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Impact of battery electric vehicle 
usage on air quality in three 
Chinese first‑tier cities
Wenjing Lyu 1, Ying Hu 2, Jin Liu 2*, Kaizhe Chen 2, Peng Liu 3, Junjun Deng 4 & Shaojun Zhang 5

China, the world leader in automobile production and sales, confronts the challenge of transportation 
emissions, which account for roughly 10% of its total carbon emissions. This study, utilizing real-world 
vehicle data from three major Chinese cities, assesses the impact of Battery Electric Vehicles (BEVs) 
on air quality. Our analysis reveals that BEVs, when replacing gasoline vehicles in their operational 
phase, significantly reduce emissions, with reductions ranging from 8.72 to 85.71 kg of CO2 per vehicle 
monthly. The average monthly reduction rate is 9.47%, though this effect is less pronounced during 
winter. Advanced BEVs, characterized by higher efficiency and newer technology, exhibit greater 
emission reduction benefits. While private BEVs generally contribute positively to environmental 
outcomes, taxi BEVs, due to their intensive usage patterns, show less environmental advantage and 
may sometimes worsen air quality. Looking ahead, we project substantial emission reductions from 
the replacement of gasoline vehicles with electric alternatives over the next decade. Policymakers 
are urged to adopt proactive measures, focusing on promoting medium to large electric vehicles and 
fostering the use of private and ride-hailing electric vehicles.

Industrialized countries, particularly China, are grappling with the challenge of mitigating air pollution amidst 
rapid urbanization. As per the International Energy Agency, China’s CO2 emissions in 2021 accounted for a stag-
gering 33% of the global total, amounting to 11.9 billion tonnes. The transportation sector, a major contributor 
to China’s carbon footprint, is responsible for about 10% of its total emissions1,2. This environmental issue is 
particularly acute in China’s super-tier-1 cities, where air pollution significantly hinders socioeconomic growth 
and public health3,4.

In response to these challenges, the Chinese government has emphasized the development and adoption of 
New Energy Vehicles (NEVs), particularly Battery Electric Vehicles (BEVs), as a clean alternative to conventional 
automobiles5,6. By June 2022, out of 312 million civilian vehicles, only 8.104 million were BEVs, representing 
roughly 2.6% of the total7,8. This shift towards electric mobility is part of China’s broader strategy to achieve 
carbon neutrality, as outlined in the State Council’s Action Plan for Achieving Carbon Peaks by 2030, which 
targets a 40% share for new energy and clean energy-powered transport vehicles by 20309–11. Globally, policy 
support has been instrumental in increasing the total number of electric vehicles to about 16.5 million, a three-
fold increase from 201812. However, the realization of these targets hinges on the usage patterns and frequency 
of BEV utilization13.

Despite the rising global adoption of electric vehicles, the academic community remains divided over the 
environmental impact of New Energy Vehicles (NEVs). Proponents highlight NEVs’ potential in reducing carbon 
intensity and enhancing air quality14. In contrast, critics caution that BEVs might shift emissions from transporta-
tion to electricity production, particularly in regions dependent on non-renewable energy sources15,16. Further, 
there are concerns that subsidies for NEVs could divert resources from other vital environmental initiatives, 
potentially impeding broader urban environmental progress17.

This debate largely centers around different phases of NEV utilization. Advocates often focus on the usage 
phase and life cycle assessment (LCA) 18,19, while detractors draw attention to the energy production phase and 
its possible diversion of resources from other environmental policies20. The environmental footprint of BEVs, 
including their electricity consumption and resultant greenhouse gas emissions, varies depending on operational 
conditions and the battery charging/discharging process21. Many studies have explored BEV emission reductions 
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at various stages, from charging to driving22–24. However, the limited scope of these studies often hampers a 
comprehensive understanding of BEVs’ impact on air quality.

In our study, we utilize large-scale real-world data to assess the impact of vehicle electrification on air quality, 
focusing particularly on China’s super-tier-1 cities, which predominantly rely on coal-based power generation. 
We analyze the relationship between BEV usage patterns—namely mileage and driving frequency—and air 
quality. This analysis draws upon data from Beijing, Shanghai, and Shenzhen, spanning from January 2019 to 
October 2020.

Our methodology involves comparing the carbon emissions of BEVs with those of fuel vehicles over compa-
rable distances, while controlling for factors such as trip length, vehicle age, road conditions, and weather condi-
tions. In line with existing literature25–28, we hypothesize that BEVs are zero-emission during the driving phase, 
with their primary source of pollutants being the electrical energy consumed during operation. This hypothesis 
forms the basis for our exploration into how a shift to BEVs, in place of gasoline vehicles, could potentially 
improve air quality. We assume that each electric kilometer driven offsets a corresponding distance driven by a 
gasoline vehicle, allowing for a direct comparison of carbon emissions across the same mileage, irrespective of 
external and internal factors.

