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Breast cancer is a major global health concern, and recent researches have highlighted the critical
roles of non-coding RNAs in both cancer and the immune system. The competing endogenous RNA
hypothesis suggests that various types of RNA, including coding and non-coding RNAs, compete for
microRNA targets, acting as molecular sponges. This study introduces the Pre_CLM_BCS pipeline

to investigate the potential of long non-coding RNAs and circular RNAs as biomarkers in breast
cancer subtypes. The pipeline identifies specific modules within each subtype that contain at least
one long non-coding RNA or circular RNA exhibiting significantly distinct expression patterns when
compared to other subtypes. The results reveal potential biomarker genes for each subtype, such

as circ_001845, circ_001124, circ_003925, circ_000736, and circ_003996 for the basal-like subtype,
circ_00306 and circ_00128 for the luminal B subtype, circ_000709 and NPHS1 for the normal-like
subtype, CAMKYV and circ_001855 for the luminal A subtype, and circ_00128 and circ_00173 for the
HER2+ subtype. Additionally, certain long non-coding RNAs and circular RNAs, including RGS5-AS1,
C6orf223, HHLA3-AS1, circ_000349, circ_003996, circ_003925, circ_002665, circ_001855, and
DLEU1, are identified as potential regulators of T cell mechanisms, underscoring theirimportance in
understanding breast cancer progression in various subtypes. This pipeline provides valuable insights
into cancer and immune-related processes in breast cancer subtypes.

Breast cancer continues to hold its position as the prevailing type of cancer, constituting a significant portion of
diagnoses among women globally, with approximately one in three cases being attributed to this malignancy.
Statistical data from 2021 reveal that an estimated 281,550 new cases were diagnosed; accounting for 14.8% of all
cancer diagnoses, and tragically, breast cancer was responsible for 43,600 deaths, representing 7.2% of the total
cancer-related fatalities'. Characterized by its immunohistochemical properties, hormone receptors, and spe-
cific protein involvement, breast cancer is classified into five primary molecular subtypes: basal-like, luminal B,
normal-like, luminal A, and HER2+2. These subtypes exhibit significant differences in characteristics®. Although
substantial advancements have been made in clinical treatment, their efficacy could be further improved with a
more precise understanding of the distinguishing features and molecular mechanisms associated with each breast
cancer subtype*®. This knowledge could significantly influence treatment outcomes and patient survival rates®.

Non-coding RNAs (ncRNAs) play pivotal roles in the regulating of gene expression’. The ncRNAs include
long ncRNAs (IncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs). MiRNAs are short, single-
stranded ncRNA molecules. They primarily modulate gene expression by binding to target mRNAs leading to
their degradation or repression of translation®. LncRNAs are a broad class of ncRNAs exceeding 200 nucleotides
in length. They regulate mRNA production by influencing transcription of protein-coding genes’. Moreover,
IncRNAs may affect tumorigenesis by controlling key cancer-related genes'®. CircRNAs are a relatively new class
of endogenous small ncRNAs. Unlike most RNAs, they lack both a 5’ cap and 3’ poly-A tail, typically resulting
from splicing errors'!. Advances in RNA sequencing technologies and bioinformatics have accelerated research
on circRNAs, highlighting their significant role in gene expression regulation, primarily by acting as miRNA
sponges'%. Similar to miRNAs and IncRNAs, circRNAs have been linked to various complex human diseases'*!%,
including several types of cancers'®. Their dysregulation and potential functional roles make circRNAs promising
candidates for further exploration and potential therapeutic interventions in cancer research. While the roles of
miRNAs, IncRNAs, and circRNAs in cancer pathology and physiology are increasingly being elucidated, their
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interaction within competing endogenous RNAs (ceRNA) networks promises new insights into their regula-
tory mechanisms'®. Some studies suggest that ceRNAs are pivotal to many vital biological processes and could
serve as potential diagnostic markers, prognostic indicators, or therapeutic targets'”'®. The regulatory influence
of miRNAs goes beyond their capacity to recognize target sites on various RNA molecules’. It has been sug-
gested that miRNAs can facilitate regulatory crosstalk among different components of the transcriptome?®. This
intricate miRNA-mediated regulation is modulated by other RNA molecules, including mRNAs and ncRNAs,
which have been found to interact with miRNAs and exhibit significant expression across diverse biological
conditions. This mechanism introduces an additional layer of post-transcriptional gene regulation, providing
a complementary perspective on the functional relevance of the vast number of transcribed, yet un-translated
RNAs. The concept of ceRNAs further enhances this post-transcriptional regulatory landscape, where ncRNAs
gain new significance. The interplay mediated by miRNAs among different types of RNA molecules has been
observed in numerous contexts?"*%,

The ceRNAs hypothesis posits that a single miRNA can regulate multiple target RNAs, as long as they contain
the specific miRNA response element. This hypothesis introduces the notion that RNAs can compete for a limited
pool of miRNAs, serving as the foundation for constructing a ceRNA network?’. Recently, the emergence of pub-
lic databases has facilitated ceRNA network reconstruction, shedding light on the previously elusive mechanisms
of tumorigenesis in cancers, such as breast cancer®.

