prostate adenocarcinoma
READ	� Rectum adenocarcinoma
STAD	� Stomach adenocarcinoma
TGCT​	� Testicular germ cell tumors
THCA	� Thyroid carcinoma
UCEC	� Uterine corpus endometrial carcinoma
UCS	� Uterine carcinosarcoma

Non-small cell lung cancer (NSCLC) is one of the most common cancers worldwide, accounting for approximately 
55–60% of lung cancer deaths1. Lung adenocarcinoma (LUAD) has now become the most prevalent subtype of 
NSCLC and a significant cause of cancer-related mortalities globally. Currently, even patients with good clinical 
stage lung adenocarcinoma have a poor prognosis, showing an overall survival rate of about 70% at 5 years 
post-surgical resection2. This indicates that there is a need for further optimization of lung adenocarcinoma 
treatments, including adjuvant drug-targeted therapy and immunotherapy. However, patient-specific optimized 
treatment options are still limited. While chemotherapy remains a recommended clinical treatment, only patients 
with more discernible mutations are eligible for targeted therapy. For instance, oncogenic driver mutations in 
genes encoding anaplastic lymphoma kinase (ALK) or epidermal growth factor receptor (EGFR) can render lung 
tumors sensitive to targeted tyrosine kinase inhibition3. Thus, there is an urgent requirement for screening new 
molecular targets of LUAD to optimize patient selection.

There is growing evidence that the tumor microenvironment (TME) plays a crucial role in promoting lung 
cancer development and progression4. In one study, the spatial distribution of CD8+ T cells was observed across 
three immunophenotypic gradients: immune inflammation (II TIME), immune desert (ID TIME), and immune 
rejection (IE TIME)5,6. Inflammatory tumors exhibit intact IFNg signaling, PD-L1 expression, TILs, B cells, 
antigen expression, intact HLA, and tumor cell surface MHC class I expression, leading to a large inflammatory 
cell infiltrate in the tumor and generally resulting in a better response to immune checkpoint inhibitor (ICI) 
therapy7. However, patients with immune rejection tumors or immune deserts often exhibit poor responses to 
ICI therapy due to lack of T-cell infiltration and low MHC class I expression. The connection between different 
immune subtypes of tumors and targeted drug therapy is significant, leading to the development of individualized 
treatment strategies.

The PBK gene encodes a serine/threonine protein kinase associated with the bispecific mitogen-activated 
protein kinase (MAPKK) family8,9. It is involved in lymphocyte activation and is active only during mitosis. 
Phosphorylation of PBK can form a complex with TP53, causing TP53 instability and reducing G2/M checkpoints 
during doxorubicin-induced DNA damage10. Some evidence indicates that PBK expression levels correlate 
with hypoxia in various tumors and affect processes such as tumorigenicity and progression11. Meanwhile, 
tumor immune escape in patients contributes to malignant proliferation and metastasis without killing cancer 
cells, often making immunotherapy and chemotherapy ineffective or resistant. PBK interaction with HIF1 can 
upregulate programmed death ligand 1 (PD-L1) and vascular endothelial growth factor (VEGFA) expression 
via the hypoxia-inducible factor 1α (HIF-1α) pathway12–14. Consequently, hypoxia-mediated tumor immune 
escape is likely to occur. In general, PBK can influence the immune phenotype and immune microenvironment 
of tumor patients, but the exact effects of PBK on tumor immune status, microenvironment, and patient response 
to immunotherapy require further investigation.

Materials and methods
Pan‑cancer data source and processing
The TCGA database (https://​portal.​gdc.​cancer.​gov/) stores current RNA-seq data for 33 cancer types for 
download by investigators, and we also obtained prognostic information for the corresponding cancers. RNA 
sequencing data values from the TCGA dataset were uniformly converted to transformed log2(TPM + 1) values. 
Data from patients with partial somatic mutations and copy number alterations were downloaded from the 
cbioportal.org online tool (https://​www.​cbiop​ortal.​org) and GDC for studying the relationship between CNA 
and DNA alterations in patients with and without disease (CNA and mutations). We also obtained pan-cancer 
TMB data for mapping the correlation between PBK and TMB, and the correlation analysis was performed using 
the Spearman method. In combination with the obtained sample mutation data we also downloaded from GDC 
a level 4 simple nucleotide variation dataset of all TCGA samples processed by MuTect2 software to demonstrate 
the landscape of PBK gene alterations.

https://portal.gdc.cancer.gov/
https://www.cbioportal.org
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Prognostic analysis
At the prognostic level, the prognostic impact of PBK gene in pan-cancer was analyzed by coxph function to 
analyze the relationship between gene expression and prognosis in each tumor. And the association between 
PBK gene expression and overall survival (OS), disease-specific survival (DSS), disease-free survival (DFI) and 
progression-free survival (PFI) was objectively assessed, and the significance of PBK expression and prognosis 
was obtained by Logrank test. Multivariate Cox regression and Kaplan–Meier analyses to construct PBK-
associated gene models were performed by the R packages "survminer" and "survivor".

Sources of validated data related to the PBK gene
The GSE11695915, GSE1918816, CPTAC-LUAD (https://​cptac-​data-​portal.​georg​etown.​edu/​cptac) datasets 
were used to validate PBK transcript and protein level expression, and PBK-associated gene prognostic 
modeling was validated by GSE3774517, and GSE7209418. The GSE4127119 dataset was used to validate immune 
infiltration between high and low PBK groups. HPA database(https://​www.​prote​inatl​as.​org/) for obtaining 
immunohistochemical staining data of PBK proteins in tissue sections from LUAD patients. The DepMap 
database(https://​depmap.​org/​portal/) provides experimental data of genes in a large number of cancer cell lines 
after CRISPR/RNAi, reflecting the effects of genes on the survival and proliferation of specific cell lines20. Here 
we obtained the effect data and expression data of PBK after RNAi in each LUAD cell line through Depmap.

