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COVID‑19 infection analysis 
framework using novel boosted 
CNNs and radiological images
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Abdullah Albanyan 5 & Hesham A. Sakr 6

COVID-19, a novel pathogen that emerged in late 2019, has the potential to cause pneumonia with 
unique variants upon infection. Hence, the development of efficient diagnostic systems is crucial in 
accurately identifying infected patients and effectively mitigating the spread of the disease. However, 
the system poses several challenges because of the limited availability of labeled data, distortion, 
and complexity in image representation, as well as variations in contrast and texture. Therefore, 
a novel two-phase analysis framework has been developed to scrutinize the subtle irregularities 
associated with COVID-19 contamination. A new Convolutional Neural Network-based STM-BRNet 
is developed, which integrates the Split-Transform-Merge (STM) block and Feature map enrichment 
(FME) techniques in the first phase. The STM block captures boundary and regional-specific features 
essential for detecting COVID-19 infectious CT slices. Additionally, by incorporating the FME and 
Transfer Learning (TL) concept into the STM blocks, multiple enhanced channels are generated 
to effectively capture minute variations in illumination and texture specific to COVID-19-infected 
images. Additionally, residual multipath learning is used to improve the learning capacity of STM-
BRNet and progressively increase the feature representation by boosting at a high level through TL. 
In the second phase of the analysis, the COVID-19 CT scans are processed using the newly developed 
SA-CB-BRSeg segmentation CNN to accurately delineate infection in the images. The SA-CB-BRSeg 
method utilizes a unique approach that combines smooth and heterogeneous processes in both the 
encoder and decoder. These operations are structured to effectively capture COVID-19 patterns, 
including region-homogenous, texture variation, and border. By incorporating these techniques, the 
SA-CB-BRSeg method demonstrates its ability to accurately analyze and segment COVID-19 related 
data. Furthermore, the SA-CB-BRSeg model incorporates the novel concept of CB in the decoder, 
where additional channels are combined using TL to enhance the learning of low contrast regions. 
The developed STM-BRNet and SA-CB-BRSeg models achieve impressive results, with an accuracy 
of 98.01%, recall of 98.12%, F-score of 98.11%, Dice Similarity of 96.396%, and IOU of 98.85%. The 
proposed framework will alleviate the workload and enhance the radiologist’s decision-making 
capacity in identifying the infected region of COVID-19 and evaluating the severity stages of the 
disease.

COVID-19, a contagious illness, was first detected in December 2019 and rapidly disseminated across the globe1,2. 
This rapidly spreading infectious disease exhibits a high rate of transmission among humans, leading to faster 
infection rates and widespread impact. There have been an estimated 675 million suspected cases of COVID-19, 
resulting in approximately 6.9 million deaths, while around 661 million individuals have recovered from the 
virus. It is estimated that 99.6% of the infected patients have slight, while 0.4% have severe or critical symptoms3. 
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However, it causes respiratory inflammation, difficulty breathing, pneumonia, alveolar damage, and respiratory 
failure in severe cases, eventually leading to death4. Common manifestations of COVID-19 pneumonia include 
pleural effusion, ground-glass opacities, and consolidation5.

COVID-19 detection tests consist of RT-PCR and chest imaging and have been used for clinical evaluation 
and monitoring6–8. Additionally, CT scans are employed in evaluating the severity of COVID-19 and determining 
appropriate treatment approaches for patients affected by the disease. When a health emergency arises, manu-
ally assessing radiological CT scan presents a significant challenge and poses a serious threat for remote regions 
needing more experienced doctors9. Radiological images are usually complex, where the infection region has 
large size, shape, and position variation. Moreover, the radiological images, obtained through CT imaging, often 
exhibit complexity and distortion caused by noise inherent in the CT image acquisition process10,11.

Automatic detection technology is a serious need to help radiologists improve their performance and deal 
with many patients and will overcome the burden of manually examining12,13. In this regard, Deep Learning (DL)-
based diagnostics techniques are implemented in pinpointing COVID-19 CT infection, reducing the radiologist 
burden for manual assessment and ultimately improving the survival rate14,15. The contribution of DL and its 
capability to classify and segment the image with high accuracy will eliminate the probability of incorrect results 
by the currently used testing kits16. DL will reduce the load on healthcare facilities17,18.

The DL-based automated technique’s remarkable success in various challenges has gotten researchers’ atten-
tion for developing medical diagnostic systems19. These tools are designed for CT image analysis and facilitate 
doctors in visualizing lung-related anomalies20. These tools have the capability to identify subtle irregularities 
in COVID-19 patterns that may not be easily discernible through manual examination. However, many stud-
ies have utilized pre-existing DL techniques for diagnosing COVID-19, which might not be optimally suitable. 
These conventional techniques are specifically designed for processing natural images, while the COVID-19 
affected regions exhibit distinct radiological patterns that deviate from typical images. Moreover, lung images 
manifest COVID-19 infection features, such as homogeneity, contrast variation, and structure, which are usually 
generated by the presence of ground-glass opacities (GGO), water on the lungs (effusion), and consolidation21. 
Therefore, a Convolutional Neural Network (CNN)-based combined detection and analysis scheme is developed 
that learns COVID-19 patterns to screen and diagnose COVID-19 infectious thoracic radiologic images. The 
key contributions are as follows:

1.	 A deep CNN-based analysis system is developed to detect and diagnose lung infections in CT scans and 
identify the severity of COVID-19. The diagnosis process comprised two phases: detecting COVID-19 infec-
tion and conducting an analysis of the lungs using a CT scan.