Although previous studies have separately analyzed IncRNA-miRNA-mRNA?® and cir-
cRNA-miRNA-mRNA?® ceRNA networks, no research to date has integrated both circRNAs and IncRNAs into
the ceRNA network for the basal-like, luminal B, normal-like, luminal A, and HER2+ breast cancer subtypes.
Examining ceRNA networks across these subtypes, and combining circRNAs and IncRNAs, can significantly
enhance our understanding of immune-related tumorigenesis in various breast cancer subtypes.

In this study, we present a novel pipeline, called Pre_ CLM_BCS, designed to identify potential circRNAs,
IncRNAs, and mRNAs as effective biomarkers for each breast cancer subtype. Our pipeline initiates by construct-
ing a primary ceRNA network for each cancer subtype using gene expression data from patients. Subsequently,
specific ccRNA networks are extracted for each breast cancer subtype from their respective primary ceRNA
networks. Within these specific networks, modules containing at least one IncRNA or circRNA are identified
and enriched with gene ontology terms and pathways. Finally, we employ survival analysis and differential gene
expression to predict biomarkers from the enriched genes in the modules, which are further evaluated by sup-
port vector machine.

The predicted biomarkers for each breast cancer subtype according to the pipelines are as follows:

For the basal-like subtype: circ_001845, circ_001124, circ_003925, circ_000736, and circ_003996.

For the luminal B subtype: circ_00306 and circ_00128.

For the normal-like subtype: circ_000709 and nephrotic syndrome 1 (NPHS1 as an mRNA).

For the luminal A subtype: cam kinase like vesicle associated (CAMKYV as an mRNA) and circ_001855.
For the HER2+ subtype: circ_00128 and circ_00173.

Additionally, we find the following RNAs in modules that have regulatory effects on T cell mechanisms,
further emphasizing the significance of these RNAs in understanding and addressing breast cancer progression
across various subtypes:

e For the basal-like subtype: circ_003996, and circ_003925.

e For the luminal B subtype: chromosome 6 open reading frame 223 (C60rf223 as an IncRNA), HHLA3 Anti-
sense RNA 1 (HHLA3-ASI as an IncRNA), and circ_000349.

e For the normal-like subtype: deleted in lymphocytic leukemia 1 (DLEUI as an IncRNA).

For the luminal A subtype: circ_002665 and circ_001855.

e For the HER2+ subtype: regulator of G protein signaling 5 antisense RNA 1 (RGS5-AS1 as an IncRNA).

Materials and methods

In this section, our main goal is to introduce the proposed pipeline, Pre_CLM_BCS, for predicting suitable
circRNAs, IncRNAs, and mRNAs as biomarkers for five breast cancer subtypes: basal-like, luminal B, normal-
like, luminal A, and HER2+. Figure 1 visually outlines our pipeline, and the following subsections offer in-depth
explanations for each step of the process.

Dataset
Breast cancer is traditionally classified into five subtypes as follows:

BCS = {basal—like, luminal B, normal—like, luminal A, HER2+1}.

In this study, we extract miRNA, mRNA, and IncRNA gene expression data, along with clinical data for breast
cancer samples from The Cancer Genome Atlas (TCGA) database (as of August 2015).

We utilize the miRNA-seq dataset for miRNA gene expression and the RNA-SeqV2 level 3 dataset for mRNA
and IncRNA expression profiles. To annotate the mRNA and IncRNA genes from the RNA-SeqV2 level 3 dataset,
we use the BioMart tool available on the Ensembl website (www.ensembl.org) as a genome browser?’. Concur-
rently, circRNA expression data for breast cancer subtypes is sourced based on the findings of Asha et al.?.

Additionally, we collect clinical data, including immunohistochemical information, for breast cancer samples
from TCGA database, in order to conduct survival analysis.
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Figure 1. The Pre_CLM_BCS pipeline.

Considering the conventional categorization of breast cancer into five subtypes, our study samples are catego-
rized accordingly. This results in the creation of five distinct datasets for mRNA, IncRNA, circRNA, and miRNA.
For each cancer subtype, we establish a dataset denoted as AC, where C € BCS.

Each dataset encapsulates the gene expression of mRNAs, IncRNAs, circRNAs, and miRNAs for samples
within the respective breast cancer subtypes. The data preprocessing for each dataset A¢ comprises three main
stages:

1. Elimination of genes with a mean expression value below 0.5.

Exclusion of genes with uniform expression across all five breast cancer subtypes, indicating low variance.
Detection of outliers. To identify outliers, our pipeline utilizes hierarchical clustering of the samples based
on their expression profiles within the R environment (version 3.6)%.