The corresponding probe IDs were mapped to gene symbols one by one using R software according to the 
annotation file of the corresponding platform for each dataset, and expression measurements for multiple or all 
probes corresponding to the same gene were mean-combined to obtain expression values for individual genes.

Enrichment analysis
Hallmark gene sets and GSEA reference gene sets were obtained from the MSigDB database on the GSEA website 
(http://​www.​gsea-​msigdb.​org/​gsea/​index.​jsp), Version including Reactome, PID and Wikipathways database 
"MSigDB v2022.1.Hs". GSEA analysis was used to investigate differences in activated signaling pathways between 
high and low PBK samples. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis of differential genes between PBK high and low expression groups was performed using the 
clusterProfiler package, and the gene set "c2.cp.kegg.v7.4.symbols.gmt" and “c5.go.v2023.2.Hs.symbols.gmt” was 
as a reference gene set. Changes in pathway activity of Hallmark, Mariathasan and partial immune infiltration-
associated gene sets were assessed by the ssGSEA algorithm in the GSVA package21.

Assessment of the immunological profile between high and low PBK gene expression
Twenty-eight representative immune cells curated by Tumor-Immune System Interaction (TISIDB) were used to 
explore the level of immune infiltration22. The ESTIMATE algorithm was used to confirm the overall infiltration 
of stromal and immune cells in LUAD tissues and return the corresponding infiltration scores. Next, we used 
the xCELL, TIMER, CIBERSORT, MCPCounter, EPIC, and quanTIseq algorithms23–29 to calculate the level of 
stromal and immune cell infiltration in LUAD patients. Immunomodulation-related genes (chemokine-receptors, 
MHC, immunostimulatory molecules, etc.) and immune checkpoint genes were obtained from previous studies 
by Charoentong et al., Auslander et al.30,31, from which immune-related signature genes were also confirmed and 
compared with those in TISIDB. The analysis of PBK gene correlation with the 7-step cycle process of cancer 
immunity was based on that obtained in the TIP (http://​biocc.​hrbmu.​edu.​cn/​TIP/)32. The evaluation of processes 
such as angiogenesis and EMT was obtained from the genome proposed by Mariathasan et al.33.

DEGs between high and low PBK expression groups
LUAD patients were divided into high PBK-expressing and low PBK-expressing subgroups according to median 
PBK expression. Genes differentially expressed between subgroups were identified using the Deseq2 package. We 
used the |logFC|> 1.5 and adjusted P value < 0.05 conditions as criteria for screening differential gene thresholds 
between PBK differentially expressed groups.

Identification of associated genes from PBK differential genes for genomic modeling and 
histogram construction
Differential genes between different expression groups of PBK obtained from the TCGA cohort were further 
screened by univariate Cox regression models for differential genes between PBK expression groups associated 
with LUAD prognosis. Screening was performed according to a threshold of P value < 0.05, and correlations 
between PBK and differential genes were analyzed by importing PBK and differential genes through the String 
database, with an intermediate confidence level set at 0.4. Differential prognostic genes associated with PBK that 
met the requirements were identified based on an intermediate confidence level > 0.4. The differential prognostic 
genes associated with PBK were subsequently used to construct a prognostic model for PBK-associated 
differential genes by multivariate Cox regression, and the PBK-associated genomic model was calculated as 
follows. Risk score = EXP(Gene1) * coefficient(1)  + … + EXP(GeneN) * coefficient(N), firstly EXP(GeneN) 
denotes the expression of the characteristic gene, where N denotes the number of PBK-related characteristic 
genes, and finally coefficient denotes the gene regression coefficient in multivariate Cox regression analysis. 
Afterwards, the risk score of each LUAD patient was calculated based on this formula. LUAD patients were 
further divided into high-risk and low-risk groups by the median of the patient’s risk score in all subsequent 
prognostic model analyses. Kaplan–Meier curves to demonstrate the differences in prognosis between the two 
groups Prognostic heat map demonstrates the patients’ risk scores, survival information and gene expression. 
Independent predictive relationships between risk scores of PBK-related gene models reflecting LUAD patients 
and age, sex, stage, T, N and M clinical characteristics and overall survival were performed by multivariate Cox. 

https://cptac-data-portal.georgetown.edu/cptac
https://www.proteinatlas.org/
https://depmap.org/portal/
http://www.gsea-msigdb.org/gsea/index.jsp
http://biocc.hrbmu.edu.cn/TIP/
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ROC curves were plotted using the survROC software package, and ROC curves were used to plot and assess 
the prognostic value of survival and Nomogram at 1, 3 and 5 years. Finally we plotted calibration curves for the 
Nomogram to determine the agreement between the actual survival probabilities and the survival probabilities 
predicted by the Nomogram.

Drug sensitivity analysis
Preliminary drug prediction was performed using 60 different cancer cell lines from 9 different tumors from 
the NCI-60 CellMiner database (https://​disco​ver.​nci.​nih.​gov/​cellm​iner)34. The relationship between PBK and its 
associated genetic models and drug sensitivity was investigated using the Spearman method. oncoPredict was 
used to further validate the sensitivity to chemotherapeutic drugs in the risk group of LUAD patients in NCI-60. 
oncoPredict can be continuously trained based on a ridge regression model using expression data from cancer 
cell lines in the database and drug response data. Sensitivity scores are then generated, and the scores obtained 
are used to predict the half-maximal inhibitory concentration (IC50) of all drugs in LUAD patients35.

Statistical analysis
The Kruskal–Wallis test was used in the pan-cancer analysis to compare gene expression in different tissues and 
cancerous tissues, and the Wilcoxon test was used to compare differences between risk groups for high and low 
PBK expression and PBK-associated gene models. Univariate and multivariate Cox regression analyses were used 
to assess the independent prognostic value of PBK and PBK-associated gene models for survival. log-rank test 
was used for Kaplan–Meier curves and clinical characteristics. Significance P < 0.05 was considered statistically 
significant. All R packages mentioned above were run under R software version v4.2.1.

Ethics approval and consent to participate
All data are from public databases and an ethics approval is waived.