2.	 The new Split-Transform-Merge (STM) blocks and Feature Map Enrichment (FME) based deep STM-BRNet 
detection CNN is proposed to extract and learn various COVID-19 patterns effectively. Additionally, residual 
multipath learning is integrated into information capacity and boosts the feature-map performance at the 
final level using transfer learning (TL). These ideas and STM blocks employed multi-path boundary and 
region-smoothen implementation to capture homogeneous regions, texture variations, and boundary fea-
tures.

3.	 A new deep SA-CB-BRSeg segmentation model is proposed to accurately delineate the COVID-19 infec-
tious CT. In this way, average- and max-pooling are employed consistently to leverage COVID-19 infection 
patterns that pertain to smoothing and discriminative features in encoder-decoder blocks.

4.	 A novel (Channel Boosted) CB idea is implemented in the proposed SA-CB-BRSeg decoder using TL to learn 
low contrast and discriminative patterns associated with COVID-19. Moreover, the new attention block is 
implemented in the SA-CB-BRSeg segmentation CNN to effectively learn mildly infected regions.

The paper follows a structured layout outlined as follows: Section "Related works" offers an in-depth explora-
tion of COVID-19-related studies, providing a comprehensive background. Section 3 introduces the developed 
COVID-19 infection analysis framework, outlining its key components and functionalities. In Section "Experi-
mental setup", we delve into the material and implementation details, providing specific information on the tools 
and methodologies employed. Section 5 critically analyzes and discusses the obtained results, highlighting key 
findings and observations. Finally, in Section "Conclusions", we draw conclusive remarks, summarizing the main 
insights and contributions of the study.

Related works
In recent times, CT technology has been widely utilized for diagnosing COVID-19 infection in developed coun-
tries like the United States, China, and others. Nonetheless, the manual scrutiny of CT scans poses a substantial 
and demanding task for radiologists, potentially affecting their overall performance and efficiency. Therefore, an 
analysis of the region of interest has been performed to detect the position and severity of the infection. Despite 
the utilization of various conventional techniques for diagnosis, their effectiveness in delivering efficient perfor-
mance has been limited22,23. Therefore, DL-based tools are developed for quick infection analysis and facilitate 
the radiologist24,25. CNN is a sub-type of DL that automatically extracted dynamic features and analyzed COVID-
19-infected radiologic images. These models can learn the infected region’s valuable features that help detect 
COVID-19 infection. To address this issue, a range of deep CNNs including VGG-16/19, ResNet-50, Xception, 
ShuffleNet, and others have been applied to analyze the COVID-19 CT dataset26. These models achieved per-
formance from an accuracy of 87% to 98%20. Regardless, the previous techniques were utilized for COVID-19 
screening but needed more analysis details.

On the other hand, the segmentation of affected regions is widely utilized to precisely identify the location 
and severity of the disease. Some traditional segmentation approaches were used initially, but they could have 
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delivered better results. Hence, a VB-Net based on CNN was reported to segment infected regions in CT, yield-
ing a dice similarity (DS) of 91%. Additionally, a joint-classification-segmentation (JCS) scheme was utilized to 
visualize and segment the affected area by combining techniques that reported a DS of (78.3%)27. Moreover, the 
DCN technique exhibited only a marginal level of performance in terms of infected region segmentation, with 
a DS score of 83.51%28. The COVID-19 diagnosis blocks corporate region and edge-based operations and col-
lects diverse features. The technique achieved a 97% detection rate and 93% precision. For the segmentation of 
lesion infections, a combination of UNet and FPN models was employed, utilizing different encoder-backbone 
architectures such as DenseNet-ResNet29. The detection phase achieved a 99.64% detection rate and 98.72% 
specificity. Furthermore, an approach incorporating spatial and attention-based U-Net is utilized to enhance 
feature representation by effectively capturing diverse contextual relationships30,31. The majority of previous 
studies have failed to address these challenges:

•	 The implementation of reported deep CNN techniques has been conducted on a small dataset. The perfor-
mance can be improved when evaluating the existing techniques on a large and more diverse dataset.

•	 Current deep CNN has been utilized for diagnosing COVID-19, which might not be optimally effective for 
comprehensive COVID-19 analysis.

•	 It is important to acknowledge that the current diagnosis focuses solely on detecting infected samples, thus 
lacking information about the different stages of the disease, such as minor, moderate, and severe. Incorpo-
rating the ability to classify and differentiate between these stages would provide valuable insights for a more 
comprehensive understanding of the disease.

Methodology
The deep CNN-based framework is proposed in this study for automated analysis of COVID-19-related abnor-
malities in the lungs, focusing on infection detection and segmentation. Diagnosing the infectious regions is typi-
cally performed through segmentation to explore the infection location and disease severity32,33. The diagnostic 
framework comprises three key technical novelties: (i) the development of the STM-BRNet detection CNN, (ii) 
the SA-CB-BRSeg segmentation model, and (iii) the utilization of current detection and segmentation CNNs. 
COVID-19 infected slices are separated from healthy individuals in the detection phase using CT images. While 
in the segmentation phase, the infectious lesion is segmented to identify the disease severity. Figure 1 illustrates 
the concise and comprehensive workflows of the developed diagnosis system.

COVID‑19 infection detection
The detection phase of the proposed framework consists of two modules: (i) the STM-BRNet detection CNN 
model, and (ii) customized existing CNNs for comparative analysis. A novel deep detection CNN has been 
developed specifically to differentiate COVID-19 infectious lesions from healthy ones. The COVID-19 detection 
phase is shown in Fig. 1.