Primary ceRNA networks
In the second step of the Pre_CLM_BCS pipeline, we construct a primary ceRNA network named P¢ = (N, E€)

for each breast cancer subtype C € BCS using gene expression data from dataset A, Here, NC represents the
collection of mRNAs, IncRNAs, and circRNAs in the dataset as nodes. The set of edges (interactions) in this
network is defined as EC, where each edge between two RNAs from set N€ indicates their interaction®. To iden-
tify these interactions, we utilize the Pearson correlation coefficient (PCC) for the gene expression dataset AC.

Our approach for constructing a primary ceRNA network is rooted in the ceRNA regulatory model. Accord-
ing to this model, IncRNAs and circRNAs compete with miRNAs, resulting in opposing effects on mRNA
expression®2, Therefore, when the expression of an miRNA increases, there is a corresponding decrease in the
levels of IncRNAs, mRNAs, and circRNAs. This competition weakens the positive correlation among miRNAs,
IncRNAs, and mRNAs3>3,

Consequently, a simultaneous increase in mRNA expression along with either IncRNA or circRNA implies the
potential downregulation of a specific miRNA. To explore interactions as edges in the primary ceRNA network
PC among IncRNAs and mRNAs, we utilize the miRTarBase and TarBase databases to access experimentally
verified mRNA-miRNA interactions.’>*® We also extract experimentally verified mRNA-miRNA interactions
from the miRTarBase database.

To predict interactions as edges among the union of mRNAs and IncRNAs in the set N, following the ceRNA
regulatory model, we compute the PCC on the gene expression data of the RNAs, extracting their interac-
tions from the miRTarBase and TarBase databases. In other words, assuming there is a documented interaction
between miRNA A and both mRNA B and IncRNA C in the databases, we predict an edge between mRNA B
and IncRNA C if the gene expression data shows a negative PCC between miRNA A and mRNA B, as well as
between miRNA A and IncRNA C. Simultaneously, there should be a positive PCC between the gene expression
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data of mRNA B and IncRNA C. Therefore, in cases where IncRNAs and miRNAs share a common miRNA, as
indicated in the mentioned databases, we forecast potential interaction between them.

Due to the absence of experimental interaction data between circRNAs and miRNAs, we predict interac-
tions among circRNAs or between circRNAs and mRNAs solely based on the PCC. In other words, to infer the
interactions between circRNAs and mRNAs, we calculate the PCC for each pairing of circRNAs with miRNAs,
mRNAs with miRNAs, and circRNAs with mRNAs. We predict an interaction between a circRNA and an mRNA
when there is a positive PCC between their gene expression data, as well as a negative PCC between the gene
expression data of the circRNA and a miRNA, as well as between the mRNA and that miRNA.

For both the scenarios: negative PCC values between microRNAs with IncRNAs, mRNAs, and circRNAs,
and positive PCC values among IncRNAs, mRNAs, and circRNAs pairings, a stringent threshold of an absolute
PCC surpassing 0.4 and a p value beneath 0.05 is instated for statistical robustness. Meanwhile, we remove RNAs
from the set N if they lack edges connecting them to other RNAs.

In culmination, the visual representation of the primary ceRNA network PC for each C € CBCS can be
achieved via Cytoscape®.

Specific ceRNA networks

In the third step of pipeline, we aim to establish a specific ceRNA network for each breast cancer subtype to delve

into the distinctive regulatory mechanisms inherent to each subtype. To achieve this, we first extract a common

ceRNA network from the primary ceRNA networks. Subsequently, we derive the specific ceRNA network for

each subtype, C, by subtracting the common ceRNA network from the primary ceRNA network P¢ = (N, E©).
To achieve this, we start by constructing the common ceRNA network called cCENT = (NCENT | pcCENT

by amalgamating the primary ceRNA networks, PPase/—like  pluminal B pnormal—like pluminal A apd pHER2+ where
NCCENT — Nbasal—like N Nluminal B n Nnormal—like N NluminalA N NHERZ-Q—’

EcCENT — Ebasul—like N EluminalB N Enormal—like N EluminulA n EHER2+

Then, a specific ceRNA network named sCENT® = (NSCCENT, ESCCENT) is defined for each breast cancer sub-
type C € BCS as bellow:

C  _ nC _ ajeCENT
Ngggnr =N~ = N ,
C  _ pC_ pcCENT
Ecpnr =E- — E ,

where N€ and E€ represent the number nodes (RNAs) and edges (interactions) among RNAs in the correspond-
ing primary ceRNA network of breast cancer subtype C, respectively.

Module detection

In the fourth step of the Pre_ CLM_BCS pipeline, we employ ClusterMaker Cytoscape application®® to detect
modules within the specific ccRNA networks. This application leverages the Markov cluster algorithm*®. For
each breast cancer subtype C € BCS, the specific ceRNA network sCENTC is input into the application to identify
modules. We select a collection of modules named LC — MODULC that contains one IncRNA or circRNA for
further analysis in breast cancer subtype C.