Result
PBK expression and prognosis in pan‑cancer
Our basic workflow for this study is shown in the figure (Fig. 1). The downloaded pan-cancer dataset was 
normalized and merged, and 26 tumor types with PBK gene expression in each sample were further extracted 
from the dataset. The remaining tumor types were excluded due to the small number of samples in which 
significance could not be observed. We observed a significant upregulation in lung tumors (Fig. 2A). In the 
prognostic section, we first obtained the significance of the prognostic analysis by analyzing the prognostic 
relationship between PBK gene expression and overall survival OS in 26 cancer types by Logrank test, and finally 
observed significant upregulation in 13 tumor types (TCGA-GBMLGG (N = 655, p = 1.2e−39, HR = 1.75 (1.60, 
1.91)), TCGA-LGG (N = 503, p = 4.2e−11, HR = 1.52 (1.34, 1.73)), TCGA-LUAD (N = 500, p = 7.2e−5, HR = 1.28 
(1.13, 1.44)), TCGA-SARC (N = 258, p = 0.03, HR = 1.20 (1.02, 1.41)), TCGA-KIRP (N = 285,p = 1.6e−12, 
HR = 2.67 (1.99, 3.57)), TCGA-KIPAN (N = 878, p = 1.0e−15, HR = 1.82 (1.58, 2.10)), TCGA-KIRC (N = 528, 
p = 1.1e−3, HR = 1.47 (1.17, 1.84)), TCGA-LIHC (N = 362, p = 2.6e−6, HR = 1.45 (1.24, 1.70)), TCGA-MESO 
(N = 85, p = 8.2e−6, HR = 1.80 (1.39, 2.33)), TCGA-PAAD (N = 177, p = 1.3e−4, HR = 1.63 (1.27, 2.10)), TCGA-
PCPG (N = 177, p = 0.03, HR = 2.46 (1.10, 5.51)), TCGA-ACC (N = 77, p = 4.3e−7, HR = 1.96 (1.49, 2.59)), TCGA-
KICH (N = 65, p = 2.0e−7, HR = 2.22 (1.54, 3.18))) with poor prognosis of high expression in three tumor types 
(TCGA-COAD (N = 282, p = 0.02, HR = 0.71 (0.53, 0.94)), TCGA-COADREAD (N = 373, p = 8.7e−3, HR = 0.71 
(0.55, 0.92)), TCGA-THYM (N = 118, p = 6.3e−3, HR = 0.47 (0.26, 0.85))) with poor prognosis in low expression, 
PBK in lung tumors is shown in blue in Fig. 2B. Secondly, we also analyzed PBK expression in different clinical 
characteristics (sex, T, N, M and stage) (Fig. 2C–G), further complemented by the analysis of the impact of PBK 
on lung tumor prognosis in disease-specific survival, disease-free survival, progression-free survival and survival 
curves found that PBK gene was more relevant in lung adenocarcinoma patients (Supplementary Fig. 1A–G). 
Consistently, we validated PBK expression in the GSE116959, GSE19188 and CPTAC-LUAD cohort with 
increased PBK mRNA and protein levels in tumor samples (Supplementary Fig. 1H–J).

The results were consistent in that in vitro experimental data obtained from the HPA and Depmap databases 
were able to be seen. Immunohistochemical staining of tissue sections showed higher levels of PBK protein 
expression than in normal tissues(Supplementary Fig. 2A–D), while in LUAD-associated cell lines, we observed 
a strong correlation between cell line effects brought about by the PBK gene and PBK gene expression after 
subjecting the PBK gene to RNAi, especially in metastatic types of cell lines(Supplementary Fig. 2E, F).

Mutational landscape of PBK gene in LUAD
For our preliminary analysis of the genomic signature of PBK in lung cancer, we visualized the SCNA and 
mutation frequencies in the TCGA cohort of 513 LUAD patients and 498 LUSC patients. The DNA mutations 
used for mapping occurred statistically in 460 (~ 89.7%) LUAD patients and 330 (~ 66.3%) LUSC patients 
according to the data, and the waterfall plot shows that the overall level of DNA alterations in the PBK gene in 
lung cancer is about 5% (Fig. 3A, B, D), and we found that the predominant PBK mutation type in lung cancer 
is Missense_Mutation (Fig. 3C). Differences in mutation frequencies in each group of samples were assessed by 
chi-square test, and the genes with the highest mutation frequencies with higher PBK expression in LUAD were 
TP53 (2.0e−5), TTN (2.5e−3), CSMD3 (0.01), RYR2 (4.4e−3), and LRP1B (0.02). In contrast, the situation in 
LUSC changed to FLG (1.0e−2), MUC5B (7.8e−3), KEAP1 (7.9e−4), EPHA5 (2.2e−3), and STAB2 (0.02) (Fig. 3A, 
B). Although few samples had mutations in PBK, we observed that mutations in CNV accounted for the majority 
of PBK gene DNA alterations in all lung cancer patients and found a high proportion of LUAD patients with CNV 
with multiple tumor suppressor genes, such as CCDC25, SCARA5 and EPHX2 (Fig. 3E). Afterwards, by analyzing 

https://discover.nci.nih.gov/cellminer
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Figure 1.   The basic workflow of this study. Image generated in Microsoft PowerPoint (version 16.0), “https://​
www.​micro​soft.​com/​power​point”.

https://www.microsoft.com/powerpoint
https://www.microsoft.com/powerpoint
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the results we could conclude that there was no significant difference in survival between PBK-mut and PBK-wt 
patients (Fig. 3F). In the pan-cancer TMB correlation analysis correlation, PBK was highly correlated with the 
TMB of LUAD (Fig. 3G). the alteration of CNV drew our attention, we visualized 23 cancer species containing 
mutation data and PBK gene expression data, and it is noteworthy that the difference between samples with CNV 
deletion in LUAD and normal and acquired samples was not significant, but the expression of PBK showed an 
increasing trend (Fig. 3H). Above, these results suggest that CNV alteration would be a cause of abnormal PBK 
regulation in LUAD, less related to mutation, and secondly the upregulation of PBK expression is more stable.

