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Non-myopic multipoint
multifidelity Bayesian framework
for multidisciplinary design

Francesco Di Fiore®?* & Laura Mainini®%2>

The adoption of high-fidelity models in multidisciplinary design optimization (MDO) permits to
enhance the identification of superior design configurations, but would prohibitively rise the demand
for computational resources and time. Multifidelity Bayesian Optimization (MFBO) efficiently
combines information from multiple models at different levels of fidelity to accelerate the MDO
procedure. State-of-the-art MFBO methods currently meet two major limitations: (i) the sequential
adaptive sampling precludes parallel computations of high-fidelity models, and (ii) the search
scheme measures the utility of new design evaluations only at the immediate next iteration. This
paper proposes a Non-Myopic Multipoint Multifidelity Bayesian Optimization (NM3-BO) algorithm to
sensitively accelerate MDO overcoming the limitations of standard methods. NM3-BO selects a batch
of promising design configurations to be evaluated in parallel, and quantifies the expected long-term
improvement of these designs at future steps of the optimization. Our learning scheme leverages

an original acquisition function based on the combination of a two-step lookahead policy and a local
penalization strategy to measure the future utility achieved evaluating multiple design configurations
simultaneously. We observe that the proposed framework permits to sensitively accelerate the MDO
of a space vehicle and outperforms popular algorithms.

Optimization is becoming essential in science and engineering to empower the performance and sustainability
of complex systems toward global challenges, such as green development and climate change. In many real-world
applications, the optimization of advanced technologies involves multiple scientific disciplines characterized by
complex relationships and couplings difficult to be tackled. Multidisciplinary design optimization (MDO) relates
to the development of computational methodologies for the design and optimization of complex systems taking
into account the interactions of multiple disciplines?. Those interactions can span different strength and width of
the cross disciplinary couplings>*. MDO approaches have been applied to the design and optimization of a broad
range of engineering systems including aircraft’, spacecrafts®, launch vehicles, buildings®, electric automobiles’,
ships'®, energy systems!! and robots'?. One of the major challenges addressed by MDO is represented by the
possibility to use expensive high-fidelity disciplinary models, such as the ones that are given by large scale
systems of equations for the numerical solutions of partially differential equations, directly in the simulation-
based optimization process'®*. Indeed, the search of optimal design solutions would benefit from accurate
representations of the system behaviour and physics including the couplings across the multiple disciplines.
However, considering all those interactions and complex couplings would typically demand for large amount
of evaluations of the high-fidelity disciplinary representations which would result in prohibitive computational
costs for the overall MDO procedure.

To address these challenges, MDO literature proposed a variety of solutions that rely on the use of low-
fidelity models to reduce the computational burden and complexity associated with disciplinary analysis and save
computing resources. As discussed by Peherstorfer et al.'?, low-fidelity disciplinary solvers range from simplified
models directly derived from the high-fidelity counterpart using expert knowledge®, to projection-based models
that identify a low-fidelity subspace retaining the essential features of the system'’, and to surrogate-based models
where the input-output relationships of disciplines are derived from observations of the high-fidelity model'®.
Even if the evaluation of these low-fidelity representations could be sensitively reduced in computational cost,
the former simplified models might not be adequate to depict complex non-linear phenomena that frequently
characterize the disciplinary domain, while the latter projection-based and surrogate-based models might require
a large amount of costly high-fidelity data for their construction.
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Multifidelity methods acknowledge the opportunity offered by low-fidelity representations and offer
approaches to address the research gap of including expensive high-fidelity disciplinary analysis into the MDO
process’®. Multifidelity methods combines data extracted from a library of disciplinary models that can be
hierarchically ordered according to accuracy and computational cost'?. The availability of multiple levels of
fidelity can be exploited to support the search procedure through a principled elicitation of information: fast
low-fidelity models are used to massively explore different design configurations, and expensive high-fidelity
models sparingly refine the solution of the MDO problem. Multifidelity methods have been successfully applied
to a variety of MDO applications ranging from aircraft?*? and space vehicles**?* to ships*® and unmanned
underwater vehicles®, from electric”’ and hybrid*® vehicles to green energy technologies®*°. In most cases,
the complexity of the disciplinary analysis and couplings discourages the use of gradient-based optimization
strategies: the computation of the derivatives might demand for massive high-fidelity data and increase the overall
computational burden. Therefore, the MDO procedure commonly relies on a black-box approach where the
disciplinary analyses are regarded as a pure input/output relationship, whose information about the mathematical
properties and derivatives are not available.

Multifidelity Bayesian optimization (MFBO) provides a computational framework for black-box optimization
and leverages disciplinary solvers at different levels of fidelity to accelerate the identification of promising
design solutions®~**. MFBO realizes an adaptive sampling scheme based on a multifidelity acquisition function
that targets the design improvement with a continuous trade-off between optimization performance and
computational cost. Several MFBO approaches have been proposed to address a variety of design problems.
Charayron et al.** applied an original multifidelity Bayesian framework for the MDO of a full electric drone
accounting for a long-range surveillance mission. Serani et al.** proposed a MFBO based on stochastic radial-
basis functions surrogate applied to the design optimization of a destroyer-type vessel. Reisenthel et al.*® adopted
an MFBO framework for the aeroelastic design optimization of a UAV wing. Tran et al.’” implemented MFBO
for the chemical design optimization of atomistic materials to identify the optimal bulk modulus.