Enrichment analysis

In the fifth step of the pipeline, potential Gene Ontology (GO) terms of the modules in the set LC — MODUL®
of each breast cancer subtype, C € BCS, are determined through GO enrichment analysis conducted using the
ToppFun web tool. GO terms with FDR-corrected p values less than 0.05 are considered significant®.

Biomarker detection

In the sixth step of our pipeline, we apply two methodologies to extract biomarkers from the set LC_Module®,
focusing on breast cancer subtype C. In the first methodology, we utilize survival analysis to identify effective
mRNAs in breast cancer subtype C. In the second one, we employ differential gene expression data to predict
biomarkers by comparing breast cancer subtype C to the other subtypes separately.

Survival analysis

For each breast cancer subtype, denoted as C € BCS, we calculate the union of mRNA genes from the modules
listed in LC_Module®. Subsequently, we explore the relationship between the expression of these mRNA genes
and patients’ overall survival by employing the Kaplan-Meier (KM) estimation and Log-rank test. TCGA sur-
vival data matching the mRNA genes are retrieved from TCGA database for survival analysis. A total of 88, 100,
76, 252, and 42 samples are collected for basal-like, luminal B, normal-like, luminal A, and HER2+ subtypes,
respectively. For each gene’s survival analysis, patients are divided into two groups based on their expression
values. Those with values exceeding the mean are categorized as the high-expression group, while those with
values below the mean are classified as the low-expression group. We compute Kaplan-Meier curves and Log-
rank test statistical results for both groups using the Survminer*' and survival** packages in R.
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Differential gene expression analysis

For the analysis of differentially expressed genes (DEG), we create the set of genes named G from LC_Module®
for each breast cancer subtype C € BCS. Then, we conduct DEG analysis for each pair of subtypes C, C’' € BCS,
where C # C/, as the between-subtype differentially expressed genes, denoted as BSDEGC'. This analysis is
performed using the edgeR package on the gene expression data of the genes in G **. Each gene with adjusted
p values less than 0.05 (Benjamini-Hochberg) and an absolute logFC value greater than 0.5 is included in the

set BSDEGSC', Subsequently, we extract the set of biomarkers (BiofDEGC) for breast subtype C, as follows:

Bio_DEG® = () BSDEG®C.
C'eBCS
C'#C

To validate the predicted biomarkers in Bio_DEG® for each cancer subtype C, we employ a support vector
machine (SVM) classifier, and implement fivefold cross-validation. The validation procedures using the SVM
classifier and fivefold cross-validation are performed individually for each subtype against all other subtypes.
This process is repeated for each of the five subtypes.

After running SVM on the breast cancer subtype C € BCS, we calculate the receiver operating characteristic
(ROC) curve and the area under the curve (AUC) to evaluate the efficiency of the biomarkers, Bio_DEGEC, in
distinguishing the breast cancer subtype from the others. The caret*, plotROC*, MLmetrics*, and ggplot* R
packages are utilized to implement the SVM algorithm and to calculate and illustrate the ROC curves.

Results
In this section, we offer a step-by-step representation of the results obtained from executing the pipeline outlined
in Fig. 1 for biomarker detection to distinguish breast cancer subtypes.

Dataset

Figure 2 illustrates the outcomes of the initial step in the Pre_CLM_BCS pipeline. During this phase, we extract
gene expression of 30,480 genes, encompassing mRNA, miRNA, circRNA, and IncRNA. After the completion of
the first and second data preprocessing stages within this step, we narrow down the initial gene pool to 14,056
genes. The figure also breaks down the retained genes by their respective types.

Furthermore, after the third data preprocessing step, we removel05 out of 193 samples for the basal-like
subtype, 119 out of 219 for luminal B, 67 out of 143 for the normal-like, 329 out of 581 for luminal A and 40 out
of 82 for HER2+ subtypes of breast cancer as outlier data. Finally, for each subtype C € BCS, we have a dataset
as AC which includes gene expression data of 14,056 genes and n samples. The value of n varies depending on
the cancer type. Specifically, for basal-like, luminal B, normal-like, luminal A, and HER2+ subtypes, we found
88, 100, 76, 252, and 42 samples, respectively. Supplementary Figure S1 exhibits dendrograms illustrating the
hierarchical clustering of samples conducted for outlier detection.

basal-like: 88

circRNA genes: miRNA genes:
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Figure 2. The number of genes and samples for breast cancer subtypes after preprocessing: basal-like, luminal
B, normal-like, luminal B, and HER2+. Note: The picture was created using biorender software (biorender.com).
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INC| 6155 5439 7709 8296 4749
|E€| 368,773 261,344 724,686 676,146 169,644

Table 1. The number of RNAs (|N c |) and the number of edges among RNAs (|EC |) for each subtype C € BCS
in the primary ceRNA network P¢ = (N¢, E€).

RNA type distribution in the primary ceRNA
network of each breast cancer subtype
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Figure 3. RNA type distribution across breast cancer subtypes.