Our findings indicate that replacing fuel vehicles with BEVs yields substantial emission reduction benefits 
and impacts various air pollutants. The study reveals significant differences in the effects of different BEV models 
and categories on air quality. Higher-end BEV models and private passenger BEVs are shown to significantly 
improve air quality. Conversely, applications such as taxi BEV usage demonstrate less favorable environmental 
outcomes, suggesting a nuanced impact of BEV adoption on urban air quality.

Through this research, we contribute to the understanding of how BEV usage influences air quality, providing 
insights into the differential impacts of various BEV models and categories. This study not only highlights the 
emission reduction potential of BEVs but also underscores the importance of considering vehicle usage patterns 
in evaluating their environmental benefits.

Our analysis aims to provide a nuanced understanding of the interplay between BEV usage and air quality, 
offering valuable insights for shaping sustainable urban transportation policies in China.

Emission reduction benefits of BEVs replacement for fuel vehicles
Utilizing real-world driving data, our study demonstrates a notable carbon reduction effect when Battery Elec-
tric Vehicles (BEVs) replace fuel vehicles over equivalent mileages (refer to Fig. 1). We observed a consistent 
upward trend in emission reductions over the study period. In January 2019, the emission reduction per BEV 
was approximately 8.72 kg of CO2, which escalated to around 63.83 kg of CO2 by October 2020, averaging a 
monthly increase of 9.47% (details provided in Supplementary Data 1).

Initially, the new energy vehicle market in China, including BEVs, was largely dependent on government sup-
port. However, diverse support policies have subsequently catalyzed substantial growth in this sector, positioning 

Figure 1.   Comparative carbon emissions of gasoline vehicles and BEVs at equivalent mileages. Note: This figure 
illustrates the carbon emissions during the driving phase for both electric vehicles (BEVs) and gasoline vehicles 
over the same driving mileage. The monthly emission reduction per vehicle are calculated as the difference in 
carbon emissions between the gasoline vehicles and BEVs for equivalent mileages. The detailed formula used for 
this calculation is outlined in the “Models” section, and the specific data utilized can be found in Supplementary 
Data 2-1.
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China as the leading market globally for new energy vehicles29. This growth has been further bolstered by 
improvements in charging infrastructure and the introduction of incentive schemes, leading to increased accept-
ance among Chinese residents, particularly the younger demographic3,30. As a result, there has been a notable shift 
towards BEVs, replacing conventional gasoline vehicles for similar mileage requirements, thereby contributing 
significantly to emission reductions in the transportation sector.

In terms of temporal patterns, BEVs exhibit optimal emission reduction performance during the months of 
May to July and September to November. This pattern correlates with the finding that BEVs achieve their lowest 
energy consumption at approximately 20 °C, and the impact of temperature on energy consumption is markedly 
less pronounced at higher driving speeds (around 130 km/h)31.

Interestingly, the winter of 2019 did not show a significant variation in CO2 emission reductions across the 
studied regions. However, from January 2020, a marked decline in CO2 emissions was observed, reaching a nadir 
two months later. This trend can likely be attributed to the national response to the initial COVID-19 outbreak, 
where there was a substantial reduction in intra-city vehicle travel. For instance, in Chongqing, the average daily 
vehicle mileage decreased by 9% post-outbreak, resulting in a 24% reduction in the carbon emissions of Plug-in 
Hybrid Electric Vehicles (PHEVs)32.

The resumption of work and production, guided by the Central Leading Group for Responding to COV-
ID-19’s ‘Guidance on Actively and Orderly Promoting the Resumption of Work and Production while Effectively 
Preventing and Controlling COVID-19’, saw a return to pre-pandemic emission reduction trends from April 
2020 onwards33.

Differences in emission reductions between BEV models
This study delves into the emission reduction differences among various BEV models when they replace equiva-
lent fuel vehicles (see Fig. 2). We found a consistent trend: the larger or heavier the vehicle, the more substantial 
the carbon emission reduction achieved when it is replaced with a BEV of the same category. This observation 
can be attributed to the higher energy release and larger displacement of larger vehicles, leading to notable emis-
sion reductions when substituted with equivalent BEVs34.

Among the evaluated models, C-type BEVs demonstrated the most significant emission reduction benefits. 
On average, these vehicles yielded an annual reduction of 14.75 kg CO2 per 100 km. B-type vehicles followed 
closely, with an average annual reduction of 13.86 kg CO2 per 100 km. In contrast, A0-type BEVs showed the 
least benefit, with an average annual reduction of only 8.86 kg CO2 per 100 km.