PBK expression affects the clinical features and altered pathway activity of LUAD
The analysis of PBK expression profile we found to be significant in some clinical features and here we explored 
the relationship between high and low PBK expression in LUAD with conventional clinical features. According 
to previous studies in which TCGA data were noted to show the overall molecular characteristics of LUAD, the 
results of the study allow the classification of LUAD into 3 transcriptional subtypes (proximal inflammatory 
type [PI], proximal proliferative type [PP] and terminal respiratory unit [TRU])36. As seen in the heat map 
plotted containing the combined PBK expression and clinical features, patients with high PBK expression 
were concentrated in the PP subtype with poor prognosis, whereas the low expression group was concentrated 
in the TRU subtype with good prognosis (Fig. 4A). High and low expression of PBK caused significantly 
different distribution in age, sex, staging T and M. We counted and tested the above factors and found that 
between the high and low expression groups expression_subtype, age, gender, staging T and M. Subsequent 
forest plots showed that PBK expression could significantly affect patient prognosis compared to other features 
(Supplementary Fig. 3A, B).

Altered pathway activity usually affects tumor malignant proliferation and progression, and we performed 
ssGSEA analysis of the Hallmark gene set in LUAD patients (Fig. 4B). The results showed that the PBK low 
expression group was firstly significantly enriched in immune microenvironment-related pathways, including 
IFN-γ/α response, IL-6_JAK_STAT3 signaling pathway, inflammatory response, IL2_STAT5 signaling 
pathway and TNF signaling. Second, we also observed that PBK low expression was highly enriched in tumor 
metabolism-related pathways, including the HEDGEHOG pathway, and XENOBIOTIC, fatty acids, and BILE 
ACID METABOLISM. In contrast to PBK low expression, high expression of PBK was mainly associated with 

Figure 2.   Expression and prognostic analysis of PBK in pan-cancer. (A) Cross-sectional plots showing the 
difference in PBK expression in 34 tumors versus the corresponding normal tissues. (B) Forest plot showing the 
relationship between PBK gene expression and overall survival (OS) prognosis in each tumor, with prognostic 
significance obtained by Logrank test. (C–G) Differential analysis of PBK expression in clinical characteristics 
(gender, T, N, M and stage) of lung adenocarcinoma patients.
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oncogenic activation and high proliferative features such as DNA repair, G2_M checkpoint, hypoxia, PI3K/
AKT/mTOR, E2F targets and MYC_V1/V2. It is also interesting to note that LUAD was observed to have partial 
immune activation and immune cell infiltration under PBK high expression, followed by the use of Signaling 
signature set analysis of Mariathasan et al. tissues showed that CD8 effects and antigen processing mutations 
were significantly enhanced in the PBK high expression group (Fig. 4C).

To discover the enrichment pathway between PBK high expression and PBK low expression we further 
investigated using gene set enrichment analysis (GSEA) targeting REACTOME, PID and WikiPathways gene sets. 
The results revealed that high PBK expression was associated with hypoxia, autophagic process and enhanced HIF 
signaling (Fig. 4D), while the activation of HIF and the occurrence of autophagy under hypoxia were associated 
with tumor immune escape. Combined with the poor prognosis of PBK high expression in LUAD patients, we 
hypothesized that the activation of HIF signaling under PBK high expression leads to immune escape in LUAD 
patients through hypoxic processes.

Immune microenvironment analysis reveals the immune infiltration characteristics of PBK in 
LUAD
We further used the ESITIMATE algorithm to quantify the different expression patterns of PBK in the samples, 
including overall immune infiltration (immunescore) stromal infiltration (stromalscore) and tumor cell purity 
(ESTIMATE-tumor purity). In LUAD patients with high PBK expression, immune score, stromal score and tumor 
purity were substantially decreased (Fig. 5A). Previously, immune infiltration of human tumors was classified into 
six types, namely C1 (wound healing), C2 (INF-G dominant), C3 (inflammation), C4 (lymphocyte depletion), C5 
(immune silencing), and C6 (TGF-B dominant). The results showed that in the immune infiltration classification 
of LUAD patients, PBK high expression group was higher in C1 and C2 types, which were mentioned in other 
studies as having high proliferative features and associated with Th2 cell bias, M1/M2 macrophage polarization 
and CD8 signaling, while PBK low expression was higher in C3 inflammatory subtypes, while C3 types had low 
to moderate tumor cell proliferation and lower levels of altered somatic cell copy number than other subtypes 
characterized (Fig. 5B, F)37.

We first found cellular infiltration in all DC families in 16 immune cell species decreased in the PBK high 
expression group, which may suggest an impairment of antigen processing and presentation in LUAD patients 
under PBK high expression, along with a rising trend of CD8+ T cells (Fig. 5C). To better observe the infiltration 
of immune cells, we used 28 representative immune cells curated by TISIDB for a preliminary validation of the 

Figure 3.   Genetic alterations and effects of PBK in lung cancer. (A,B) Waterfall plots showing the difference 
in mutation frequency in mutated samples in LUAD and LUSC. (C) Bar graph showing the integration of 
mutational information and PBK protein structural domain information in pan-cancer. (D) Frequency of 
genetic alterations in lung cancer patients in TCGA. (E) Histogram of the proportion of genetic changes 
between altered and unaltered pattern groups in lung cancer. (F) Comparative survival analysis between PBK 
mutations and PBK-wt. (G) Pan-cancer analysis of correlation between PBK expression and tumor mutational 
load, correlation analysis using Spearman method. (H) Differential expression of PBK in different mutation 
types in pan-cancer CNV.
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previously observed phenomenon. Similar to the previous results we observed a significant elevation of cytotoxic 
T lymphocytes and Th2 cells in the PBK high expression subgroup, while regulatory T cells, macrophages, B cells 
and dendritic cells were reduced (Fig. 5G).