Primary ceRNA networks
We define P¢ = (N, E€) to represent each subtype C € BCS as the primary ceRNA network using the dataset
AC. Table 1 shows the number of RNAs (INC|) and the number of edges among RNAs (|EC ‘) for each subtype

C e BCS. Figure 3 illustrates the presence of mRNAs, IncRNAs and circRNAs in the primary ceRNA of each
breast cancer subtype.
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Figure 4. Comparison of the number of edges (interactions) in the specific and primary ceRNA networks for
each breast cancer subtype.
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Specific ceRNA networks

For each breast cancer subtype C € BCS, the specific ceRNA network named sCENT = (N, Nt ESCCENT) is
derived by removing the common ceRNA network (cCENT) from the primary ceRNA network PC. After remov-
ing the cCENT network from the primary ceRNA network, we lose 8, 11, 2, 3 and 13 RNAs from the correspond-
ing specific ceRNA networks for basal-like, luminal B, normal-like, luminal A and HER2+, respectively. Figure 4
compares the number of edges in SCENTC (|E¢y|) with the edges in the primary ceRNA network P for each
breast cancer subtype C € BCS.

Module detection

We select a set of modules as LC — MODULC including at least one IncRNA or circRNA. Figures 5, 6, 7, 8, and
9 depict these modules for basal-like, luminal B, normal-like, luminal A, and HER2+ subtypes, respectively.
Notably, it is observed that in specific modules, such as module A in the basal-like subtype, module B in the
luminal A subtype, and module A in the normal-like subtype, multiple circRNAs interacting with a single mRNA
gene. This finding indicates that, despite lower expression levels of circRNAs compared to other RNA molecules,
circRNAs play crucial roles in regulating specific mechanisms in different breast cancer subtypes*.

Enrichment analysis

Enriched GO terms and pathways associated with the modules in LC — MODULS, for each subtype of cancer C
are analyzed to identify their involvement in specific pathways and processes. The significant processes enriched
by these modules in each breast cancer subtype can be categorized into three major groups: cancer-related pro-
cesses, immune-related processes, and oncogenic signaling pathways in cancer.

Table 2 displays the cancer-related processes and oncogenic signaling pathways in cancer derived from the
modules in LC — MODULC for each breast cancer subtype C, while Table 3 illustrates immune-related processes
derived from modules for each breast cancer subtype C.

Notably, the enrichment analysis indicates that the immune response primarily involves T cell and B cell
activation processes separately. Figure 10 shows the corresponding modules for T cell and B cell activation in
each of the five subtypes. It is noteworthy that all five subtypes possess a distinct module for activating T cells,
while only luminal B and normal-like subtypes have specific modules related to B cell activation, emphasizing
the importance of T cells over B cells in breast cancer subtypes.

A circ_000736 B
circ_004109

circ_001845

circ_003996 /

circ_001124

circ_003925

circ_001607

MAGI2

Figure 5. The basal-like subtype includes three distinct circRNA modules (A-C) and one IncRNA module (D).
In A, B and C, the circRNAs and mRNAs are shown by yellow and green, respectively. In D, the IncRNA and
mRNAs are shown by blue and brown, respectively.

Scientific Reports |

(2023) 13:20795 | https://doi.org/10.1038/s41598-023-47816-z nature portfolio



www.nature.com/scientificreports/

.\ circ_00331 C
/,/? = ‘/‘/‘ / circ_00306
/ // L\ /] ’ circ_00128
1~ circ 000691 /|
circ_002021 m g
N "’ i
N \/{//\‘,/ / , circ_00198 circ_000349

circ_001056. \\ Vo o o

L e
circ_001989 —— CNERGIAD

sl \'\\\
_ [\
- | \ N D circ_000433 E dirc_000202
- S
| ToRALs
H
HHLA3-AS1 z

Figure 6. The luminal B subtype includes five distinct circRNA modules (A-E) and three IncRNA modules
(F-H). In (A-E), the circRNAs and mRNAs are shown by yellow and green, respectively. In (F-H), the IncRNAs
and mRNAs are shown by blue and brown, respectively.

A circ_001551 B -
% ~_\
circ_001811 X/
circ_000709 "

Figure 7. The normal-like subtype includes one circRNA module (A) and one IncRNA module (B). In (A), the
circRNAs and mRNAs are shown by yellow and green, respectively. In (B), the IncRNAs and mRNAs are shown
by blue and brown, respectively.

Biomarker detection

Through module enrichment, we establish the reliability of these modules for identifying biomarkers. In the
following sections, we employ survival analysis and differential gene expression to discover biomarkers within
these modules.

