www.nature.com/scientificreports

scientific reports

OPEN

‘ W) Check for updates

Abundant chaos in a mixer
model with a hysteretic iron core
inductance

M. Aminou?, U. Simo Domguia%*3*, S. A. Oumarou* & P. Woafo3*

Industrial mixers are equipment used in food, drug, chemical and semiconductor industries.

Chaotic mixing has been proposed to improve the degree of homogeneity and reduce the energy
consumption. This paper deals with dynamical studies of a mixer model with complex rotational
movements. The complexity is generated by an inductance with hysteretic characteristics.
Mathematical methods and numerical simulations are used to display the different dynamical states
which are period-nT, pulse, bursting and chaotic signals. Good agreement is found between the
mathematical and numerical results. In general, it is found that chaos is highly abundant in the model.

Electromechanical devices are frequently used in a number of industrial and household applications such as
shaking, sieving, mixing,... to name just some few examples'~. These systems offer several advantages due to
the mechanical power they provide for the accomplishment of several specific tasks. The industrial importance
of mixing can hardly be exaggerated. Chemical, petrochemical, and pharmaceutical processes usually require
bringing reactants into close contact by imposing a mixing flow”’.

In recent years, chaotic mixing has been proposed to improve the energy efficiency, the degree of homogeneity
and the duration of the mixing process'®'%. The chaos is generated using either geometrically asymmetric design
of the mixer to produce a practical chaotic motion and feedback action.

Instead of using mechanical means or feedback, our idea is to produce the desired chaotic motion electrically
using a RLC series circuit with hysteretic iron-core inductor. While exceptionally simple passive elements such as
resistors, capacitors, and air core inductors do respond to a first order approximation nearly linearly, in devices
that have ferromagnetic cores, the relationship between the flux density and magnetic field strength in the core
is nonlinear'>'¢. This nonlinear relationship depends on several factors among which the chemical constitution
and structure of the magnetic material, the technological process for its fabrication, and the way the material is
used. The nonlinear characteristics of magnetic materials exhibits hysteresis!”!8.

In most cases, instruments such as blender, mixer, drill, vacuum cleaner, washing machine, etc., containa DC
motor. For this type of motor, the excitation winding is connected in series with the rotor winding'®-*!. This type
of motor can work with either direct current (DC) or alternating current (AC)**-2*. The speed of the universal
motor can be very high, and necessarily depends on the load torque, also called disturbance torque, and the
supply voltage. Indeed, the torque of a device such as an electric mixer depends on the different applications.

Many researchers contributed to the better understanding of chaotic motors for industrial mixers*~*. The
obtained results indicate that chaotic mixing prevents the formation of segregated regions, thus leading to efficient
mixing compared with normal constant speed mixing. Starting from the 1990’s, a number of research activities
on chaos in motors have been carried out. Most of them are based on the identification of chaos?®, the avoidance
of chaos? and the stabilization of chaos® in various types of electric motors. Rather than negatively avoiding
the occurrence of chaos in motors, the chaotization of the DC motor (the agitator) using time-delay feedback
control was firstly proposed and implemented for use in industrial mixers®!. Compared with the mechanical
means, the electrically implemented chaotic motion motor not only produces the desired chaotic mixing, but
also offers the advantages of high flexibility and high controllability.

More studies on chaotic motors are still required due to their potential applications. This justifies the study
conducted in this work. Its goal is to model and study the behavior of a motor actuated by a RLC series circuit
with hysteretic iron-core inductor where one needs to transfer the chaotic behavior of nonlinear electric circuit
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on the motor. Indeed, the results presented in refs*"*? show the possibility of obtaining chaotic behaviors on a

motor when powered by a DC voltage and their application for chaotic mixing®. It is of special importance to
mention that it has been experimentally demonstrated that the chaotic mixing has two main advantages: high
reduction of the duration of the mixing process, but also reduction of the energy consumed for the mixing process
as compared to motors functioning with a constant speed*?”*. Guided by these initial studies, we focus on the
response of a mixer when powered by an alternating source. A description of the model is given. The modelling
equations of the device are then derived showing a set of two ordinary differential equations (the electric circuit)
coupled to an ordinary differential equation given by the Newton law (that of the motor).

The outline of the paper is as follows. “Mixer model: description, modelling and amplitudes of period-1T
oscillations” section deals with the presentation and modelling of the device powered by an alternating source
generator. “Bifurcation diagrams and frequency response curves” section presents the mathematical and
numerical results obtained when the motor is powered by a sine voltage. Numerical results in the case where
the device is powered by a square signal are given in “Mixer model powered by a square signal” section. The
work is concluded with some remarks and future prospects in “Conclusion” section.