Most state-of-the-art MFBO algorithms are greedy and sequential in nature since the multifidelity acquisition
function (i) quantifies only how the design and level of fidelity selected at the current iteration affect the
immediate next step, and (ii) selects only a single combination of design variables and level of fidelity to be
evaluated at the next iteration. In particular, (i) the popular greedy approach precludes greater informative gains
that can be acquired through the measure of the long-term reward obtained at future steps of the optimization,
and might preclude superior accelerations of the MDO procedure; (ii) the sequential search might not be
computationally efficient for MDO problems where the simulation of complex interdisciplinary relationships
demands for a huge amount of high-fidelity data and associated computational expense.

To address these gaps, we propose a non-myopic multipoint multifidelity Bayesian optimization (NM3-BO)
framework that aims to overcome both greedy and sequential limitations of standard MFBO methodologies. Our
original multifidelity search defines an optimal sequence of decisions to (i) maximize the long-term reward as the
improvement of the optimal design solution achieved at future steps of the optimization, and (ii) select a batch
of design configurations and levels of fidelity to be evaluated simultaneously. To overcome the shortcomings of
standard MFBO, our non-myopic multipoint and multifidelity learning scheme (i) is derived formalizing MFBO
as a dynamic system under uncertainty addressed through a dynamic programming technique, (ii) defines an
optimal policy as a sequence of decisions to maximize the two steps ahead utility obtained evaluating a design
with a specific disciplinary model, and (iii) uses a local penalization strategy to enable multiple decisions as a
batch of paired designs and levels of fidelity to query in parallel.

The performance of the proposed NM3-BO are illustrated and discussed in comparison with standard MFBO
frameworks for the multidisciplinary design optimization of a re-entry vehicle. We adopt the Multidisciplinary
Feasible (MDF) formulation to formalize the space-vehicle MDO problem, and capture the multidisciplinary
nature of the system considering the contributions of the propulsion system, re-entry descend trajectory,
aerothermodynamic effects, and thermo-structural interactions. In particular, the specific MDF architecture
considers the coupling between the trajectory and the aerothermodynamic disciplines through the aerodynamic
coefficients, and the coupling between the thermo-structural and aerothermodynamic disciplines through the
thermal protection system wall temperature. This design problem is specifically selected to exemplify the marked
cross-disciplinary scenario and strong couplings between disciplines that can be traced in the vast majority of
MDO problems in science and engineering.

Methodology

The non-myopic multipoint multifidelity Bayesian optimization (NM3-BO) framework formalizes an adaptive
sampling scheme that measures the long-term utility of a batch of design configurations evaluated simultaneously.
Our formulation regards MFBO as a decision making problem affected by uncertainty: the decision task relates
to the selection of promising design configurations — combination of design parameters — and the associated
levels of fidelity to query; the uncertainty elements relate to the black-box nature of the objective function and
the probabilistic prediction of the surrogate model.

In the following, the MDO problem setup and the BO single-fidelity and multifidelity frameworks are firstly
introduced to provide an overview of the core background of our work. Then, we formalize the optimal policy for
MFBO and illustrate how to robustly approximate it through a Monte Carlo technique. In addition, we propose
a multiple decision making strategy to enable parallel computations of a batch of designs and associated levels
of fidelity. Finally, the NM3-BO algorithmic framework is presented and discussed.

MDO problem setup
This work considers the general formulation of the MDO problem as follows*:
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minimize f(x)
with respectto  x
subjectto c¢(x) >0
Ri(x)=0 fori=1,..,D

(1)

where the goal is to identify a set of design variables x that minimizes an objective function f subject to design
constraints ¢, and the solution of governing equations in residual form 2;(x) for each i-th discipline.

The disciplinary analyses are usually performed through black-box simulations: computer codes operate
independently and define relationships between inputs and outputs, and hide the procedure associated with
their computation. High-fidelity disciplinary analyses involve the numerical solution of governing PDEs through
expensive computational procedures, such as Computational Fluid Dynamics (CFD) techniques for the numerical
solution of Navier-Stokes equations.

BO from single-fidelity to multifidelity

Bayesian optimization (BO) is an efficient computational strategy to address the MDO of expensive black-box
objective functions®®*. To solve Eq. (1), BO uses two key components: a surrogate model of the objective function
f(x)and an acquisition function computed on the surrogate of f. The maximization of the acquisition function
permits to select the most promising design configuration x’ to query. BO uses the observed value f(x') to update
the surrogate model and the process iterates until a certain termination criteria is reached. Popular formulations
of Bayesian optimization and acquisition functions are overviewed by Frazier et al.*® and Shahriari et al.*®.