Survival analysis

We identify potential biomarkers from the mRNAs within the modules of LC — MODULF for each subtype C
using survival analysis. Among the identified genes, three mRNAs, AGBL2, HIST2HAC, and NPHS1, show a
significant association with the overall survival of breast cancer patients, with Log-rank test p values of <0.05.
These results suggest that AGBL2 and HIST2HAC are significant prognostic biomarkers for luminal B subtype
patients, while NPHS1 holds prognostic value for normal-like subtype patients. Independent KM survival curves
for AGBL2, HIST2HAC, and NPHS1 genes are depicted in Fig. 11. In the subsequent sub-section, the analysis
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Figure 8. The luminal A subtype includes four distinct circRNA modules (A-D) and one IncRNA module
(E). In (A-D), the circRNAs and mRNAs are shown by yellow and green, respectively. In (E), the IncRNA and
mRNAs are shown by blue and brown, respectively.
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Figure 9. The HER2+ subtype includes two distinct circRNA modules (A,B) and two IncRNA modules (C,D).
In (A,B), the circRNAs and mRNAs are shown by yellow and green, respectively. In (C,D), the IncRNAs and
mRNAs are shown by blue and brown, respectively.
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Subtype C Module’s name Type of RNAs in module Go terms or pathways FDR
Basal-like D (Fig. 5) IncRNA, mRNA Breast cancer 0.03041
Luminal A E (Fig. 8) IncRNA, mRNA Progesterone-mediated oocyte maturation 0.0497
Basal-like A (Fig. 5) circRNA, mRNA Mammary gland development pathway—Involution (Stage 4 of 4) 0.01572
Luminal B C (Fig. 6) circRNA, mRNA G0:0060658, nipple morphogenesis 0.01182
Table 2. Top pathways and GO enrichment terms of modules LC — MODULE related to breast cancer subtype
C.
Subtype C Module’s Name Type of RNAs in module Go terms or Pathways FDR
HER2+ C (Fig. 9) IncRNA, mRNA GO:2000409, positive regulation of T cell extravasation 0.03519
Luminal B F (Fig. 6) IncRNA, mRNA B cell receptor signaling pathway 0.03837
Luminal B G (Fig. 6) IncRNA, mRNA GO0:0033083, regulation of immature T cell proliferation 0.04753
Luminal B H (Fig. 6) IncRNA, mRNA GO0:0042110, T cell activation 0.01656
Normal-like B (Fig. 7) IncRNA, mRNA ;n}:g;grclslrlegulatory interactions between a Lymphoid and a non-Lym- 0.04297
Normal-like B (Fig. 7) IncRNA, mRNA Adaptive Immune System 0.04297
Normal-like B (Fig. 7) IncRNA, mRNA T Helper Cell Surface Molecules 0.04297
Basal-like A (Fig. 5) circRNA, mRNA T Helper-2 activation 0.03637
Luminal A A (Fig. 8) circRNA, mRNA GO0:0002819, regulation of adaptive immune response 0.03149
Luminal A C (Fig. 8) circRNA, mRNA GO0:0002286, T cell activation involved in immune response 0.02239
Luminal A D (Fig. 8) circRNA, mRNA T cell activation 0.0419
Luminal B B (Fig. 6) circRNA, mRNA GO:0002765, immune response-inhibiting signal transduction 0.04507
Luminal B C (Fig. 6) circRNA, mRNA aGpOQ:})li)(;Sjgi;é":sgsulation of activated CD4-positive, alpha-beta T cell 0.009291
Luminal B E (Fig. 6) circRNA, mRNA CD40/CD40L signaling 0.07089
Normal-like A (Fig. 7) circRNA, mRNA B cell receptor signaling pathway 0.02161

Table 3. Top pathways and GO enrichment terms of modules LC — MODULC related to the immune system
in breast cancer subtype C.

of differentially expressed genes further confirms the potential of NPHS1 as a biomarker. The Log-rank test p
value for all genes in the LC — MODULE, for each subtype C € BCS can be found in Supplementary File S2.

Differential gene expression analysis

The common significantly differentially expressed genes between subtype C and the other subtypes are docu-
mented in the set Bio_DEGC as the potential genes for biomarkers. The genes expressed differently across the
five subtypes are presented in Supplementary Files S3, S4, S5, S6, and S7. Table 4 displays the gene names for
each subtype C in the Bio_DEGF set, along with the average values of absolute logFC and FDR for differentially
expressed genes between subtype C and the other subtypes. Additionally, standard derivations of logFC and FDR
of differentially expressed genes between subtype C and the other subtypes are provided in this table.

It is noteworthy that each of the five subtypes includes at least one circRNA gene considered as a biomarker.
The negative values of logFC values shows all selected circRNA genes are down-regulated in the pairwise dif-
ferential expression analysis between the five subtypes.

In the following, to evaluate the selected genes in Table 4 as effective biomarkers for each breast cancer sub-
type, we design a predictor for each subtype using selected genes as described in the last step of the pipeline.
Figure 12 presents the corresponding ROC curves and AUC values for each subtype.

The validation results of the model on each breast cancer subtype demonstrate satisfactory performance. The
average AUC values of fivefold for basal-like, HER2+, luminal A, luminal B, and normal-like are obtained 0.93,
0.92, 0.70, 0.82, and 0.86, respectively. Overall, these results indicate that the selected genes in the set Bio_DEGC
for each subtype C serve as robust biomarker sets for distinguishing between breast cancer subtypes.