Proposed detection STM‑BRNet
This work develops a deep CNN, named “Split Transform and Merge (STM)-BRNet”, that effectively distinguishes 
COVID-19 infectious CTs from healthy ones, shown in Fig. 2. The proposed STM-BRNet derives its significance 
from the methodical utilization of innovative STM blocks and Feature map enrichment (FME) ideas. The founda-
tion of STM-BRNet CNN lies in its systematic adoption of dilated convolutions, complemented by region- and 
edge-based feature processing within STM blocks to capture the smoothing and structure of COVID-19 infected 
patterns. The STM-BRNet encompasses dilated convolutions that enhance the reception field and preserve data 
dimensions at the output layer to achieve diverse feature-sets to differentiate infected regions from healthy 
ones34. Moreover, the STM blocks introduce modifications to the novel FME concept, ensuring the preservation 
of diminished saliency maps, which are subsequently combined to obtain a diverse array of augmented channels 
and capture minor infection contrast variation. Moreover, the utilization of diverse pooling operations leads to 
down-sampling, which ultimately strengthens the model’s resilience against variations. Additionally, the region 
operator within the STM block utilizes the average pooling layer for smoothening and noise reduction.

Architectural design of the developed STM‑BRNet.  The STM-BRNet architecture consists of two STM blocks 
that exhibit an identical topology, strategically arranged to facilitate the learning of different features at both the 
initial and final levels. The STM is composed of four convolutional blocks, where region and boundary processes 
are systematically employed. The dimension of each STM boosted block is 256 and 1280, comprised of 26.5 
million of the parameters35,36. The architecture’s primary focus is to capture subtle contrast and texture infection 
patterns. To achieve this, four distinct blocks, namely Region and Edge (RE), Edge and Region (ER), Edge (E), 
and Region (R), have been implemented. The dilated convolutional layer, regional/boundary operations, and 
the Channel Boosted (CB) idea have been modified to effectively learn COVID-19 specific features within each 
block. The RE block extracts regions and boundaries; it comprises two dilated convolutional layers followed by 
the average and max-pooling layers, as shown in Eqs. (1–3). Moreover, the ER block extracts edges and regions; 
it comprises two dilated convolutional layers followed by a max-pooling layer. The E and R blocks learn the 
edges and smoothness, respectively. Block E generates supplementary feature-maps using TL to attain a variety 
of channels, while block RE, ER, and E are learning from scratch. The auxiliary channels are created using deep 
CNNs based on TL. In the merging process within each STM block, these channels are initially squeezed to 
obtain prominent feature maps.
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Feature map enrichment (FME).  The complex patterns crucial for distinguishing contrast and texture varia-
tions of COVID-19 infected images are learned by the prominent deep CNN based on FME. To systematically 
enhance the learning process, we employ a sophisticated stacking approach that integrates TL-based residual 
learning with M and N blocks. Residual CNN designs possess distinct capabilities for feature learning and pro-
duce numerous channels that capture information across multiple levels. By strategically concatenating these 
blocks at the final stage, we are able to effectively explore and learn diverse feature spaces. The integration of 
these diverse abstractions, acquired from multiple channels, can significantly improve both global and local rep-
resentations of an image. The original channel blocks are combined with auxiliary channels, the result is a novel 
concept—an intelligent feature-based ensemble. This innovative arrangement is built upon three sequential 
residual blocks, enabling us to acquire a wide range of essential features. To further facilitate this robust learn-
ing process, we progressively increase the number of channels from 64 to 256. In this ensemble, a single learner 
makes the ultimate decision, informed by an analysis of diverse image-specific patterns. This deliberate aug-
mentation ensures a comprehensive and refined learning experience, leading to improved quality of outcomes.

These processes enhance the boundary information and region-specific properties, whereas dilated convo-
lutional operations aid in learning the global receptive features. The implementation of multipath-based STM 
blocks allows for the perception of diverse features, enabling the dynamic capture of minor representative and 
textural variation information from the COVID-19 infected CT. Additionally, the inclusion of fully-connected 
and dropout layers helps store crucial features and mitigates the risk of overfitting.
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The feature-map and dimension are represented by ’x’ and ’k x l’, respectively. While Eq. (1) depicts the ker-
nels and size represented by ’f ’ and ’i x j’. In contrast, the output ranges to [1 to k-m + 1, l-n + 1]. Moreover, the 
pooling operation window size is represented by w, respectively, on convolved output (xk,l ) (Eqs. 2–3). In Eq. (4), 
the feature-maps of block RE, ER, and R are signified by xRE , xER , and xR , respectively. Likewise, the auxiliary 
feature-maps of block R achieved using TL are denoted as xE . These channels are boosted by concatenation 
operation b(.). The neuron quantity and activation in Eq. (6) are shown with va . and σ.

Implementation of existing detection CNNs
In recent times, CNNs have shown remarkable effectiveness in detecting and segmenting medical images within 
the field of medicine19. The detection phase utilizes various models including VGG-16/19, ResNet-50, ShuffleNet, 
and Xception, among others37. These deep CNNs with varying in-depth and network designs are tailored to 
screen and analyze infectious regions.
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Figure 2.   Architectural design for the developed STM-BRNet COVID-19 detection CNN.
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COVID‑19 infected regions segmentation
The proposed STM-BRNet aims to classify COVID-infected patients from healthy patients by utilizing the 
capabilities of deep CNN architectural ideas. The infected images are provided the segmentation CNNs for 
delineating COVID-19 infection regions that identify the disease’s severity. This paper implements two different 
experimental setups for infection segmentation: (i) proposed SA-CB-RESeg segmentation, (ii) target-specific 
segmentation CNNs implementation from scratch, and Transfer Learning (TL).