The most widely used acquisition functions determine a greedy and sequential adaptive sampling scheme
that considers only the immediate effect of evaluating the objective function for a single design, and do not
consider the potential gains introduced in future evaluations. To address this type of greedy limitation, BO has
been formalized as a partially observable Markov decision process*’, and several works** provide solutions to
this process and formalize non-myopic multifidelity acquisition functions. In addition, multipoint formulations
of the BO framework have been proposed to evaluate in parallel multiple designs with a single level of fidelity of
the disciplinary model**~*’. However, the combination of non-myopic and multipoint formulations in literature
are conceived exclusively for a single-fidelity framework only: the optimization process relies on the responses
of disciplinary models at one single fixed level of fidelity. In the MDO context, this single fidelity approach
could hinder the expensive high-fidelity disciplinary models to be interrogated directly during the search,
which otherwise would result in prohibitive computational costs. In addition, the computational cost becomes
unmanageable as it scales exponentially when the disciplinary couplings are also considered during the process:
the identification of an optimal design that satisfies all the interactions and couplings across the disciplines would
require massive evaluations of high-fidelity disciplinary models with the associated growth of the computational
demand.

In many applications, scientists and engineers might rely on different disciplinary models of the objective
function and constraints with different degrees of accuracy and associated demand for computational resources.
Multifidelity Bayesian Optimization (MFBO) combines disciplinary responses from this library of models
{f (OR f @, f (L)} hierarchically ordered according to the level of fidelity = 1, ..., L to accelerate the solution of
the MDO problem (Eq. 1). In this setting, the surrogate model synthesizes the outcomes computed with multiple
models into a unique surrogate, and the acquisition function defines an adaptive sampling scheme that identifies
the design configuration and the associated level of fidelity to query at each iteration.

Multifidelity Gaussian process
We adopt the Multifidelity Gaussian process (MFGP) as the surrogate model of the objective function given
the successful application over a variety of methodologies and applications*’-*. MFGP is formalized extending
the Gaussian process® (GP) formulation to multiple levels of fidelity, and provides a prediction of the objective
function over the design space Z through the mean function wDx) = ]E[f(l) (x)], and the associated uncertainty
of the prediction o2V (x) = E[(f D(x) — n(x)) (f D) — nx)N] through a covariance function.

MFGP relies on an autoregressive scheme to synthesize responses from models at different levels of fidelity®':

fO=p1f V) +6Vx) I=2,.,L )

where pj_ is a regression parameter that scales successive representations f® and f¢=1, and §) models the
discrepancy between £ and the scaled model p;_1f¢~V. This discregancy term 87 is assumed to be a Gaussian
process characterized by mean function v(x)T B and covariance i ¢ (x, x ), where v is the vector of regression
functions and B? are the associated weighting coefficients. We use the Gaussian correlation model as the
covariance function of the MFGP surrogate:

M
k(x,x) = glz exp {— Z o] (X — x;n)z} (3)
m=1

where w = (m'll, wlz, s wlM) is the roughness parameter, and glz is the process variance of the I-th level of
fidelity.

Thus, the posterior mean u(?) (x) and variance o2) (I))() of the objective are formalized through the covariance
matrix K(i,j) = [ (%1, 1), (%3, 1)) + yyoe (x)] and iy (%) = [ie (x5 1), (x5, 1) :

Scientific Reports |

(2023)13:22531 | https://doi.org/10.1038/s41598-023-48757-3 nature portfolio



www.nature.com/scientificreports/

nP00 =k 0 Ky 4)
2O (%) = k(% 1), (%, 1) — el () 'K i (%) (5)

where y;; is the Kronecker delta function. The hyperparameters (p, 8, @, ¢) of the multifidelity Gaussian process
surrogate model are estimated through maximum likelihood estimation methodology®*.

Multifidelity expected improvement
The multifidelity acquisition function U quantifies the utility of new design configurations with a trade-off
between cost ad accuracy of the associated model to query. In this work, we will build our method onto the
Multifidelity Expected Improvement (MFEI) acquisition function®, given the popularity of this formulation
across different science and engineering communities and the variety of adoptions documented in literature®*3.
The MFEI is formulated as follows:

Unmrper (x, 1) = Ugr(®) o (x, Deea (x, Dz (1) (6)

where Ugy is the expected improvement acquisition function computed with the highest level of fidelity. The
utility functions a1, o and o3 are defined as follows:

a1 (x, 1) = corr[fP (x), f P (x)] 7)
o) =1——— ¢ 8)
VoD (x) — o2 (
20
o) = - ©

o1 (x, ) reflects the decrease of accuracy associated with lower-fidelities quantified as the correlation between the
I-th fidelity outcome £ (x) and the high-fidelity f (x) disciplinary analysis. a3 (x, [) brings awareness about
the stochastic nature of the objective function through the measurement noise o, and considers the reduction
of the uncertainty associated with the evaluation of design solutions with the /-th model. a3 (/) includes the
computational cost A) of the I-th disciplinary analysis in the sampling procedure, and balances the accuracy
with the resources entailed for the objective evaluation.

Alternative formulations of the multifidelity acquisition function have been proposed in literature, such as the
Multifidelity Max-Value Entropy Search (MFMES)?? and the Multifidelity Probability of Improvement® (MFPI).
Both these acquisition functions define a sampling scheme sequential and greedy, where the design improvement
is measured as the probability of lower the objective function according to the surrogate prediction (MFPI) or
as the maximum decrease of differential entropy (MFMES). In this work, the proposed NM3-BO framework is
compared against all those formulations of the acquisition functions for the MDO problem of a re-entry vehicle.