Among the biomarkers predicted in this stage, circRNAs and IncRNAs emerge as promising candidates for
breast cancer subtype prediction.

Discussion

In the realm of immuno-oncology, a field at the intersection of immunology and cancer research, the develop-
ment of potent immunotherapy treatments holds promise for various cancer types®. Understanding the immune
system’s intricacies is paramount to advancing these treatments. Breast cancer research has underscored the
pivotal role of T cells in tumor progression, across various subtypes®*~2 This section investigates T cell regulation
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Figure 10. T cell and B cell activation processes in breast cancer subtypes. This figure represents the processes
in which T cells and B cells are activated by the detected modules in breast cancer subtypes, with “Inc” and
“circ” standing for IncRNA and circRNA, respectively. Note: The picture was created using biorender software

(biorender.com).

and activation mechanisms within these subtypes, revealing at least one module in each subtype enriched in
these processes. as follows:

In the HER2+ subtype, module C in Fig. 9 comprises ZDHHC14 and CROT mRNA genes, along with the
IncRNA RGS5-AS1. This module is associated with the positive activation of T cells, which is influenced by
ZDHHC14 and CROT mRNA genes. These genes are subject to regulation by the IncRNA RGS5-AS1 through
hsa-miR-20a-5p. Additionally, it's worth noting that ZDHHC14 is known as a tumor suppressor gene with
relevance across various cancer types™.

In the luminal B subtype, modules G and H in Fig. 6 are pivotal in regulating T cell proliferation and activa-
tion, while module C is associated with nipple morphogenesis and influences the T cell apoptotic process.
These modules reveal the presence of hsa-miR-149-3p and hsa-miR-133a-3p miRNAs, which are shared
between IncRNA C60rf223 and the mRNA molecules in module G, and between IncRNA HHLA3-AS1 and
the mRNA molecules in module H. This discovery underscores the potential of these miRNAs as influential
genes involved in suppressing various oncogenic pathways*. As a result of our analysis, we suggest that biolo-
gists consider IncRNAs C6o0rf223 (in module G) and HHLA3-ASI (in module H), as well as circ_000349 (in
module C), as potential biomarkers for the luminal B subtype.

In the basal-like subtype, module A (see Fig. 5) includes BCL2L12 mRNA linked to T Helper-2 (Th2) activa-
tion processes. This gene’s role in modulating immune responses suggests it as a potential therapeutic target™.
CircRNAs, circ_003996, circ_003925, circ_004109, and circ_000736, in this module further regulate BCL2L12
via hsa-miR-539-5p.

In the luminal A subtype, circ_002665 (module C in Fig. 8) and circ_001855 (module D in Fig. 8) appear to
play essential roles in regulating T-cell activation mechanisms. These circRNAs are involved in the regulation
of HOXB6 in Module C and HLA-F and CAMKYV in Module D. Previous studies have discussed the roles
of HOXB6 in breast cancer™, and the dysregulation of HLA-F and CAMKYV has been reported in various
cancers®*. This analysis underscores the precise involvement of HOXB6, HLA-F, and CAMKYV in tumor
progression through T cell activation processes in the luminal A subtype.

In the normal-like subtype, module B (Fig. 7), which is enriched in T Helper Cell Surface Molecules, includes
DLEU1. DLEULI has been identified as an up-regulated IncRNA in breast cancer tissues and cells, particularly
in tumors with high malignancy®®®!. This IncRNA interacts with NPHS1 mRNA. Based on our analysis,
NPHSI exhibits significant prognostic value and shows differential expression between normal-like sub-
type and the other four breast cancer subtypes. This underscores NPHSI as a potential dependable immune
molecular marker for normal-like subtype. Interestingly, three shared miRNAs, namely hsa-miR-378a-5p,
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Figure 11. Kaplan-Meier survival curves for candidate mRNAs with lowest Log-rank test p values for (A, B)
luminal B subtype and (C) normal-like subtype. Patients are divided into high-risk and low-risk groups based
on the gene expression of these genes. The p value of the Log-rank test statistic has also been shown in each
diagram.