Proposed SA‑CB‑RESeg segmentation CNN
We propose a new fine-grained pixel-wise segmentation approach known as SA-CB-RESeg. The SA-CB-RESeg 
CNN architecture consists of two encoders and boosted decoder blocks, specifically designed to enhance the 
learning capacity of SA-CB-RESeg. To achieve this, a systematic combination of average-pooling, max-pooling, 
and convolutional operations is employed in both the encoding and decoding stages. This enables the network to 
efficiently learn the properties associated with regions and boundaries of COVID-19 infected areas14,38. Further-
more, through the convolutional operation, trained filters are applied to the images, resulting in the generation 
of feature maps that effectively capture unique and discernible patterns. The encoders and decoders are sym-
metrically designed, with a total of 21.2 million learning parameters. In the encoder, max-pooling is utilized 
for down-sampling purposes during pooling operations. Conversely, in the decoder, an un-pooling operation 
is employed to perform up-sampling. Lastly, the convolutional layer is utilized to categorize COVID-19 and 
background pixels.

The encoder is designed to learn semantically meaningful COVID-19 specific patterns. However, the encoder 
loses spatial information essential for infected region segmentation because it reconstructs the infection map. In 
this regard, to retain the spatial information from the corresponding encoders, decoders are utilized by leveraging 
pooling indices. These positional indices are stored in each pooling operation and are helpful for reconstruction 
and mapping on the decoder side. Moreover, the pooling operation performs down-sampling and reduces the 
spatial dimension (Fig. 3).

Boosting significance.  The new CB idea is introduced by concatenation the original feature maps of the 
decoder with additional feature maps through TL to improve learning the minor contrast COVID-19 infected 
region. The developed SA-CB-RESeg utilized the additional channels generated from pre-trained CNN using TL 
combined with the original to get rich information feature maps and improve generalization. The SA-CB-RESeg 
benefited from learning from scratch and tuning on COVID-19 images using TL and CB. The boosting channels 
increase the SA-CB-BRSeg representative’s capacity. Moreover, XRE−e and XRE−d  refer to the encoder (e) and 
decoder (d) blocks utilized in the SA-CB-RESeg model, as depicted in Eqs. (7) and (8). Consequently, Eq. (9) 
illustrates the process of boosting and auxiliary channel (AC) process performed at the decoder side.
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Figure 3.   Architectural design for the proposed SA-CB-RESeg.
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Static attention.  Static attention (SA) enhances the learning capability of the COVID-19-infected areas by 
locating high weightage39. The SA block detail is shown in Fig. 4. Xl indicates the input map and Wpixel is the 
weighted-pixel having a range of [0, 1] (Eq. (10)). The result XSA_out emphasizes the affected region while mini-
mizing the presence of unrelated characteristics. In Eqs. (11) and (12),σ1 and σ2 is the activation, bSA and bf  is 
biasness, and Wx , WSA , f  is the transform, respectively.

Existing segmentation CNNs
To effectively segment the COVID-19 infected region in CT scans, several deep CNNs have been employed, 
utilizing diverse datasets40. This study employs current DeepLab, U-SegNet, SegNet, VGG, U-Net, nnSegment 
Anything Model (SAM)41, nnUNet41, and FCN segmentation CNNs42–44. The nnSAM model utilizes the robust 
feature extraction capabilities inherent in SAM, harnessing its strength and effectiveness. The existing segmenta-
tion CNNs have been implemented for comparative studies. In our study, we have utilized existing CNN models 
through two approaches: training from scratch and weight initialization. To benefit from the knowledge gained 
by pre-trained CNNs, we employ TL by initializing the weights from these models45. This allows us to leverage 
the learned features and patterns from the pre-training stage. Subsequently, we fine-tune these weights using CT 
images specific to our study. This combination of TL and fine-tuning enables our models to effectively capture 
the relevant features and optimize their performance for CT image analysis.

Experimental setup
Dataset
Chest CT scans are highly effective in diagnosing COVID-19 due to their high sensitivity. One of the key advan-
tages of using CT scans is their ability to enhance the visibility of internal anatomy by eliminating overlapping 
structures. This characteristic enables a more accurate analysis of the impacted regions within the lungs, con-
tributing to a more precise examination. In our research, we make use of a dataset provided by the SIRM46. This 
dataset comprises CT lung images from 30 patients, encompassing a total of 2684 images. The dataset includes 
both COVID-19 infected (Fig. 5B) and healthy (Fig. 5A) patients, with corresponding labels available in .nii.gz 
format, as shown in Fig. 5. To ensure the accuracy of the dataset, an experienced radiologist carefully examined 
each image. Furthermore, the radiologist provided binary labels indicating the presence of infected lung regions, 
allowing for the identification and analysis of these areas.

Implementation details
The detection and segmentation CNNs are trained independently within our developed diagnostic system. We 
have meticulously assembled a dataset encompassing CT lung images from both COVID-19 infected patients 
and individuals in healthy conditions. We have categorized COVID-19 infected and healthy classes to effectively 
utilize the dataset. The COVID-19 infected class comprises 1362 images, while the healthy class contains 1322 
images. However, for segmentation, we specifically employ the class of images representing COVID-19 infected 
cases (1322 images) along with their corresponding labels., as they provide valuable insights for analyzing the 
infected area. To ensure effective training and evaluation, we divided them into distinct training and testing 
sets. To maintain consistency, we employed an 80:20% ratio for the diagnosis phases. Furthermore, to enhance 
the training process, we employ cross-validation techniques to divide the training set into separate training 
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Figure 4.   Static attention block designing.
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and validation subsets. This approach enables robust evaluation and validation of our model’s performance. 
Our proposed novel architecture, which utilizes Deep CNNs for detection and segmentation, is implemented 
using MATLAB 2022a. The simulations are performed on an NVIDIA GTX-T computer equipped with 64 GB 
of memory, enabling efficient and accurate performance throughout the process. Each model takes almost 
13–23 h. ~ 1.5–2.5 h. /epoch, during training. Hyper-parameters control the deep CNNs’ optimization and con-
vergence. To ensure smoothing and efficient convergence, CNN models undergo training for 10 epochs with 
carefully selected optimal hyper-parameters47. The hyperparameters used in the experiment: a learning rate of 
10−3, epochs (10), model optimizer set to SGD, batch size (16), linear momentum (0.90), and cross-entropy as 
a loss function. The cross-entropy loss function is commonly used for probability SoftMax-based classification 
and pixel-wise segmentation to measure the dissimilarity between predicted and ground truth labels.