Optimal decision making process over the next two-step ahead

The multifidelity Bayesian optimization is regarded as a decision making problem and formulated as a Markov
Decision Process (MDP). MDPs are discrete-time stochastic control processes that allow to model the sequential
decision making process of a dynamic system under uncertainty>***. The main methodological elements of MDPs
are: (i) the Markov chains model the transitions of the dynamic system from the initial state to future states, (ii)
a decision-making model makes a decision at each state transition of the system, and (iii) an utility function
quantifies the reward achieved by a certain decision with reference to the given goal. The objective of MDPs is
to identify the optimal set of decision to efficiently reach the given goal over time. Following the perspective of
MFBO as a dynamic system under uncertainty, (i) the multifidelity Gaussian process predicts the transitions of
the MFBO system to future states given the initial conditions, (ii) the MFBO system evolves making a decision
at each transition on the next design and level of fidelity to be evaluated, (iii) the reward of each decision is
measured through the multifidelity acquisition function that evaluates the benefits of each decision through a
trade-off between obtaining utility from the current state and altering the opportunities to obtain utility in the
future.

The solution of the MFBO Markov Decision Process requires a procedure to perform statistical inference on
the system behaviour, and depict the transitions of the system from one state to the other after exploring every
possible decision. We employ the dynamic programming®*” approach to solve this specific MDP. Dynamic
programming (DP) partitions the optimization procedure in simpler sub-problems defined in a recursive way
across several transitions. This permits to define the optimal policy as a sequence of rules that maximizes the
cumulative reward achieved making decisions at future iterations. In the following, we formulate the optimization
policy based on an original multifidelity acquisition function to measure the utility of decisions expected over
future steps of the optimization procedure.

Let us consider the MFBO dynamic system fully characterized at each time step ¢ by a state s; € %, where
&+ denotes a set of states that represent all the possible configurations of the system at each time step. Following
the dynamic programming approach, we consider any future iteration of the optimization process as time steps
{t,..., T} of the MFBO dynamics. For a generic time step ¢, the multifidelity Gaussian process conditioned on
Dy = {Xp, y™, 1,}N_| determines the posterior distribution of the objective function, where x is the design
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point and y® is the noisy observation of the objective function at the I-th level of fidelity. Thus, MFBO is fully
characterized by a state s; defined through the dataset ; € .%;. Based on the simulated scenario defined by
the surrogate model, MFBO makes an action a; = {X1, l+1} that activates the dynamic of the system, and
defines the next design x;+; € 2 and associated level of fidelity I;; to evaluate. This action is taken under an
optimization policy 7; : %y — % that maximizes the utility achieved in the future steps by mapping the state
sy to the action a; = 74 (s¢).

At the new time step ¢ + 1, the value of £+ (x;; ) is unknown and requires the evaluation of the objective
function at the l;;1-th level of fidelity. We can model this value as an uncertain quantity through the posterior
distribution of the surrogate model conditioned on Z; at x;4 (17 and level of ﬁdellty I 1 This simulated outcome
is defined as a random disturbance normally distributed w;/; ~ A/(/,L (Xt+1) of (xt+1)) specified by the
mean ME ) and variance (rtz O of the multifidelity Gaussian process Once the outcome is simulated, the system
transitions to the new state s, following its dynamics %, which corresponds to the augmented dataset
D1 = Dy U {xeg1, 00, I ):

D1 = F Xeg1, 9", i1, D) (10)

At this point, we need to define a specific reward function for MFBO that measures the utility obtained from a
simulated outcome w,_; when the action a; is applied to the state s;. This reward function can be formulated as
the reduction of the objective function achieved at the time step ¢ + 1 with respect to ¢:

L L
Tt(Xt+1>)’(lt“)>lt+1 D) = (f*( ) t(.;_i (11)
(L) (L)

where f,\1 = w,[}, and ft*(L) is the minimum value of the objective function at the highest level of fidelity
observed up to t. Thus, we follow the DP recursive strategy and define the expected reward at the generic time
step ¢:

JE Xt e, Z1) = Blre e,y Deit, Z0) + Jeat (F ety D1, 20))] (12)

where E[r;(-)] = Umrer (X¢+1, l+1) is the multifidelity expected improvement (Eq. 6), and J11(Z (-)) is the
long-term expected reward. We formulate the two-step lookahead multifidelity acquisition function through
an optimal policy 7 * that maximizes the cumulative expected reward over two-step ahead of a pair of design
configurations x4, and level of fidelity I;:

Uz]r*(xt+2>lt+2»@t+l) = Umrer (X415 li41) + E[max(Uprer (X425 li42))] (13)

where we define the long term reward J;1; = max(Unrgr (Xe+2, l1+2)) as the maximum of the multifidelity
expected improvement conditioned on the dataset &, .