Extreme weather conditions were found to increase the carbon emissions across all models, likely due to the 
use of air conditioning and the diminished performance of batteries in such conditions35. Cold temperatures, 
in particular, have a more pronounced impact on BEVs. The decrease in battery activity and storage capacity in 
colder climates, coupled with increased rolling resistance and aerodynamic drag, results in heightened energy 
consumption and power loss. Studies have also noted a significant drop in average EV mileage in cold climates36.

Figure 2.   Monthly CO2 emission reductions per 100 km for Six BEV Types. Note: This figure displays the CO2 
emission reductions per 100 km on a monthly basis for six different types of Battery Electric Vehicles (BEVs). 
The BEV types include A00-type, A0-type, A-type, B-type, C-type, SUV-type, and MPV-type BEVs. The data 
from January to October represent the total emission reductions for each BEV model across both 2019 and 
2020. For November and December, the data shown reflect only the emission reductions for each model in 2019. 
Detailed source data can be found in Supplementary Data 2-2.
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Furthermore, our analysis revealed that the sensitivity to temperature variations differs across BEV models. 
Micro-BEVs, especially those utilizing LiFePO4-based Li-ion batteries, are more susceptible to extreme climatic 
conditions, especially in winter. These batteries, while resistant to high temperatures, demonstrate poor per-
formance in low temperatures, resulting in a considerable disparity in energy consumption between summer 
and winter35. This leads to higher sensitivity, with A0-type BEVs showing a 66.1% lower emission reduction per 
100 km in winter months compared to the average.

The impact of travelling in BEVs on air quality
Our analysis focuses on how changes in BEV travel frequency affect carbon emissions and air quality in three 
first-tier Chinese cities (refer to Fig. 3). We observed noticeable regional variations in air quality across Beijing, 
Shanghai, and Shenzhen, influenced significantly by geographical conditions.

In Beijing, characterized by its ‘back-mountain and facing-sea’ terrain, the northern regions exhibited superior 
air quality compared to the southern areas. Conversely, Shanghai, with its advantageous positioning along the 
Pacific Ocean and bordered by major water bodies, demonstrated better overall air quality than Beijing. Notably, 
the eastern regions of Shanghai showed improved air conditions compared to the west. Shenzhen, located near 
the Pearl River Estuary and Daya Bay, exhibited the best air quality among the three cities, with notable improve-
ments towards the southeast. This variation in air quality can be partly attributed to the differing power energy 
structures of these cities; Beijing and Shanghai primarily rely on thermal power generation, while Shenzhen 
benefits from a significant proportion of nuclear power generation37.

Time-based analysis revealed that the frequency of BEV travel in 2020 was substantially higher than in 2019, 
correlating with an overall improvement in air quality. The Air Quality Index (AQI) decreased in each region 
during this period. In Beijing, for instance, central districts such as Haidian and Chaoyang saw significant 
increases in BEV travel frequencies, with corresponding decreases in AQI. The southeastern districts of Daxing 
and Tongzhou experienced more than a twofold increase in BEV travel frequency, leading to marked improve-
ments in air quality.

Shanghai mirrored this trend; the Pudong New District, for example, reported the most substantial increase 
in BEV trips and a notable AQI decrease. Other districts, including Minhang, Baoshan, and Jiading, also saw 
significant upticks in BEV travel and corresponding improvements in air quality. In Shenzhen, districts like Futian 
and Nanshan demonstrated a decrease and an increase in BEV trips, respectively, both resulting in significant 
AQI reductions.

These findings suggest a positive correlation between increased BEV usage and improved air quality, indicat-
ing that BEVs, by replacing fuel vehicle trips, can effectively contribute to air quality enhancement in urban areas.

Utilizing Eq. (2) detailed in the “Methods” section, we analyzed the impact of BEV travel frequency on air 
quality in Beijing, Shanghai, and Shenzhen. The primary findings (summarized in Table 1) indicate that several 
factors influence this impact, including GDP, urban population density, policy, average temperature, humidity, 
precipitation, sunshine hours, and wind speed.

After adjusting for these variables, our analysis revealed that a 10% increase in monthly BEV travel frequency 
correlates with an average AQI decrease of 1.1%. Concurrently, the concentrations of key air pollutants—PM2.5, 
PM10, CO, SO2 and O3 —showed average decreases of 0.5%, 0.2%, 0.7%, 1.4%, and 6.3% respectively. However, 
this trend is accompanied by a 2.5% average increase in NO2 concentrations.