Mixer model: description, modelling and amplitudes of period-1T oscillations
Description of the device

The system studied is presented in Fig. 1. It comprises a motor made of two main parts: the stator and the rotor
connected in series. The motor is powered by an alternating voltage source.

The stator is a RLC circuit comprising an inductor with a ferromagnetic core. L is the inductance of this coil,
r is the internal resistance of the inductor and Ry is an additional resistance used to monitor the magnitude of
the current through the inductor and to measure the current through the circuit. C is the capacitance of the
capacitor of the circuit.

The electric part of the motor is a L; r; circuit where Ly is the inductance of the coil constituting the rotor and
r1 its internal resistance. The mixer consists of a single block from the motor up to the mixer foot (a), at which
one can attach various accessories (utensils) (b) thanks to an open dome. We consider in our study that the foot
of mixer is nothing other than the motor shaft, which transmits the movement to the disc representing any arm.

Mathematical modelling

Equation of the electrical part

Applying Kirchhoft’s laws to Fig. 1, and because the inductance of the inductor used in RLC circuit is not
constant, the state equations describing the electrical part are given below:

ddi) A i Ut e(t) = By, sin(wud)
dt dt )
__odu
'= dt
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I
[
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Figure 1. Mixer driving an utensil.
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where R is the total resistance of the circuit given by R = Ry + r + 1, U the voltage across the capacitor, i the
current through the circuit, E,, the magnitude of the external voltage and e(¢) is the induced back electromotive
force. The inductance of the inductor containing the ferromagnetic material is given by the mathematical
expression (2)':

N?A  BgNA Ni di
L= MOZ + Si tanh (az—ll — % ) with o = ﬁsign(d—;) (2)

where B is the saturation flux density. A and [ are respectively the cross-sectional areas and the average lengths
of the ferromagnetic material. N is the number of turns (windings), wo is the permeability of the vacuum. The
parameters o and B are constants depending on the remanent and coercice magnetic fields.

The induced back-electromotive force is proportional to the motor speed with expression given as:

e(t) = Kw(t) (3)

where K, is the back-electromotive force (back-EMF) constant and w the rotational speed of the rotor. By replac-
ing Egs. (2) and (3) in (1), the equations of the electrical part are given as follows:

—1+ cosh ("‘TM—G) di R U K, E,.
1-— - — 4+ —i— — 4+ —w(t) = — sin(w,t
{ 7’} 1+COSh (OZTNI —O’) dt L() LO L() ( ) L() ( e ) (4)
du
i=—-—C—
dt
NZA B B,N2A
withLo= "2 (14 2% ) 4 and g = 2202 (5)
1 210 2ILy

Equation of the mechanical part
By application of the fundamental relation of the dynamics of motion, the mechanical part is described by the
following equation:

dow(t)
J dt

where ] is the load moment of inertia (of the rotor axis or of the mixer taking into account the presence of the
motor shaft J,, and the inertia of the utensils J,,). C; is the load torque, which is an additional torque due to the
presence of the material to be mixed or cut by the mixer (it will be neglected in this study assuming that the
viscous damping term accounts also for the resistance due to the product). f; is the viscous damping coefficient
and Ky, is the electromechanical torque constant. Thus, the equation of the mechanical part is governed by:

= —fio®) — Cr () + Kni(t) (6)

d
1% = —fio(t) + Kpi(t) (7)

Dimensionless equations
The following dimensionless variables are used:

T
t=—, i=Iyx, UZ}/, w = w1z (8)
wo

where wy is a reference frequency, w; is the reference parameter of the angular rotation speed of the motor and Iy
is the reference parameter of the current given by Iy = ﬁ By replacing the variables of Eq. (8) in Egs. (4) and
(7), we thus obtain the dimensionless equations of the mixer given below:

[A+n+A—=n)cosh(x —o0)]x = [—),x +ey—vyz+ Esin(Qr)] [1 4 cosh (x — 0)]
y=—gx ©)
z=—-81z+ 83x

with the following dimensionless coeflicients:

R 1 E E, Iy Q We

A= > €= > = > 4= >
L()a)o L()L()()I() L()L()()I() Ca)() wo
K K
y= SOy Iy Ko
Lowoly Jao Jwiwg

Mathematical analysis and expression of the oscillations amplitude
As simplifying condition, let parameter o be neglected. Equation (9) takes the reduced form:

Scientific Reports|  (2023) 13:21599 | https://doi.org/10.1038/s41598-023-48046-z nature portfolio



www.nature.com/scientificreports/

[(T+n)+ (1 —n)cosh (x)]x = [—Zx +ey—vyz+ Esin(Qr)] [1 + cosh (x)]

y=—qx (11)
z= —81z + 83x

Using the formalism developed in Nana et al.'?, the approximate oscillatory states of period-T are expressed as
X = X1 cos(QT + ¢1), ¥ = Xom cos(Q7 + ¢2) and z = X34, cos(QT + ¢3) (12)
where X, and ¢; are respectively the amplitudes and initial phases. The amplitudes satisfy the following equations:

33

\/ Q2+ 82

[13X13m + a2X12m + a1 Xy, ta =0, X5= %Xl, and X3 = X

(13)

The coeflicients of the above equation are defined as:
a3 =4Q" 2y +m—4— (v + 0] - D [(y2 + D+ 8eq(y sy + 1+ 1] — 467
a=—64Q (ys3 — D(yss +n—1) — @ [1288q(yg3 + z — 1) +32y 62y 2 +24) + 3247 — EZ]

—6482?
a; = —25694()/;3 - 1%+ 3207 [168q(—y§3 +1)—8yc(ys +24) — 812 + Ez] - 25652q2
ap = 256Q%E?

(14)
The equation in X;,, can be solved mathematically or numerically and thus one will have the frequency
response curves for all X;, (this will be presented below along with the results of the direct numerical simulation).

Bifurcation diagrams and frequency response curves
In this section, we present both the analytical and numerical simulation. The analytical results have been obtained
using Eq. (13) and the numerical simulation is applied on Eq. (11). The numerical simulation uses the fourth-
order Runge-Kutta algorithm with a time step At = 0.01 and with (0,0,0) as initial conditions.

The parameters of the electrical part are as follows:

r=8Q, =79 1=24cm, A=176.71 mmz, Bs = 130 mT, N = 2000,
Ly = 1.5mH, C=4.11 uF, Iy = 13.6 mA, o = 88.23 x 10 m/A,
B =88.42 x 1072, Ly = 1694.22 mH, 1 = 0.9969.

R, is variable.
Those of the mechanical part used are given below:

K. = 0.001 N m rpm, K, = 0.04975 S V/rad/A, Ky, = 0.04998 S V/rad/A, J = 1.038 x 10~°kg m?.

The damping coefficient f| is variable.
The resistance Ry, the damping coeflicient f;, the amplitude E,, of the voltage and the voltage frequency
w, = 27f are used as control parameters. The dimensionless coeflicients are obtained as follows:

£ =4339 x 1072, y =2.15 x 1072, q = 33.09, 83 = 6.544

The coefficients \, §;, E and Q are the control parameters.

Effect of the resistance Ry

We analyze here the behavior of the motor speed under the variation of the value of the resistance. Figure 2 shows
the bifurcation diagram of the mechanical part and its Lyapunov exponent when the resistance Ry varies. The
bifurcation diagram shows chaotic behavior of the device which is confirmed by its Lyapunov exponent when the
resistance varies in several domains. One observes that the transitions from periodic behaviors (corresponding
to negative values of the Lyapunov exponent) to chaos (corresponding to positive Lyapunov exponent) are quite
abrupt.

Effect of the viscous damping coefficient

Figure 3 below presents the bifurcation diagram of the mechanical part and its Lyapunov exponent when the
parameter 8, (linked to the viscous damping coefficient) varies. The bifurcation diagram of Fig. 3 shows chaos in
the whole range of the variation of §;. This is also confirmed by the variation of the Lyapunov exponent.

Effects of the amplitude E,,

The frequency of the external source is kept constant at f =50 Hz with Ry = 5 2. The bifurcation diagram of the
motor speed (mechanical part) through the device and the corresponding Lyapunov exponent as function of
the generator E,, are plotted (see Fig. 4). The bifurcation diagram reveals periodic behavior for small values of
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Figure 2. Bifurcation diagram of the motor speed and its Lyapunov exponent for f = 50 Hz and
02 < Ry <20QwithA=11.81x102and §,=1.925, E,, = 40 V.

0 5 10 15 20

9,

Figure 3. Bifurcation diagram of the motor speed and its Lyapunov exponent for f = 50 Hz, Ry = 5 Qand
0<8 <20,Em=40V, Ry =5Q(\=11.81x107?).

E,, while chaotic behaviors dominate for large values, which is confirmed by the maximum Lyapunov exponent.
Here also, the transitions from periodic behaviors to chaos are abrupt.

Effect of the frequency f

Figure 5 shows the bifurcation diagram of the motor speed and its Lyapunov exponent when the frequency f
of the excitation external voltage varies. We take Ry = 5Q and E,, = 40 V in accordance with the preceding
bifurcation diagrams and corresponding to the case where the mechanical part exhibits chaotic behavior. It is
observed that chaos appears when the frequency is greater or equal than 38 Hz.