Robust approximation of the optimal decision making process

The evaluation of U " (Eq. 13) requires the solution of nested expectations and maximizations computationally
intractable. We adopt the Monte Carlo approach to avoid nested computations, and provide a robust estimate of
the two-step lookahead multifidelity utility function. Let us formulate the observation of the objective function
at the new design configuration x,4 and level of fidelity I, using the reparameterization strategy proposed by
Wilson et al.®:

)
FOx) =l + € xi41)Z (14)

where Ct(l) is the Cholesky decomposition of the covariance matrix Ky, and Z is an independent standard normal
random variable. We use Eq. (14) to compute the mean and variance of the multifidelity Gaussian process at
t + 1for the generic design configuration x:

w0 = 1) +H x)Z (15)
o =0’ - H0H" x0T (16)

where H (x) = 1’ ()€~ ().

The expectation term of our acquisition function in Eq. (13) is approximated through the prediction ,uEJ)rl
and associated uncertainty o, of the multifidelity Gaussian process. This permits to estimate the multifidelity
expected improvement at t + 2 as follows:

Untrgr Xe+25 lv2) ~ Untpgr (X425 b2, Z) (17)

At this point, the two-step lookahead multifidelity acquisition function is evaluated sampling the random variable
Z and averaging many realizations of UF " through Eq. (17):

UF" (X425 b2 Zeg1) ~ BIUF (Xe12, b2, Z)] (18)

This Monte Carlo approach demands for a significant number of realizations of U” - in the order of thousands
- to provide a robust approximation of U" However, we emphasize that the evaluatlon of Egs. (15) and (16) is
inexpensive and requires contained resources. This results in a total computational cost required by the Monte
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Carlo procedure that is negligible if compared to the cost associated with the evaluation of the objective function
through high-fidelity disciplinary analyses in complex MDO problems.

Enabling multiple decisions

Equation (13) provides a non-myopic multifidelity sampling scheme that sequentially selects the design
configuration and the respective model to maximize the cumulative reward over two steps ahead. Di Fiore
and Mainini*® provided evidence that this strategy permits to achieve remarkable results over a variety of
benchmark analytical problems with a reduction of the number of high fidelity interrogations. However, complex
multidisciplinary design optimization problems in the form of Eq. (1) open major challenges for the intrinsic
demand to scale: the required accurate evaluations of the objective function can dramatically upscale during the
search for improved design solutions.

To address this complex multiphysics optimization scenario, we extend the optimal policy 7* to enable
multiple decisions. This permits to define a decision making procedure that iteratively selects a batch of promising
design points and associated levels of fidelity ﬂinb = [(Xi,15li;1)5 -+» Ki,ny» li,n, )] While improving the design
solutions over future iterations. The potential of multipoint formulations has been illustrated by® for a greedy
single-fidelity Bayesian framework, and motivates our proposal of a multipoint sampling strategy for the non-
myopic MFBO in multidisciplinary settings. Accordingly, the formulation of our acquisition function UF" i
modified through a local penalization maximization as follows:

k—1
Xifo lig = argmax | UF (Xey2, 42, Zi11) H ¥ (X, %)) (19)
=1

where (x;x,lix) € %,", and ¥ is the local penalty function which quantlﬁes the probability that a design point x
is a potential minimum not belonging to the hypersphere {x € 2" : ||x; — x|| < (f* —fr (xj))/L}:

1
1//(X>Xj) ==

1 n
erfe | ————(LlIx; — x|l = f* + ¥ x)) 20
2 /202(L)(xj)( J ;) (20)

where erfcis the complementarg error function, f * = mingegy u® (x)is the minimum predicted by the surrogate
model, and L = maxycy || ,uv (x)||is the Gaussian process Lipschitz constant®® defined as the maximum of the
surrogate gradient. The rationale behind the formulation of ¥ is to locally penalize the acquisition function and
create exclusion zones whose amplitude is determined by the Lipschitz constant L. This results in small sized
exclusion zones when the values of the mean function 2 are closer to the predicted minimum f *. In contrast,
regions of the design space where the mean function " is far from the predicted minimum f * produce larger
exclusion zones. This penalization strategy emulates a sampling procedure over multiple iterations that would
have been achieved by a sequential scheme if the previous evaluations of the designs in the batch were at disposal
of the learner.

In addition, we provide an adaptive batch size formulation that determines the number of designs in a batch
np(i) =1+ ﬂ/(JP) as a function of the optimization iterations i and the initial batch size 8. This strategy
targets the efficient use of computational resources: the number of design evaluations increases at the beginning
of the optimization to improve the knowledge of the objective function distribution over the domain, and is
progressively reduced to catalyze the resources toward the analyses of optimal design solutions.