Performance evaluation
The performance of the developed framework is evaluated using standard measures, which are presented in 
Table 1. The detection metrics, including accuracy, recall, etc., are depicted in Eqs. (13–17). In the evaluation 
of segmentation CNNs, the IoU (Intersection over Union) and DS (Dice Similarity) coefficients are utilized, as 
represented in Eqs. (18) and (19), respectively. The segmentation accuracy (S_Acc) refers to the precise prediction 
of pixels corresponding to infected and healthy regions. The DS coefficient is employed to measure structural 
similarity, while the IoU is utilized to assess the overlapping ratio between the predicted and original images.

(13)Acc =
CorrectlyPredictedSlices

TotalSlices
× 100

(14)p =
CorrectlyPredictedCOVID − 19

CorrectlyPredictedCOVID − 19+ IncorrectlyPredictedCOVID − 19

Figure 5.   Panels (A,B) represent COVID-19 infected vs. Healthy samples. While the infected regions are red 
highlighted.

Table 1.   Detail of performance measures.

Measure Symbol Detail

Accuracy Acc The ratio of accurate detections to the total number of predictions

Recall R Correct prediction ratio (Positive)

Specificity S Correct predictions ratio (Negative)

Precision P Correct predictions ratio (Positive) in overall predictions

Mathew Correlation Coefficient MCC Evaluate the efficacy of the confusion matrix for imbalanced data

Jaccard Coefficient IoU % Degree of similarity between labeled and detected regions

Dice-Similarity DS % Degree of weighted similarity between labeled and detected areas

Segmentation-Acc S_Acc % Accurate pixel partitioned into COVID-19 and Background
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Results
The present study introduces a novel two-stage diagnostic framework for examining infectious regions in the 
lungs associated with COVID-19. Distributing the proposed into two stages has two main advantages: improv-
ing the performance and reducing the computational complexities. Moreover, screening of COVID-19 infected 
samples and then analyzing the infectious region helps in the diagnosis of the disease. Moreover, the two-phase 
approach bears similarity to the conventional clinical procedure of recommending further diagnostic examina-
tions for suspects after the initial detection. The performance of the proposed STM-BRNet and SA-CB-RESeg 
CNNs are evaluated based on standard performance metrics. The proposed models are evaluated on test data 
and indicate considerable performance.

Detection stage analysis
We have evaluated the screening capability of the proposed STM-BRNet in identifying COVID-19 specific CT 
scans and compared it with existing CNNs in this stage. The detection stage is improved to achieve a high sen-
sitivity rate in identifying the characteristic pattern of COVID-19 while minimizing the occurrence with fewer 
false positives (shown in Table 2). The learning plot indicates accuracy and loss for the validation dataset of 
the developed STM-BRNet CNN (Fig. 6). High training and validation error at the start has a maximum error; 
SGD fluctuates heavily. At the end of the training, SGD movement becomes smooth and reaches the solution.

STM‑BRNet’s performance analysis
The performance of the developed STM-BRNet is evaluated on the test set using various performance meas-
ures, including Accuracy, F-score, MCC, etc. Comparing STM-BRNet with the existing ResNet-50 model, it 
demonstrates favorable generalization in terms of accuracy (STM-BRNet: 98.01%, ResNet-50: 96.73%), and 
F-score (STM-BRNet: 98.11%, ResNet-50: 96.77%). The STM-BRNet technique, which incorporates edge and 
region-based STM blocks and FME using TL, significantly improves the detection rate by correctly classifying 
a higher number of samples as true positives. The high-intensity channel plays a crucial role in highlighting 

(15)R =
AccuratelyDetectedCOVID− 19

TotalCOVID− 19

(16)S =
CorrectlyPredictedHealthy

TotalHealthy

(17)F − Score = 2
(PxR)

P + R

(18)IoU =
predictedinfectedregion ∩ Labeledinfectedregion

predictedinfectedregion ∪ Labeledinfectedregion

(19)DSScore =
2 ∗ CorrectlyPredictedinfectedregion

2 ∗ CorrectlyPredictedinfectedregion+ Totalinfectedregion

Table 2.   Performance analysis of the developed STM-BRNet and current models.