Frequency response curves
As it appears in the different bifurcation diagrams, there are domains where the system presents period-1T
oscillations. The mathematical expressions of the approximate amplitudes of the period-1T oscillations have
been derived in Eq. (13). In this subsection, we compare the amplitude response curves from Eq. (13) to that
obtained from the direct numerical simulation of the differential Eqs. (11). For this aim, the capacitance is fixed
at C = 470.32 uF and the resistance Ry = 5 Q2. The excitation frequency is fixed at 50 Hz. Figure 6 shows the
amplitude of the current versus the magnitude of the external voltage.

One finds that the behavior of the current is nonlinear. For a voltage value between 0 and 6.8 V, the cur-
rent increases. At 6.8 V, a jump is observed. when the supply voltage is greater than 6.8 V, an increase in the
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Figure 4. Bifurcation diagram of the motor speed and its Lyapunov exponent for f = 50 Hz,
0V <E,<100V,Ry=5Q\=11.81x10"%) and f; = 2 * 10~* N/m? (§,=1.925).
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Figure 5. Bifurcation diagram of the motor speed for E,,, = 40 Vand 0 Hz < f < 200 Hz. Ry =5
(A\=11.81x102) and f; = 2 % 10~* N/m? (8, =1.925).
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Figure 6. Amplitude of the current versus the magnitude of the external voltage: Analytical at second order
(black) and numerical result (red) with Ry = 5 €2, C = 470.32 uE, f = 50 Hz and §,=1.925.
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amplitude of the current is observed up to a maximum value of 3.89 A. The phenomenon observed from the
curve obtained mathematically is also observed in the results obtained from the numerical simulation (but for
a current maximum value reached equal to 4.3 A). There is an agreement between the analytical and numerical
results for small values of E,,. But for large values of E,,, there is a quantitative difference, although qualitatively
the variations of the amplitude as function of E,, are quite close.

As for the case of the current, we have plotted the variation of the amplitude of the voltage across the capacitor
and that the motor speed versus the amplitude of the excitation voltage. This appears in Fig. 7. We note here
that the analytical results are in agreement with the numerical ones for a motor speed ranging between 0 and
13.8 rad/s. For E,, greater than 34 V, a good agreement from a qualitative and quantitative point of view is
obtained between the numerical results and those obtained from the mathematical derivation.

Mixer model powered by a square signal
The aim of this section is to study how the mixer behaves when a square voltage is used to power the system. In
that case, the equations of motion are given in (15).

[A+n)+ (1A —=n)cosh(x —o0)]x = [—/lx +ey—yz+ Esign(sin(Qr))} [1 4 cosh (x — 0)]

y=—qx (15)
z=—81Z+ 83x

Here, the frequency and the magnitude of external voltage are used as control parameters. The additional
resistance is now set at Ry = 1 2 and the damping coefficient is fixed at §, =1.925.

Effect of the amplitude E,

The frequency of the external voltage source is kept constant at f =50 Hz. The bifurcation diagram of the
mechanical part and its corresponding Lyapunov exponent as a function of the magnitude of the external voltage
are shown in Fig. 8. One also finds the domination of chaotic behavior in a large range of the excitation amplitude.

Effect of the frequency f

Considering now the variation of the frequency, Fig. 9 also shows the abundance of chaos in large ranges
of the frequency. The frequency varies between 0 and 150 Hz and the amplitude of the voltage source is
equal to E,, = 20 V. The frequency intervals where chaos is present are as follows: 1.8 Hz < f < 11.6 Hz,
131 Hz < f <182 Hz,21 Hz < f < 35.5Hzand f > 44.7 Hz.

Some phase portraits showing chaotic dynamics
In this section, we present the phase portraits showing the voltage across the capacitor and the motor speed
respectively as a function of the current flowing through the device. First, we fix the frequency f at 50 Hz and
take a value for the amplitude of external voltage source according to the bifurcation diagram of Fig. 8.
According to the bifurcation diagram of Fig. 8, we note several chaotic domains when the magnitude of the
external force is greater than 12.1 V, which is confirmed by the maximum Lyapunov exponent. We take two
values of the magnitude in this range and Fig. 10 presents a chaotic behavior, thus confirming the bifurcation
diagram of Fig. 8. We can also note that the intensity of the current flowing through the device increases with
the increase of the amplitude of the external voltage source (1.5 A to 3 A). There is also an increase of the voltage
across the capacitor and that of the motor speed respectively.
Secondly, we fix the amplitude of the voltage source at E,, = 20 V and take some values of the frequency
according to the bifurcation diagram of Fig. 9.