In terms of immune function, we found that compared to tumor versus normal tissue, the PBK high 
expression group had significantly higher MHC-I class function than the low expression group, while the role 
of APC_co_stimulation, Check-point, and Parainflammation were all lower than the low expression group in 
contrast to MHC-I class function (Fig. 5D). We then obtained inflammation-matrix activation-associated mRNAs 
from LUAD patients mentioned in previous studies to explore the relationship between PBK expression and 
these with molecularly perturbed environment-related expression (Fig. 5E).

Smoking-induced genomic instability in lung tissue is likewise an important factor contributing to the 
remodeling of the immune status of LUAD38. We observed a significantly higher proportion of the predominantly 
male smoking population in the PBK high expression group than in the low expression group (Supplementary 
Fig. 3C), suggesting a strong association between high PBK expression and the male smoking group. Also in the 
figure, we found that the proportion of STK11 mutations was larger in the high expression group (Supplementary 
Fig. 3D). Recent evidence from the molecular characterization literature suggests that mutations in selected 
oncogenic driver genes (e.g., TP53, KEAP1, STK11, KRAS, and EGFR) are associated with an immunosuppressive 
phenotype in LUAD39,40. We therefore plotted the relationship between these gene mutations and high and low 
PBK expression using bar graphs. It could be more clearly found that the proportion of STK11 mutated tumors 
in the PBK high expression group was significantly higher than the proportion of unmutated tumors, and in 
addition to STK11, KEPA1 and TP53 also exhibited this phenomenon, but the difference was not significant 
(Supplementary Fig. 3E, F).

Based on the above findings, we can speculate that different patterns of PBK expression have different 
immunophenotypic characteristics; the anti-tumor cells and functions are increased to different degrees in these 
LUAD patients with high PBK expression, but the anti-tumor environment in LUAD patients is still poor, and 
we speculate that the high PBK expression is more inclined to an immune rejection phenotype, which is specific, 
with high anti-tumor immune cell infiltration but significantly impaired antigen presentation and activation. 
Low PBK expression tends to be a normal immune phenotype, characterized by an activated immune pathway 
and a high infiltration of immune cells.

Figure 4.   Clinical characteristics and biological course of different PBK expression profiles in LUAD. (A) 
Heatmap of clinical features demonstrating the relationship between high and low expression of PBK in TCGA 
dataset and clinical features, molecular subtypes of LUAD. (B) Heatmap showing the most enriched biological 
pathways calculated by GSVA algorithm between PBK high and low expression. hallmark gene sets (MSigDB 
7.0) were used as reference gene features. (C) Angiogenesis, EMT, and other matrix activation features proposed 
by Mariathasan et al. (D) GSEA plots showing HIF1A signaling, hypoxia pathway and autophagy pathway-
mediated gene sets enriched in PBK high expression.
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LUAD tumors with high expression of PBK showed significant immune escape
The causes of immune escape in tumors as indicated by previous studies can be broadly explained in the following 
ways (1) defective antigen presentation in the tumor microenvironment; (2) tolerance and immune bias of the 
organism; (3) immunosuppressive cell infiltration; (4) alteration of immunoregulatory genes (41). The next 
tumor immune cycle correlation analysis pointed out that PBK is most likely associated with cancer cell antigen 
release (step 1), immune cell transport to the tumor (step 4), and immune cell infiltration into the tumor (step 
5) (Fig. 6A). We will propose to start from the discovery of the effect of PBK high expression on tumor antigen 
and immune cell infiltration.

Cancer cell antigens and immune tolerance, bias
The factors of defective tumor antigen presentation may include two aspects, firstly, changes in tumor 
immunogenicity, such as the emergence of neoantigens, and down-regulation or absence of antigen presentation 
pathways in the organism. Here we focused on for the assessment of tumor immunogenicity we chose HRD and 
Neoantigens metrics, with high PBK expression having the highest neoantigen load and HRD score (Fig. 6C, 
D). For the expression of antigen presentation pathway-related genes as shown in the box plot, the PBK high 
expression group showed decreased expression in most MHC-related genes, while the low expression group 
showed elevated expression (Fig. 6B). Overall, there was some degree of impaired antigen presentation and 
the most pronounced decrease in immunogenicity and antigen-presenting gene expression levels under PBK 
high expression. It has been previously reported that tumor-induced immune tolerance in the organism can be 
achieved by modulating immunostimulatory molecules. The relative expression levels of immunosuppressive 
and immunostimulatory agents are shown in the figure. We labeled the genes with significant and insignificant 
expression between the two groups. Low expression of PBK had a better anti-tumor immune activation 
phenomenon, which was demonstrated by the highest expression levels of most immunosuppressants and 
some immunostimulants. In contrast to PBK low expression, we found that the activation levels of most of the 
above mentioned genes were lowest in the PBK high expression group (Fig. 6E), then the decreased anti-tumor 
activity in the high expression group would be replaced by a pro-tumorigenic one. Overall, PBK high expression 
was accompanied by reduced expression of most immunostimulants and immunosuppressive agents and poor 
immune tolerance, while PBK low expression had the best expression levels and low tolerance to immune activity.