CNNs Acc F-score ROC_AUC​ PR_AUC​ Pre MCC Spec Rec

ShuffleNet 92.26 92.44 96.4 96.36 91.38 81.87 90.96 91.18

VGG-19 94.35 94.43 98.33 98.84 94.15 87.21 93.98 92.94

Xception 95.83 95.81 99.09 98.58 97.56 90.67 96.99 91.67

VGG-16 96.13 96.12 98.45 98.93 97.58 91.52 97.59 92.35

ResNet-50 96.73 96.77 99.26 98.76 96.49 92.02 96.39 94.71

Proposed STM-BRNet 98.01 98.11 99.67 99.10 98.09 94.85 98.01 98.12

Ablation study of the Proposed combination (Cbn.) of Blocks

E Blocks (Cbn.) 94.84 94.74 98.65 98.93 97.04 89.64 97.19 92.55

R Blocks (Cbn.) 95.19 96.23 99.56 98.96 95.46 90.19 95.48 94.91

E & R/B &R Blocks (Cbn.) 96.23 96.22 98.55 98.93 97.78 91.72 97.79 94.91

E + R + ER/BR (Cbn.) 97.12 97.12 99.27 98.90 97.28 94.25 97.39 96.86

Comparison with the reported Detection Techniques

JCS27 – – – – – – 93.00 95.00

VB-Net48 – – – – – – 90.00 87.00

DCN28 – 96.74 – – – – – –

3DAHNet49 90.00 85.00
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boundaries, while the approximation maps provide a more intricate representation of the region. The fusion 
technique employed in this study emulates the concept of sharpening an image using Laplacian of Gaussian, 
enabling the preservation of optimal characteristics of infectious regions. Additionally, the CB idea facilitates 
the learning of diverse feature maps from the pre-trained scenario, effectively capturing texture variations. 
The systematic implementation of these ideas yields enhanced performance, as evidenced by improvements in 
metrics such as accuracy, MCC, and F-score (as presented in Table 2). Moreover, TL-based residual learning 
systematically extracts features, starting with basic image-level features such as edges and advancing to more 
intricate texture-based differences. Moreover, the ablation studies have been added to provide valuable insights 
into the individual contributions of systematic arrangement blocks to the overall performance of the proposed 
STM-BRNet model. These ablation experiments will provide a more comprehensive understanding of the role 
of each concept of blocks in the STM-BRNet and help us identify the several variations of blocks that are most 
influential in improving detection performance. This analysis enhances the robustness and contributes to a deeper 
understanding of the STM-BRNet architecture’s effectiveness. Furthermore, the performance of the STM-BRNet 
is further increased by adding fully-connected layers to emphasize the learning and improve the generalization.

Performance analysis with the existing CNNs
We conducted a comparative evaluation to assess the performance of the developed STM-BRNet against five 
customized detection CNNs, namely VGG, ResNet-50, Xception, and ShuffleNet. These CNNs are well-known 
for their ability to tackle complex problems and have proven effective in detecting anomalies in lung images. 
To ensure a fair comparison, the customized CNNs were trained on COVID-19 specific images. In contrast, 
the proposed STM-BRNet demonstrated superior performance and achieved higher scores in F-score, MCC, 
accuracy, and other metrics when compared to the customized CNNs on the test dataset. This can be observed 
in Table 3 and Fig. 9, where the STM-BRNet outperforms the other models.

Features visualization and PR/ROC analysis
The significant detection capability of STM-BRNet is effectively demonstrated through the principal component 
analysis (PCA) plot. PCA allows for the reduction of dimensionality in STM-BRNet features, enabling the iden-
tification of distinct patterns for enhanced discrimination. Figure 7 provides a comparison of deep feature-based 
analysis between STM-BRNet and the best performing existing ResNet-50 model. The PCA plot, incorporating 
the first, second, and third principal components, clearly showcases the remarkable learning ability of STM-
BRNet. Additionally, a quantitative assessment of the discrimination ability is conducted through the use of 
detection rate curves (PR/ROC), as illustrated in Fig. 8. Through a comprehensive evaluation of various threshold 
configurations, these performance measurement curves provide valuable insights into the generalization capa-
bilities of STM-BRNet by examining COVID-19 infected and healthy individuals. Furthermore, STM-BRNet 
exhibits impressive learning ability when compared to different CNNs, particularly at the optimal threshold. The 
PR and ROC curves, generated based on STM-BRNet features, yield a significantly higher area AUC, indicating 

Figure 6.   Training convergence plot of the developed STM-BRNet detection CNN.
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superior model performance in COVID-19 infection screening. This higher AUC value reflects the heightened 
accuracy and effectiveness of the STM-BRNet model.

Infected region analysis
CTs infected are separated using the developed STM-BRNet and assigned to segmentation CNN to analyze the 
infection severity. The infected slices and normal have minor contrast variations in the early stage. However, 
isolating the infected region from the healthy region is quite challenging. Hence, the proposed SA-CB-RESeg 
model effectively segments infection boundaries with minimal contrast variation. Additionally, conducting a 
region analysis becomes crucial in assessing the disease severity, categorizing it as mild, moderate, or severe, and 
designing appropriate treatment strategies.

The developed SA‑CB‑RESeg segmentation evaluation
The developed SA-CB-BRSeg analyzes COVID-19 infectious areas in CT images. The existing segmentation 
CNNs have been optimized based on COVID-19 infected specific patterns and imagery features. The experimen-
tal results on unseen data show the significance of the proposed SA-CB-BRSeg (Table 3). Moreover, Furthermore, 
COVID-19 infection patterns exhibit variability across different patients. Our proposed SA-CB-BRSeg model 
excels in performing precise pixel-wise segmentation of infected regions, resulting in the generation of high-
quality maps. In subjective evaluations (refer to Figs. 10 and 11), our model surpasses existing CNNs.

The SA-CB-BRSeg introduces an innovative approach that combines region-homogeneity and boundary-
based implementation, utilizing average and max-pooling techniques. This systematic implementation, in con-
junction with TL and CB methods, enables the model to accurately capture well-defined boundaries and texture 
variations within the infected lung region. Additionally, a comprehensive analysis of the infected region provides 
valuable insights into the patterns of infection and their impact on surrounding organs. The obtained results 

Table 3.   Performance analysis of the developed and existing segmentation CNNs (trained from scratch). 
Gl-Acc, Mn-Acc. represents global and mean accuracy where Mn-IoU and Wt-IoU denote means and 
weighted IoU.