(@) (b)

Wre——— 600
° Numerical s "
g 20 S * Analytical
2 3 400
@ s,
o0 =3
< 72!
S 10) S 200
©
> 2
=
0 — ‘ : 0 ; : :
0 20 40 60 80 100 0 20 40 60 80 100
Em Em
Figure 7. Different amplitudes of the device versus the magnitude of the external voltage: (a) the voltage across
the capacitor and (b) that of the motor speed, with Ry = 52, C = 470.32 uF, f = 50 Hz and §,=1.925.
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Figure 8. Bifurcation diagram of the motor speed and its maximum Lyapunov exponent for f=>50 Hz and
OV<E, <100V.
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Figure 9. Bifurcation diagram of the motor speed and its maximum Lyapunov exponent for E,, = 20 V and
0 Hz < f <150 Hz.

The same observations are also made here as it was the case in Fig. 10. With regards to Fig. 9, we note
abundant chaos over almost all frequency ranges. We actually take three frequency values to illustrate this, and
Fig. 11 presents the chaotic phase portraits of the device with frequencies taken in intervals presented in the
bifurcation diagram of Fig. 9. A maximum current of 1.5 A is obtained under variation of these frequencies.

The increase in current and motor speed when the magnitude of the external signal varies is very significant,
especially when homogeneous mixing is required to be carried out with good precision.

Some times histories showing periodic, chaotic and bursting oscillations

This part first of all discusses the temporal traces of the device when the amplitude of the excitation voltage
varies and the frequency is kept at 50 Hz; and secondly when the frequency of the excitation voltage varies and
its amplitude is set at 20 V.

Regarding Fig. 12, we see that for E,;, = 20 V, the current presents chaotic pulse oscillations. These chaotic
behaviors are reproduced respectively at the level of the voltage across the capacitor and of the motor speed.
When the amplitude of external voltage source increases, we see that the shape of the oscillations across the
capacitor voltage and that of the motor speed changes. The latter exhibits chaotic relaxations.

With regard to Fig. 13, we see that for f =5 Hz, the current presents pulse oscillations while the voltage across
the capacitor presents bursting oscillations, and the motor speed also presents bursting oscillations. When the
frequency increases, there is a decrease of the period of the oscillations and a modification of the shape of the
oscillations across the capacitor voltage and that of the motor rotation speed.
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Figure 10. Phase portraits of the device obtained for f =50 Hz and when the magnitude of the external signal
varies: (a) and (b) for E,,, = 20 V; (c) and (d) for E,, = 50 V with Ry = 1 2 and the damping coeflicient is fixed
at 6, =1.925.

Observing figures presented in “Bifurcation diagrams and frequency response curves” and “Mixer model
powered by a square signal” section, it can be stated that chaotic behaviors of the RLC circuit are well transferred
to the motor at frequency equal to 50 Hz. Such a mixer proposed in this work therefore comes here to improve
the domestic mixers that we use at home where we need that the food to be cut be made with a good precision.

Conclusion

A mixer model with complex rotational movement has been considered in this paper. The device is made up of
anonlinear RLC series circuit with hysteretic iron-core inductor driving a motor. Analytical treatment has been
conducted and a good qualitative and quantitative agreement has been found between numerical and analyti-
cal results for small values of E,,. A quantitative difference is observed for high values of E,,. The numerical
simulation of the differential equations of the model has led to the conclusion that chaos is very abundant in
the model when one varies the control parameters such as a resistor in the circuit, the damping coeflicient due
to the resistance created by the type of product to be mixed, the amplitude and frequency of the voltage source.
This abundance of chaos is interesting for the envisaged application which is chaotic mixing. The experimental
investigation will surely confirm the theoretical results obtained here. Moreover, there is a need to conduct tests
for the mixing process and compare the performances of this mixer analyzed here when it runs in chaotic mode
and it constant speed mode. Another interesting idea is to create more chaos by using complex mechanical arms
can generate turbulent flow during the mixing process. At last, a good point is to understand the impact of chaos
in the life time of the motor.
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Figure 11. Phase portraits of the device obtained for E,, = 20 V and when the frequency varies: (a) and (b) for
f=5Hz; (c) and (d) for f=35 Hz; (e) and (f) for f=100 Hz with Ry = 1 2 and the damping coefficient is fixed at
8,=1.925.
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Figure 12. Time histories of the device for f=50 Hz, Ry = 1, §,=1.925.
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Figure 13. Time histories of the device for E,, = 20 V, Ry = 1, §,=1.925.

Data availability
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