Figure 5.   Preliminary exploration of the LUAD immunophenotype and immune cell infiltration between 
high and low PBK expression. (A) Comparison of indicators of immune infiltration levels (both immune score 
and stromal score) between PBK high and low expression obtained by ESTIMATE using Kruskal–Wallis test. 
(B) Subgroup bar stacked plots showing an overview map of the distribution of immune infiltrative subtypes 
between PBK high and low expression groups. (C,D) The scores of 16 immune cells and 13 immune-related 
functions were detected by ssGSEA analysis, and the differences between different expression groups of PBK 
were demonstrated by box line plots. (E) Heat map demonstrating the expression of inflammatory, stromal-
associated mRNAs in LUAD patients. (F) Grouped box line plot containing PBK expression, immune infiltrating 
subtypes and CNV mutation distribution. (G) Demonstration of PBK high and low expression between 28 
representative immune cell profiles curated by Charoentong et al.
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Disturbed anti‑tumor immune response
To more comprehensively observe the infiltration pattern and immune response of immune cells in the organism 
of LUAD patients, we introduced xCELL, TIMER, CIBERSORT, MCPCounter, EPIC and quanTIseq immune 
infiltration algorithms for a comprehensive analysis of LUAD. All immune cell infiltration and immune-related 
chemokines, receptors, MHC and immunostimulatory, and inhibitory molecules we show the results/expression 
in the heat map (Supplementary Fig.4A, B). We first determined the activation CD4 and CD8 T cell infiltration 
and it is evident that PBK high expression has a higher activation CD8 T cell infiltration but the overall number 
of this cell type did not increase, followed by CD4 T cells showing activation and an overall decrease in the level 
(Fig. 7A, B). the NK cell population is similar to the CD8+ T cell situation, with the total number of NK cells 
showing upward trend, while NK Tcell decreased substantially (Fig. 7C). tregs, MDSCs and M2 macrophages as 
immunosuppressive cells we observed a decrease in all these immunosuppressive cells under high PBK expression 
(Fig. 7D–F). Furthermore, correlation analysis of immune cell infiltration in TCGA dataset and GEO dataset 
revealed that PBK expression strongly correlated with dendritic cells and Th2 cells, but infiltration of dendritic 
cell family was decreased in all PBK patients under high expression (Supplementary Fig. 4A–D). It is clear that 
PBK overexpression affects T cell activation, downregulation of MHCI-like genes and thus leads to reduced type 
1 and 2 interferon γ responses, which prevent T cells from playing their anti-tumor role properly and tumors 
undergo significant immune escape.

We then compared PBK high and low expression of chemokines and receptors. In the PBK high expression 
group, the expression levels of pro-immune chemokines such as CXCL9, CXCL10 and CXCL11 were higher 
(Fig. 7I), and these immune chemokines can function to recruit effector T cells and NK cells42. However, IDO1, 
which contributes to peripheral tolerance, was upregulated but not significant in PBK, suggesting the possible 
presence of cytokines in the suppressive inflammatory microenvironment (Supplementary Fig. 4E). It has been 
shown that the tumor-derived cytokine CCL20 upregulates IDO expression, and IDO also inhibits CD8+ T 
cell responses and induces tumor immune evasion, so it is highly likely that the strong rise of CCL20 in PBK 
overexpression inhibits CD8+ T cells via IDO1 (Fig. 7G). Secondly, the CCL20-CCR6 axis was reported to 
primarily affect chemoattraction to immature dendritic cells (DCs), effector/memory T cells and B cells in 
the tumor immune microenvironment43, and the decrease of CCR6 in the PBK high expression group caused 
a decrease in DC infiltration which is consistent with the above results (Fig. 7I). Notably, significantly higher 
levels of VEGFA were expressed under PBK high expression. also under the condition that PBK is associated 
with hypoxia we will summarize the mRNA levels of downstream targets associated with HIF-1 activation and 

Figure 6.   (A) Butterfly correlation plot showing the correlation analysis between PBK gene expression and 
7-step tumor immune cycle. (B) Expression of HLA and genes associated with MHC molecules between PBK 
high and low expression groups. (C,D) Differences in neoantigen load and HRD levels between PBK high and 
low expression groups. (E) Relative expression levels of immunosuppressive and immunostimulatory agents in 
PBK high and low expression groups. ***P < 0.001; **0.001 < P < 0.01; *0.01 < P < 0.05; –: P > 0.05.
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immune checkpoint molecules and analysis of genetic correlation with PBK that could potentially promote 
immune escape of cancer cells (Fig. 7H).

Identification of genes differing between groups with high and low PBK expression and 
analysis of biological processes
We first grouped LUAD patients by median PBK expression and identified 353 differential genes from different 
expression groups of LUAD according to the criteria of |logFC |> 1.5, adjusted P value < 0.05. And these 
differential genes were further investigated for their biological significance. In Fig. 6A, differential genes were 
mainly associated with malignancy proliferation (cell cycle G2/M phase transition, p53 signaling pathway and 
cell cycle) and immune cell function (positive regulation of T cell-mediated cytotoxicity, regulation of T cell-
mediated cytotoxicity and cell cycle) according to GO and KEGG annotations. regulation of T cell-mediated 
cytotoxicity) and immune cell function (positive regulation of T cell-mediated cytotoxicity, regulation of T cell-
mediated cytotoxicity) have a clear interaction, followed by involvement in antigen processing and presentation 
via MHC class Ib, and negative regulation of wound healing and exogenous antigen processing and presentation 
(Fig. 8A–D). Overall, genes between the high and low PBK expression groups may have a greater role in immune 
function, and cancer progression in LUAD.

To further clarify the immune pathway alterations brought about between the high and low PBK expression 
groups, using the C7 gene set (c7.immunesigdb.v2023.2.Hs.symbols) in the GSEA database we further evaluated 
the differential genes. The results showed that the PBK high expression scenario had enrichment with the CD8-
IFN descent pathway(Fig. 8E), whereas the PBK low expression was enriched for TCR signaling associated with 
CD4 T cells (Fig. 8F), and interestingly we also observed a downregulation of the effector CD8 cell pathway, 
upregulation of the memory CD8 T cell pathway, and upregulation of the Naive CD8 T cell pathway in the high 
PBK expression (Fig. 8G, H). These results also coincide with our above studies on the part of immune escape 
that may be induced by high PBK expression.