NM3-BO algorithm

Algorithm 1 illustrates the numerical implementation of our non-myopic multipoint multifidelity Bayesian
optimization (NM3 BO) scheme. The initialization of the computations requires the definition of the design
space X € R according to the number of variables d that characterize the design configuration x, together with
the library of models of the objective function {f (1, f@, ..., f )}, In addition, the multifidelity Gaussian process
prior GP(0, ¥ (x,x)) is defined for each level of ﬁdehty, and represents the prior belief about the distribution
of the objective function over the design space. Before the start of the 1terat1ve process, an initial subset of Ny
design configurations {x,}, No 2, and corresponding levels of fidelity {I,},, No 2, are sampled through any,¢ des1gn of
experiments technique, and are used to compute the ﬁrst observations of the objective function {y" “)} .- These
data are collected into the dataset Zo = {x, y*), 1}, No 2, which defines the initial state of the MFBO system and
induces the posterior distribution under the prior spec1ﬁed by the mean u® and variance o2,

For a generic iteration i of the NM3-BO algorithmic flow, the surrogate model is updated through the
observations of the objective function @) (x; k) at each ny, (i) pair of design configurations x;x and levels of
fidelity ;  that constitutes the batch ;" @ Selected at the previous iteration i — 1. This represents the new state
of the MFBO system &; = Z;_; U {x, o f i) (xik)> i, k}"”(l) At this stage, the algorithm selects the next design
configurations and levels of fidelity 2, b(l o evaluate through the computation and maximization of our
acquisition function U7, Let now 1nd1cate witht = ithe current step of the optimization and with¢ + landt + 2
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Algorithm 1. NM3-BO: non-myopic multipoint multifidelity Bayesian optimization.

Input: Design space 2~ € RY, multifidelity models of the objective function f()(x) and the multifidelity Gaussian process
prior GP(0, ) (x,x"))
Output: f* = min f(x)
1: 9y +— {x,,.,y(l">,l,,}fqv‘:’] collect initial observations
(1) <200

2: Uy ,0, ~ < learn the initial multifidelity GP

i+ 1

4: repeat

5:  Load the k pairs of x; ; and associated /; ; from the batch %;:,,(11'71)
6 Evaluate fUit) (x;4) V(i —1)

7 —2 —/t lU{xlk flik (xlk) lk}nb

8: /,t,( >, S update the multifidelity Gaussian process

9: t1i

10.  Compute Uprgr(Xe+1,0+1)
for j < 1, Ny do
12: Zj+ A (0,1)

13: ul( +) 1 szl) < estimate the multifidelity GP

—_
—_

14: Compute UMFEI(xt+27 li12, j)
15:  end for
~T ~ 5N,
16 return U, ={U7 } M
17 UF =E|U;
18:  for k + 1,n(i) do
19: Xk, li x = max [U,”* (%42, L2, %H)H];;} v(x,x;)
20:  end for
21: return 93”"(1) [(xi717li71) e (i ),l, (i ))}
22: i+1<+i
23: until B; < B4y
24: return x* that minimize f(x) over Z;

the first and the second step ahead, respectively. The first element of U7 " is determined using the information
extracted from the surrogate model updated at the current state of the system Z; = &;. The second element
requires our Monte Carlo technique to compute the nested expectation and maximization, and quantify the
informative gains at future iterations. Accordingly, the algorithm samples independently a random variable
Z; normally distributed for the j-th Monte Carlo realization, and simulates the future optimization scenario
through the estimate of the mean uflﬂ and variance otzf_ll) of the surrogate model by the computation of Egs. (15)
and (16). This provides an estimate of the multifidelity acquisition function U" as the expectation taken over
the realizations {U” _L MC (Eq. 18). Then, the penalized maximization of the acquisition function determines
the next batch %, of design configurations and the levels of fidelity to be evaluated in parallel at the next
iteration. This optlmlzation procedure iterates until a maximum computational budget B; = By is reached,
where B; is the cumulative computational cost adopted until iteration i.

Space vehicle multidisciplinary design optimization

MDO problem setup

The design of a space re-entry vehicle is a multidisciplinary optimization problem that well carries the
computational challenges associated with the design of complex engineering systems®%%. This paper uses
this demanding MDO applications to demonstrate our NM3-BO scheme and discuss it in comparison with
popular standard MFBO algorithms. The space vehicle MDO problem captures the multi-physics nature of the
atmospheric re-entry and involves several disciplinary analyses, namely the contributions of the propulsion
system, the re-entry descend trajectory, the aerothermodynamic effects that occurs during the descend path, and
the thermo-structural interaction between the re-entry flow-field and the thermal protection system. Figure 1
illustrates the concept of operations of the re-entry mission. This involves several phases, namely a maneuver
sequence to introduce a thrust component that shapes the re-entry trajectory, the heat peak along the descent
caused by the hypersonic aerothermodynamic phenomena, and the deployment of the parachutes during the
landing phase.

Figure 2 illustrates the design structure matrix® of the re-entry vehicle optimization problem. We adopt the
multidisciplinary feasible architecture* to address the MDO problem through a single optimization procedure
where the design variables and constraints are under the direct control of the optimizer. The disciplinary
analyses flow follows the diagonal of the DSM, while the feed forward flows are represented on the upper
triangle and the couplings between disciplines are reported on the lower side. The propulsion system is modeled
according to the chemical rocket theory, and comprises primary and secondary chemical thrusters fueled by an
hypergolic propellant. The trajectory solver models the descend trajectory as a bi-dimensional orbit propagated
through the numerical integration of the non-linear re-entry planetary ordinary differential equations. The
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Figure 1. Re-entry mission concept of operations.
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Figure 2. Design structure matrix of the space vehicle MDO problem.

aerothermodynamic analysis consists of two disciplinary solvers at different levels of fidelity. The high-fidelity
model simulates the full order aerothermodynamic physics through the numerical solution of the Reynolds-
Averaged Navier-Stokes equations. The low-fidelity model uses the Oswatitsch Mach number independence
principle jointly with the Tauber-Sutton and Sutton-Grave formulations to provide an approximated
representation of the aerothermodynamic domain. The high-fidelity model requires hours of computation on
an high performance computing cluster, while the low-fidelity analysis is three orders of magnitude faster on
a standard computing platform. The thermo-structural analysis models the interaction between the flow-field
and the structure of the Thermal Protection System (TPS) through the thermo-elastic equations. Further details
about the disciplinary models are provided in the Supplementary Material of this manuscript consistent with
what proposed in literature®.