Model Region DSC Acc IoU BF Global-Acc Mean-Acc Mean-IoU Weighted-IoU Mean-BF

Ablation study of the proposed segmentation CNNs

Proposed SA-CB-BRSeg
Infected 96.40 99.21 98.85 99.09

99.51 99.49 98.98 99.09 98.32
Background 99.02 99.72 99.31 97.45

Proposed CB-BRSeg
Infected 95.96 99.01 98.43 98.87

99.25 99.17 98.69 98.80 98.03
Background 98.90 99.48 99.09 97.33

Proposed SA-BRSeg
Infected 95.61 98.83 98.35 98.47

98.99 98.97 98.46 98.57 97.42
Background 98.40 99.38 98.85 96.73

Comparative studies with the existing CNNs

Deeplabv3
Infected 95.00 98.48 97.59 97.53

99.03 98.91 98.14 98.33 97.08
Background 98.30 99.33 98.67 96.39

nnSAM41
Infected 94.85 98.33 97.45 97.39

98.93 98.81 98.04 98.23 96.88
Background 98.27 99.30 98.64 96.36

U-SegNet
Infected 94.65 98.25 97.01 97.02

98.82 98.73 97.52 97.68 96.52
Background 98.01 99.16 98.10 95.22

nnUNet
Infected 94.63 98.20 96.09 96.98

98.80 98.69 97.49 97.65 96.49
Background 98.27 99.18 98.12 95.27

SegNet
Infected 94.30 98.97 96.56 96.73

98.72 98.71 97.18 97.32 96.48
Background 97.90 98.45 97.79 95.22

U-Net
Infected 94.00 98.61 95.98 96.91

98.40 98.44 96.70 96.87 95.49
Background 97.70 98.28 97.42 94.07

VGG-16
Infected 91.00 91.38 88.91 89.37

95.59 94.81 91.05 91.53 83.66
Background 95.00 98.25 93.18 77.95

FCN-8
Infected 90.70 90.92 89.11 87.74

95.32 94.55 90.63 90.20 82.43
Background 94.00 98.18 92.15 77.11

Comparative studies with reported segmentation techniques

VB-Net48 Infected 91.00 – – –– – – – – –

Weakly Sup 50 Infected 90.00 – –– – – – – – –

MTL51 Infected 88.00 – – – – – – – –

DCN28 Infected 83.50 – – – – – – –

U-Net-CA30 Infected 83.10 – – – – – – – –

Inf-Net52 Infected 68.20 – – – – – – – –
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Figure 7.   Feature Visualization of the developed STM-BRNet and ResNet-50 for the first, second, and third 
principal components generated.

Figure 8.   PR and ROC curve for the developed STM-BRNet and current CNNs.
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showcase the exceptional learning capability of the proposed SA-CB-BRSeg in accurately capturing COVID-19 
infection patterns. This is evidenced by impressive metrics such as a DS score and IoU of 96.40% and 98.85% 
respectively (refer to Table 3). Furthermore, the model demonstrates its ability to precisely learn discriminative 
boundaries, achieving a higher BFsa value of 99.09%.
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Figure 9.   The developed STM-BRNet and SA-CB-BRSeg performance gain over the current CNNs.

Figure 10.   Dice Score of the developed SA-CB-BRSeg and existing nnSAM and nnUNet segmentation CNNs 
results.
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Segmentation analysis with the existing CNNs
The existing segmentation CNNs are employed to assess the learning capacity of the developed SA-CB-BRSeg. 
Moreover, the performance of SA-CB-BRSeg is compared with six widely recognized segmentation CNNs for 
a comprehensive evaluation (DeepLabv3, nnSAM41, U-SegNet, nnUNet41, SegNet, U-Net, VGG-16, and FCN) 
(Table 3 and Figs. 9, 10). Figure 11 illustrates the segmented infectious regions achieved by the proposed SA-CB-
BRSeg as well as existing CNN models. The quantitative analysis recommends that the developed SA-CB-BRSeg 
performs better than existing segmentation CNNs. However, the results show that customized CNNs perform 
poorly in learning mildly infectious regions. In contrast, VGG-16, FCN, and U-Net CNNs fluctuate in various 
stages of CT images and show less robustness in the models. The maximum accuracy in existing segmentation 
CNNs (Deeplabv3) is (98.48%) for the infected region. Consequently, the DS and IOU are (95% against 96.40%) 
and (97.59% beside 98.85%), respectively.

The SA-CB-BRSeg method demonstrates its potential suitability for regions with varying degrees of infection, 
ranging from moderate to severe. Moreover, the proposed and existing models’ performance is improved using 
radiological and augmented data. The SA-CB-RESeg model, which we have developed, exhibits low complexity 
yet achieves greater accuracy compared to highly complex models with larger depths. Through the incorporation 
of pixel-wise distribution, the SA-CB-RESeg model significantly improves the accuracy of segmentation across 
various stages of infected regions.

TL based evaluation
The performance of TL-based fine-tuning demonstrates an improvement over training the model from scratch, 
as evident in the significant gains observed in various metrics. The DS score shows an increase from 0.35% 
to 4%, S-Acc improves from 0.28% to 7.37%, the DS score rises from 0.44% to 8.13%, and BFs increase from 
0.66% to 9.34%, as illustrated in Tables 3 and 4. These performance gains strongly suggest that TL enhances the 
overall performance of the model compared to learning from scratch. To achieve this, TL-based feature maps 
are generated and seamlessly integrated into the decoder of the developed SA-CB-RESeg model (Fig. 12). By 
leveraging TL, the model gains advantages from fine-tuned weights and acquired patterns from pre-existing 

CT Image c DeepLabV1
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CB-COVID-RESeg U-SegNet SegNet

B C D

Label+ CT Image 
Overlay
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U-Net VGG-16

I

FCN-8

Figure 11.   Visual analysis of the developed SA-CB-BRSeg and existing segmentation CNNs results.