PBK‑related genes construct prognostic models and predictive Nomogram to predict 
prognosis of LUAD patients
To identify 353 differential genes between high and low PBK expression groups with prognostic associations in 
LUAD, we performed univariate COX regression and obtained 201 differential genes significantly associated with 
prognosis in LUAD patients. By String database analysis, sorted by PBK median confidence, we obtained the 
most prognostic genes associated with PBK, (Fig. 9A). Based on a median confidence level > 0.4, 25 characteristic 
PBK-derived genes were identified (Supplementary Table 1). Based on this, we performed multivariate Cox 
regression models to obtain a prognostic model for PBK-associated genes. The results showed that the risk 
score = 0.250901594 * CCNB1 expression + (−0.446288847) * TOP2A expression + 0.436757566 * DLGAP5 
expression + (−0.400801728) * RAD51AP1 expression + 0.197773942 * FOXM1 expression (Fig. 9B). Grouping 
according to the median risk score, we classified LUAD patients into high-risk and low-risk subgroups. Survival 
analysis showed that high-risk LUAD patients exhibited a poorer prognostic profile. A higher number of patients 
with death in the high-risk subgroup could be observed from the prognostic heat map (Fig. 9C, D). In addition, 

Figure 7.   (A–C) Infiltration distribution of T cell subpopulations and NK cell subpopulations associated 
with antitumor immunity in PBK high and low table groups. (D–F) Infiltration distribution of Macrophages 
subpopulations, Treg cells and MDSC associated with immunosuppression in PBK high and low table groups. 
(G,H) Expression levels of some genes associated with tumor immune escape and correlation analysis. (I) 
Relative expression levels of chemokines and receptors in PBK high and low expression groups. ***P < 0.001; 
**0.001 < P < 0.01; *0.01 < P < 0.05; –: P > 0.05.
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Figure 8.   Gene enrichment analysis of differential genes between PBK high and low expression groups. 
(A–C) Bars show the enrichment results of GO:BP, GO:CC and GO:MF, in that order. (D) The most significant 
pathway in KEGG. (E–H) GSEA analysis between groups with high and low PBK expression.

Figure 9.   PBK-derived gene modeling for predicting prognosis of LUAD patients. (A) String median 
confidence level screening of genes most associated with PBK from DEG. (B) Multifactorial COX analysis 
yielded 5 genes associated with prognosis of LUAD. (C) Kaplan–Meier plots for high and low risk groups. (D) 
Prognostic heat map showing risk score, survival status and gene expression distribution. (E) Multifactorial 
COX results of clinical characteristics combined with risk scores. (F) ROC curves demonstrating the probability 
of OS at 1, 3 and 5 years for risk scores. (G,H) Estimation of 1, 3and 5-year survival probabilities by integrating 
independent prognostic indicators (risk score, age, sex, Stage, T, N, and M for the PBK genome) to utilize 
prognostic nomogram. Calibration plots show the association of predicted OS with actual survival. (I) The 
predictive efficacy of this nomogram is validated by ROC curves for 1, 3and 5 year survival.
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the gene expression of CCNB1, TOP2A, DLGAP5, RAD51AP1 and FOXM1, which comprise the prognostic 
model, showed significant differences in the two subgroups, and the KM curves showed that the high expression 
of these genes responded to the worsening prognostic status of LUAD patients (Supplementary Fig. 5A–E). The 
results returned from the ROC curves showed that the prognostic model constructed from PBK-related genes 
was more stable in estimating the probability of overall survival at 1, 3 and 5 years (Fig. 9F).

To determine the independent effect of PBK risk score in prognosis, we introduced prognostic analysis 
of T, N, M and staging clinical characteristics based on risk score by multifactorial Cox regression, and the 
results showed that the risk scores of staging and PBK-related genes could be used as independent prognostic 
indicators for LUAD (Fig. 9E). To assess the survival outcome of LUAD patients, we combined the risk scores 
and clinical information of LUAD patients to draw Nomogram, and the results are shown in Fig. (Fig. 9G). 
Compared to other clinical features, we found that risk scores for PBK-related genes were the most meaningful 
in predicting survival time in LUAD patients. This observation can be further explained from the calibration 
curves. And the predicted results of Nomogram for LUAD patients at 1, 3 and 5 years were also closer to the actual 
survival (Fig. 9H). The final ROC curve validation results likewise confirmed the expected role of Nomogram 
in predicting survival outcomes in LUAD patients (Fig. 9I). Similarly, based on the same formula and analytical 
approach we validated two external cohorts, GSE37745 and GSE72094.The KM analysis showed that the results 
were consistent with those of the TCGA cohort(Supplementary Fig. 5F, I), and the ROC results were more 
stable(Supplementary Fig. 5G, J). In addition, multivariate Cox analysis of the two cohorts showed that risk score 
was also an independent factor(Supplementary Fig. 5H, K). Based on these results, it can be concluded that the 
5-gene prognostic model associated by PBK is more stable and the Nomogram also has good predictive ability.

Drug sensitivity analysis for PBK and PBK‑related gene models to guide LUAD chemotherapy 
strategy
Tumor cell death induced by certain chemotherapeutic agents in clinical regimens can be used to amplify 
tumor sensitivity to drugs in tumors that are resistant to checkpoint therapy, so the optimal combination 
of chemotherapy and immunotherapy deserves further exploration44. We found that the PBK gene was 
only positively correlated with nelarabine (Cor = 0.292, p = 0.024) and negatively correlated with brigitinib 
(Cor = -0.264, p = 0.042) in drug prediction (Fig. 10B). Subsequent in-depth studies on the action of PBK with the 
above two drugs may provide new reference values for chemotherapy regimens in lung adenocarcinoma patients. 
Since PBK-associated gene model scores were generated based on prognosis-related DEGs between high and 
low PBK expression, we speculate that chemotherapy status may correlate with the level of PBK-associated gene 
model scores. Using the OncoPredict package to predict drug sensitivity for high and low PBK-associated gene 
model risk group scores, we demonstrated that the three significant drugs of Mitoxantrone_1810 were positively 
associated with Risk, while Paclitaxel_1080 and Vinorelbine_2048 were negatively associated (Fig. 10C). We 
also evaluated the interaction of genes comprising the PBK-related gene model with drug response. As a 
result, FOXM1 was positively and negatively correlated with Clofarabine, Gemcitabine, Floxuridine Paclitaxel 
and Eribulin mesilate; TOP2A was positively and negatively correlated with Idarubicin, MITOXANTRONE, 

Figure 10.   PBK and PBK-derived genomic models to predict drug response in LUAD patients. (A) Correlation 
diagram of genes comprising the PBK-associated gene model with small molecular compounds in LUAD. (B) 
PBK gene correlation analysis with nelarabine and brigatinib. (C) Levels of drug sensitivity in risk groups at 
Mitoxantrone_1810, Paclitaxel_1080 and Vinorelbine_2048.
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LEE-011 Daunorubicin and DAUNORUBICIN. DLGAP5 was negatively associated with Vemurafenib, and 
CCNB1 was negatively associated with Denileukin Diftitox Ontak, Vinorelbine but positively associated with 
pralatrexate (Fig. 10A). These data suggest that PBK-related genes may be associated with the sensitivity of the 
above mentioned drugs.