The design optimization problem targets the best design configuration x = [Fy, F, stps] of the re-entry
vehicle in terms of thrust capabilities F = [Fy, Fy]and TPS structural thickness stps that jointly minimizes
the temperature Trps reached by the TPS frame, the overall structural mass mrps of the TPS, and the mass of
propellant mp burned during the re-entry maneuver. The multidisciplinary design optimization problem is
formulated as follows:
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Figure 3. Statistics over 25 experiments of the minimum of the objective function f* obtained with the
competing algorithms.

T
minimize f(x) = 047X | o, T1ps®) o, mp)

MTPso Trpso mpo
with respect to  x = [Fy, Fy, s7ps]

subject to  100km < h*(x) < 125km
Pp(x) =0
Rr(x) =0
2,7V x) =0
2,7 (x) <107
As(x) =0

where the objectives are evaluated with reference to the baseline values for the TPS mass mpsy = 700 kg
and temperature Trpso = 1000 K, and for the mass of propellant mpy = 150 kg derived from similar re-entry
capsules®. The search is bounded by the move limits of the design space ' = 2'p, X Zry X X 'sppg> Where
the thrust capabilities tangential Zr, = [29.2 kN, 146 kN] and normal Zr, = [0.48 kN, 2.4 kN] to the
trajectory are defined according to the propulsion system specifications, and the limits on the TPS thickness
X spps = [0.03 m, 0.1 m] are imposed from expert knowledge. The MDO problem requires a specific range of
altitudes h* for the re-entry maneuver to simulate a real-world mission. Additional constraints include the
feasibility of the physics-based models at each iteration of the optimization procedure, namely the complete
resolution of the propulsion system model #Zp(x) = 0, the trajectory model Z1 = 0, the low-fidelity
aerothermodynamic model % A( =1)(x; = 0, the high-fidelity aerothermodynamic model ensured reducing the
computational residuals below 2 A(l:2 (x) < 1079, and the thermo-structural model Zg(x) = 0.

Results and discussion

The capabilities of the proposed non-myopic multipoint multifidelity algorithm NM3-BO are compared with
standard Multifidelity Bayesian Optimization frameworks. All those MFBO algorithms rely on the multifidelity
Gaussian process surrogate model and implement different formulations of the acquisition function, including
the Multifidelity Expected Improvement® (MFEI), Multifidelity Max-value Entropy Search®* (MFMES), and
Multifidelity Probability of Improvement®® (MFPI). In addition, we report the outcomes achieved with the
Efficient Global Optimization® (EGO) algorithm using only high-fidelity queries to provide a comparison with
a popular single fidelity Bayesian optimization methodology.

The performance of the competing algorithms are evaluated in terms of the minimum of the objective
function f*(x*) = minyey f(x)as a function of the computational budget B = ) 4, at each iteration i of the
optimization procedure. The computational costs for the aerothermodynamic analyses are imposed at ?) = 1for
the high-fidelity model and 2 = 0.001 for the low-fidelity model; these specific values reflect the time required
to complete the aerothermodynamic simulation adopting either the CED solver or the low-fidelity formulations.
We consider a statistics over 25 experiments for each algorithm, and initialize the searches with random initial
samples collected through a Latin hypercube sampling scheme. This experimental methodology permits to
quantify the influence of different initialization on the algorithms performance. In particular, the multifidelity
algorithms are initialized with 1000 design configurations evaluated with the low-fidelity model, and 34 design
points computed with the high-fidelity analysis. The single-fidelity algorithm starts the search with an initial set
of 35 designs evaluated with the high-fidelity model.

Figure 3 illustrates the median values (solid line) of the minimum of the objective function f* along with the
observations falling between the 25-th and 75-th percentiles (shaded area). All the initial samples correspond
to design configurations that score worse than the baseline solution ( f > 1), and all the competing algorithms
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B Jico Joreer Jitemes Soirpr Sims—po

50 11723 (- 17.2%) | 1.0910 (- 9.10 %) | 0.9301 (6.99 %) | 0.9616 (3.84 %) | 0.9123 (8.77 %)
75 | 0.9670(3.30%) | 0.8779 (12.21%) | 0.9301 (6.99 %) | 0.9434 (5.66 %) | 0.8260 (17.4 %)
100 | 0.9670 (3.30%) | 0.8779 (1221 %) | 0.9101 (8.99 %) | 0.8984 (10.16 %) | 0.8260 (17.4 %)
150 | 0.9101(8.99 %) | 0.8779 (12.21%) | 0.9027 (9.73 %) | 0.8984 (10.16 %) | 0.8260 (17.4 %)
200 |0.9082(9.18%) | 0.8779 (12.21%) |0.9026 (9.73 %) | 0.8984 (10.16%) | 0.8260 (17.4 %)
250 | 0.9062(9.38%) | 0.8779 (12.21%) | 0.9026 (9.73 %) | 0.8984 (10.16 %) | 0.8260 (17.4 %)

Table 1. Median values of the minimum of the objective function f* and corresponding design improvement
(-) obtained with the competing algorithms.