Table 4.   Performance of segmentation CNNs (implemented using TL).

Model Region DSC Acc IoU BF Global-Acc Mean-Acc Mean-IoU Weighted-IoU Mean-BF

Deeplabv3
Infected 95.35 98.76 98.03 97.71

99.23 99.15 98.40 98.48 97.19
Background 98.65 99.53 98.76 96.66

U-SegNet
Infected 95.20 98.41 97.52 97.46

98.93 98.81 98.10 98.25 96.94
Background 98.60 99.67 98.61 96.32

SegNet
Infected 95.10 98.29 97.70 97.41

99.10 98.95 98.09 98.22 96.82
Background 98.10 99.62 98.55 96.23

U-Net
Infected 94.90 98.74 97.62 98.19

99.22 99.06 98.06 98.15 96.63
Background 98.20 99.07 98.49 95.86

VGG-16
Infected 94.80 98.29 97.07 97.11

98.89 98.79 97.61 97.74 96.18
Background 97.90 99.23 98.24 95.29

FCN-8
Infected 94.70 98.29 97.04 97.08

98.87 98.76 97.59 97.71 96.16
Background 98.00 99.21 98.15 95.27
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trained scenarios, leading to improved convergence and generalization capabilities53,54. Moreover, the radiologist 
labeled and augmented data are combined to improve the developed SA-CB-RESeg performance55. The analysis of 
infected regions is achieved using the best-performing existing TL-based trained DeepLabv3 CNN for compara-
tive analysis. The DeepLabv3 has gained accuracy (98.76%) and IOU (98.03%) for infectious regions (Table 4).

Visual analysis of the proposed SA‑CB‑BRSeg
Visual The deep SA-CB-BRSeg model is utilized for visual analysis of COVID-19 infection segmentation, ena-
bling the identification and examination of infected regions. The subjective evaluation demonstrates the accurate 
highlighting of infected regions achieved by the proposed SA-CB-BRSeg. Moreover, the incorporation of the 
pixel-wise distribution from SA-CB-BRSeg significantly enhances the segmentation of various stages of infected 
areas. The evaluation measures, ablation study, and the segmented maps visualization assessment provide strong 
evidence supporting the outperformance of the SA-CB-RESeg model. The proposed detection and segmentation 
CNNs have undergone comprehensive training and are now ready to be tested on previously unseen images. 
Additionally, the existing segmentation CNNs, both those trained from scratch and TL-based, are also subjected 
to analysis for comparative purposes.

The dataset utilized in this study primarily comprises 3D images, which are then transformed into a 2D image 
format. This transformation involves dividing each 3D CT lung into multiple 2D slices for analysis. Although the 
proposed framework is currently designed to handle 2D data, it is important to note that future development and 
optimization efforts will be directed towards specifically addressing applications involving 3D CT lung analysis. 
Furthermore, in medical challenges, the availability of labeled datasets is often limited. Therefore, to enhance 
the reliability of real-time diagnostics, we intend to apply the proposed framework to large-scale datasets56.

Conclusions
COVID-19, an extremely transmissible illness, has had a profound global impact. These CT Lung images exhibit 
distinctive patterns associated with COVID-19 abnormalities. In this work, a new deep CNN-based two-stage 
diagnosis is developed to screen and diagnose COVID-19 infectious regions. This comprehensive methodology 
effectively learns the COVID-19 patterns by utilizing a range of characteristics such as consistent areas, textural 
changes, and borders. The proposed STM-BRNet is advantageous from data augmentation, TL-based diverse 
maps generations, and STM blocks. In addition, the method of residual learning employs a systematic feature 
extraction process by capturing fundamental image-level features and progressively incorporates more intricate 
texture-based distinctions. This innovative approach facilitates the acquisition of enhanced features at various 
levels of granularity. In contrast to existing deep CNNs, the STM-BRNet screening technique displays a significant 
discrimination capacity (98.11% F-score, 98.01% accuracy, and 98.12% recall). Our simulations have indicated 
that the SA-CB-BRSeg technique (with an IoU of 98.85% and DS of 96.40%) can accurately detect and analyze 
the infected areas in CT scans. The proposed SA-CB-RESeg benefited from training from scratch and fine-tuning 
COVID-19 data using TL and CB. The integrated methodology identifies the entire infected region of COVID-
19, potentially assisting radiologists in evaluating the disease’s stages of severity. The proposed framework has 
demonstrated a substantial performance improvement when compared to single-phase systems and other exist-
ing approaches. COVID-19 is a newly emerged disease that has limited labeled samples. Therefore, in the future, 
we will utilize the developed framework on big datasets to enhance the dependability of real-time diagnostics. 
Moreover, the dataset can be increased by augmenting the training data using GAN and labeling through SAM. 
Finally, it may be modified to segregate the infectious region into the multi-class challenge.

CT Image DeepLabV1 U-SegNet SegNetLabel + CT Image 
Overlay U-Net VGG-16 FCN-8Label

Figure 12.   Visual evaluation of TL-based segmentation CNNs results on the test set.
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Data availability
The publicly available datasets used in this work that is accessible at https://​zenodo.​org/​record/​37574​76#.​Xpz8O​
cgzZPY, https://​gitee.​com/​junma​11/​COVID-​19-​CT-​Seg-​Bench​mark#​datas​ets, https://​medic​alseg​menta​tion.​com/​
covid​19/.
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