Discussion
This study presents a comprehensive analysis of the molecular and clinical features, immune status and genomic 
drug profile of the LUAD subtype of lung tumors in particular, starting from the basis of PBK expression and 
prognosis in pan-cancer. Our results suggest that PBK is upregulated in the vast majority of tumors, while 
mutations in the PBK gene affect some of the oncogenes of LUAD but not their own upregulation, while the 
gene is more stably altered in LUAD45. Previous reports have shown that lung cancer cells can directly release 
angiogenic factors, such as VEGF, that stimulate the formation of neointima in the tumor and extra-tumor 
stroma46. And PBK may regulate tumorigenesis, progression and immune status by affecting hypoxic processes 
and HIF signaling pathway. In the present study, we found that GSEA analysis of PBK high expression group 
showed that PBK was associated with hypoxic process and HIF pathway. This finding is consistent with previous 
reports.

Exploring the links between the immune microenvironment and tumor immune status during tumorigenesis 
and progression will provide a comprehensive understanding of tumor molecules and their biological 
characteristics, and provide potential markers for prognostic assessment and treatment options for LUAD38. 
We used a large number of clinical and molecular features to demonstrate the degree of conformity of different 
PBK expression to the immune phenotype, and finally obtained that high PBK expression tends to the immune 
rejection phenotype. This immunophenotype is specific in patients with high PBK expression, and a large 
number of algorithms and data validate that anti-tumor immune cell infiltration is increased but the patient’s 
immune profile remains poor, and secondly that immunosuppressive cells do not play a strong role in the tumor 
microenvironment. However, on the other hand, PBK was strongly positively correlated with CCL20, CMC2 and 
HILPDA, and CCL20 was reported to upregulate indoleamine 2,3-dioxygenase (IDO) expression through the 
IFN-γ signaling pathway, causing IDO to suppress CD8+ T cell responses and induce tumor immune evasion, and 
previous studies observed that immunosuppressive factors IDO and PD-L1 in the organism high expression levels 
in metastatic melanoma CD8+ T cells appeared over47. In the last part, CCL20 and CCR6 can form a chemokine 
regulatory axis, which in turn regulates the interaction between cancer cells and immune cells, thus influencing 
the immune status of the tumor in the state of the tumor immune microenvironment and affecting the immune 
system against the tumor48. High PBK expression affects the downregulation of CCR6 preventing cells such as 
effector/memory T cells and DCs from being attracted into the tumor for further tumor immune escape.

The alteration of related genes caused by PBK gene expression is another aspect that affects the tumor 
biology of LUAD patients, the functional analysis of differential genes between PBK high and low expression 
groups showed that these genes play a role in malignant tumor proliferation, such as: cell cycle G2/M phase 
transition and p53 signaling pathway, while for T cell function we found to the positive regulation of T cell-
mediated cytotoxicity and processes such as regulation of T cell-mediated cytotoxicity, all these results suggest 
that differential genes play an important role in the progression and immune status of LUAD. Preliminary 
analysis confirmed that the prognostic differential genomic model associated with PBK genes is reliable and 
can independently predict patient prognosis and relapse, and can be validated on multiple external datasets 
in the future. Future validation on multiple external datasets of the new LUAD will further establish the 
reliability of the model. We also performed drug prediction on PBK gene and PBK-related genomic models. 
Correlation analysis showed that PBK was associated with neralide and brigatinib, and in the related genome 
with clofarabine, gemcitabine, fluorouracil, paclitaxel, and other drugs. The nomogram is a powerful tool based 
on multifactorial regression analysis that integrates multiple predictors to quantify the risk of each sample in the 
clinical factors49 according to the degree of contribution of each influencing factor in the model to the outcome 
variable (magnitude of the regression coefficient). In our study by combining PBK-related genomic model risk 
scores, stage, T, N and M clinical characteristics of LUAD patients, the Nomogram was used to predict risk scores 
against 1, 3 and 5 years survival time. Subsequently, ROC curves showed that bar graphs showed good efficiency 
in predicting OS outcomes for individual patients. In addition, the calibration curves confirmed that the actual 
survival time was consistent with the survival time estimated by the nomogram.

Our study also has some limitations. the expression of PBK needs to be validated on basic experiments and 
secondly multiple immunotherapy cohort datasets should be introduced for critical validation of the immune 
status of PBK affecting LUAD and PBK-related genomic models. In addition, the role and mechanisms of PBK 
in tumor immunity need to be validated by designing a complete experimental program. Finally, the prognostic 
value of PBK needs to be validated in a future, more comprehensive LUAD cohort.

Conclusion
Overall, our study utilized a combination of pan-cancer and single cancer species, and we aimed to reveal the 
clinical features of the impact of PBK in LUAD, associated immune infiltration features, staging and immune 
escape profiles, and pharmacogenomic profiles of immunotherapy and chemotherapy. In conclusion, our findings 
suggest that PBK is a potential prognostic marker promoting immune escape in patients with LUAD and a 
predictor of pharmacotherapeutic response.
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Data availability
This study analyzed the current publicly available dataset. The data analyzed above can be found here: https://​
portal.​gdc.​cancer.​gov/, https://​www.​cbiop​ortal.​org/, https://​cptac-​data-​portal.​georg​etown.​edu/​cptac. Parts of the 
public data set are also available from the corresponding author(lianchaoqun@bbmc.edu.cn).
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