Method f**) x* = [Fy, F, Sipgl mipg g mj,

EGO 0.8999 (10.01 %) | x* = [33.63 kN,0.969 kN, 0.0396 m] | 476.6 kg 1320 K | 74.61 kg
MFEI 0.8717 (12.83 %) | x* =[35.67 kN, 1.561 kN, 0.0341 m] | 410.35 kg |1326 K |80.06 kg
MEMES 0.8963 (10.37 %) | x* = [35.97 kN, 2.046 kN,0.0373 m] | 447.96 kg |1329 K |81.52 kg
MEFPI 0.8921 (10.79 %) | x* = [35.40 kN,0.691 kN, 0.0377 m] | 453.4 kg 1322 K | 77.97 kg
NM3-BO 0.8202 (17.98 %) | x* =[29.53 kN, 0.807 kN, 0.0304 m] |365.17 kg |1310 K |65.45 kg

Table 2. Comparison between the best design solutions identified with the competing algorithms.

e
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Figure 4. Temperature contours at the heat peak condition evaluated with the high-fidelity aerothermodynamic
model considering the best design solution achieved with our NM3-BO algorithm.

improve the baseline design solution within the maximum computational budget available B = 250. A significant
achievement is that the multifidelity frameworks outperform the single-fidelity EGO algorithm. This indicates
that the combination of data from multiple information sources allows to efficiently explore the design space
and contain the computational cost. However, our NM3-BO algorithm obtains superior design solutions - larger
reductions of the objective function - with a fraction of the computational cost required by the competing
algorithms to identify suboptimal designs. This outcome suggests that the combination of the non-myopic scheme
and the multiple decision making process capitalizes from the design evaluations adopting different sources of
information, and effectively accelerates the search toward optimal design solutions.

To clarify the results from the statistics, Table 1 summarizes the median values of f* for discrete values of the
computational budget B. We can observe that the NM3-BO achieves the higher design improvement (8.77%)
after the consumption of a budget B = 50, whereas the other strategies score worst in terms of design upgrades.
A remarkable outcome is the overall acceleration of the MDO procedure provided by NM3-BO: our framework
converges for a computational budget below B = 75 and leads to a design upgrade of the 17.4%. This result is
outstanding if compared with the design improvement of about the 10% obtained by the EGO, MFMES, and
MFPI algorithms, and the design upgrade around the 12% achieved by the MFEI at convergence.

Table 2 compares the best design solutions obtained with the competing algorithms over the collected
experiments. NM3-BO identifies an optimal design configuration of the re-entry vehicle that delivers an upgrade
of the17.98%, and privileges lower thrust capabilities and contained thickness of the thermal protection system.
This determines a lower storage of propellant m}, = 65.45 kg on-board and permits to navigate a safe re-entry
trajectory that contains the heat loads affecting the frame. As a result, the temperature of the TPS structure is
kept below TJpg = 1310 K with a total TPS structural mass of m7pg = 365.17 kg. Figure 4 provides details about
the temperature distribution achieved adopting the best re-entry capsule computed with the NM3-BO at the
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heat peak condition. It should be noticed that all the design solutions identified by the algorithms prioritize the
reduction of both the TPS and propellant mass, and penalize the temperature reached by the heat shield. On one
hand, this permits to contain the overall mass of the vehicle with consequent savings in terms of launch costs; on
the other hand, the temperature peaks experienced by the structural frame are far below the thermal properties
of the TPS material: this guarantees the survival of the vehicle during the atmospheric descent.

Conclusions

This paper proposes a Non-Myopic Multipoint Multifidelity Bayesian Optimization (NM3-BO) framework
to significantly accelerate expensive multidisciplinary design optimization problems. NM3-BO combines
two distinguishing features: i) a non-myopic decision making process maximizes the cumulative reward of
design solutions over future iterations and ii) a penalization strategy enables multiple decisions as a batch of
design configurations and associated level of fidelity to evaluate simultaneously. This search scheme identifies
promising batches through the measure of their future utility, and leverages parallel computations to reduce
the overall computational cost of the MDO procedure. The NM3-BO algorithm is demonstrated for the MDO
problem of a space re-entry vehicle. The method permits substantial accelerations and identifies superior design
solutions compared to state-of-the-art multifidelity and single-fidelity algorithms. In particular, NM3-BO delivers
on average a space vehicle design improvement of the 17.4% with a fraction of the computational resources
adopted by competing algorithms to identify suboptimal solutions. The results suggest that the non-myopic
multiple decision making scheme can pave the way to major computational and energy efficiency gain for the
multidisciplinary design of complex engineering systems.

Data availability
The datasets generated and analysed during the current study available from the corresponding author on
reasonable request.
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