Subtype C Bio_DEGC | avg_|logFC| |std_|logFC| |avg FDR | std FDR

circ_001845 | 0.909275 0.131957831 | 0.0234475 | 0.025229302

circ_001124 | 0.855975 0.232192239 | 0.024875 0.025912079
Basal-like circ_003925 | 0.76815 0.001815673 | 0.0158925 | 0.023758302

circ_000736 | 0.710225 0.107696406 | 0.028525 0.025866758

circ_003996 | 0.762175 0.001776467 | 0.0158875 | 0.023748417

circ_00306 0.928925 0.214181813 | 0.0132075 | 0.025267296
Luminal B

circ_00128 1.0188 0.126878236 | 0.0096 0.013684541

circ_000709 | 0.80905 0.012791794 | 0.009645 0.007470718
Normal-like

NPHS1 0.717425 0.177538191 | 0.0218425 | 0.021153169

CAMKV 0.93575 0.467635994 | 0.0137 0.019086994
Luminal A

circ_001855 | 0.5703 0.014347822 | 0.0448 0.02248733
HER2 circ_00128 1.79915 0.523564581 | 0.003755 0.007230682

¥
circ_00173 1.85335 0.351477837 | 0.0001825 | 0.000279568

Table 4. The common significantly differentially expressed genes between subtype C and the other subtypes
are documented in the set Bio_DEGC as the potential genes for biomarkers.

hsa-miR-125a-3p, and hsa-miR-150-5p, are found to exist between DLEU1 and NPHS1. These miRNAs are
known as anti-apoptotic agents in breast cancer, further highlighting their potential roles in immune regula-
tion within the normal-like subtype®2-¢4,
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Figure 12. The validation results of selected genes in the set Bio_ DEG for subtype C using SVM which is
(A) basal-like, (B) HER2+, (C) luminal A, (D) luminal B, and (E) normal-like. The AUC values for fivefold
cross-validation are provided for each subtype, and the mean AUC values of fivefold cross-validation are also

included.
Biomarkers
Subtype Cancer-related processes | Inmune-related processes
circ_001845 circ_003996
circ_001124 circ_003925
Basal-like circ_003925
circ_000736
circ_003996
circ_00306 Cé6orf223
Luminal B circ_00128 HHLA3-AS1
circ_000349
circ_000709 DLEU1

Normal-like

NPHS1

CAMKV circ_002665
Luminal A

circ_001855 circ_001855

circ_00128 RGS5-AS1
HER2+

circ_00173

Table 5. A compilation of potential biomarkers identified by our pipeline.
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These findings emphasize the complex interplay between various RNA molecules and immune mechanisms
across breast cancer subtypes, offering insights into potential therapeutic targets and diagnostic markers.

Conclusion

In conclusion, breast cancer poses a significant global health challenge. Recent research highlights the critical
roles of ncRNAs, specifically IncRNAs and circRNAs, in both cancer and immune system functions. The compet-
ing endogenous RNA hypothesis provides a valuable framework to understand the interplay between mRNAs
and ncRNAs in the context of miRNA regulation.

This study employed an innovative pipeline named Pre_CLM_BCS to investigate the roles of ncRNAs in
various breast cancer subtypes. By constructing subtype-specific ceRNA networks, we unveiled distinct mod-
ules associated with immune and cancer-related processes within each subtype. Table 5 reveals the results of
our pipeline, which has allowed us to identify several potential biomarkers specific to different breast cancer
subtypes. Additionally, our analysis has unveiled certain ncRNAs that appear to play pivotal roles in the progres-
sion of their respective breast cancer subtypes, possibly through their regulatory effects on T cell mechanisms.

In the realm of immuno-oncology, understanding T cell regulation and activation mechanisms is essential.
This study revealed the involvement of specific RNA molecules in these processes across different breast cancer
subtypes. These findings provide insights into potential therapeutic targets and diagnostic markers, shedding
light on the intricate interplay between various RNA molecules and immune mechanisms in the context of
breast cancer subtypes. This research contributes to the ongoing efforts to improve breast cancer diagnosis and
treatment, ultimately reducing the global burden of this disease.

While we have developed a pipeline to investigate the competitive regulatory mechanisms of circRNAs and
IncRNAs within the context of miRNAs competition for the detection of breast cancer subtypes, it’s evident that
each step of the pipeline has potential for improvement.

In our future research, we aim to explore the implementation of graph neural networks (GNNs)® to enhance
the construction of specific ceRNA networks in the third step of the pipeline. GNNs have shown promise in
improving the accuracy of network analysis and prediction, and we anticipate that leveraging this technology
will lead to the discovery of more effective biomarkers.

Furthermore, we plan to investigate the integration of ceRNA networks with gene-protein signaling
networks®®-%¢. This combination promises to provide a more holistic view of the regulatory interactions within
a biological system. By unifying coding and ncRNA interactions with protein signaling pathways, we can gain a
deeper understanding of how these components mutually influence each other’s functions, ultimately shedding
light on complex biological processes and diseases. This integrated approach holds the potential to identify key
regulatory nodes, uncover novel biomarkers, and elucidate the intricate interplay between ceRNA networks and
protein signaling.

Data availability

The study utilized miRNA-seq and RNA-SeqV2 level 3 data, which encompass mRNA and IncRNA expression
data of breast cancer, sourced from TCGA Research Network (http://cancergenome.nih.gov/) using the National
Cancer Institute (NCI) Genomic Data Commons (GDC) resource (https://gdc.cancer.gov/). CircRNA expres-
sion data for breast cancer was acquired based on the information provided by Asha et al. (https://doi.org/10.
18632/oncotarget.13134)%,
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