Considering that AQI is a composite indicator reflecting the levels of SO2, NO2, PM10, PM2.5, O3 and CO, an 
increase in BEV travel frequency overall promotes environmental benefits. This aligns with the findings of Liang 
et al., who observed a significant reduction in PM2.5 and O3 concentrations with increased BEV usage in China4.

Therefore, augmenting BEV usage not only reduces the reliance on gasoline vehicles but also effectively 
mitigates air pollution. However, our results differ slightly from Liang et al.4 and Chen et al.38 who predicted a 
decrease in NO2 concentrations with increased BEV usage. This discrepancy may stem from our study’s focus on 
the actual frequency of BEV usage and its direct impact on air pollutants, as opposed to the predicted scenarios 
for 2030 used in their studies.

The increase in NO2 concentrations we observed could be attributed to the electricity consumption of BEVs. 
Beijing and Shanghai predominantly rely on thermal power generation, which emits significant amounts of 
nitrogen oxides and particulate matter. Hence, while emissions during BEV driving stages are reduced, the NO2 
produced by coal power consumption for BEV charging might outweigh these reductions, leading to an overall 
increase in atmospheric NO2 concentrations.

Air quality impacts of BEVs for different applications
Utilizing the method outlined in Eq. (2), we analyzed the air quality impacts of private BEVs, taxi BEVs, and 
online ride-hailing BEVs, each detailed in Tables 2, 3, and 4, respectively.

Table 2 indicates that private BEV travel substantially benefits air quality. A negative correlation was found 
between the amount of private BEV travel frequency and the AQI index, accompanied by a decrease in of PM2.5, 
PM10, CO, SO2 and O3 levels, but an increase in NO2 levels, aligning with the overall sample results.

Conversely, Table 3 shows that taxi BEVs do not significantly impact environmental improvement and may 
even contribute to a decline in air quality. This is evidenced by increased levels of PM2.5, PM10, CO, SO2 and 
O3, with a decrease in NO2. The inefficiency of taxi BEVs in air quality improvement is attributed to their high 
energy consumption, particularly at lower temperatures and during nighttime charging23. As the power grid 
in the examined super-first-tier cities is predominantly coal-based, the electrification of taxi BEVs leads to 
increased emissions of greenhouse gases and pollutants39,40. Additionally, the unique operating conditions of 
taxi BEVs, such as extensive outdoor travel, frequent braking and throttling, and high charging demands, result 



5

Vol.:(0123456789)

Scientific Reports |           (2024) 14:21  | https://doi.org/10.1038/s41598-023-50745-6

www.nature.com/scientificreports/

Figure 3.   Correlation between air quality and vehicle travel frequency in three first-tier Chinese cities. 
Note: This figure presents an analysis of vehicle travel data and air quality across various districts in Beijing, 
Shanghai, and Shenzhen, based on vehicle latitude and longitude information. For Beijing, the data encompasses 
Changping, Chaoyang, Daxing, Dongcheng, Fangshan, Fengtai, Haidian, Huairou, Mentougou, Miyun, Pinggu, 
Shijingshan, Shunyi, Xicheng, and Yanqing Districts. In Shanghai, the analysis includes Baoshan, Fengxian, 
Hongkou, Huangpu, Jiading, Jinshan, Jing’an, Minhang, Pudong New, Putuo, Qingpu, Songjiang, Xuhui, 
Yangpu, and Changning Districts. For Shenzhen, the focus is on Futian and Nanshan Districts. Air quality 
levels were evaluated using various indicators from meteorological stations in each district, with the Air Quality 
Index (AQI) serving as a reference. Higher AQI values indicate more severe air pollution. The data for Shenzhen 
includes only Futian and Nanshan Districts; thus, the figure specifically illustrates changes in BEV travel 
frequency in these districts. Detailed data can be found in Supplementary Data 2-3.
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in increased electricity consumption and accelerated battery aging, further diminishing efficiency and exacer-
bating air quality issues.

In contrast, Table 4 highlights that travel in online ride-hailing BEVs significantly reduces emissions, leading 
to improved air quality. Although there is an increase in PM2.5, PM10, CO, SO2, and NO2, the reduction in O3 
is noteworthy. Despite similar operating conditions to electric taxis, online ride-hailing cars are comparatively 
more efficient, consuming 36% less fuel and producing 44% fewer hydrocarbons41. Thus, while they contribute 
positively to air quality, they also generate additional pollutants.

Discussion
This study evaluated the impact of Battery Electric Vehicles (BEVs) on air quality in China’s three first-tier 
cities, utilizing real-world vehicle data and carbon emission modeling. Our analysis reveals that BEVs, when 
replacing fuel vehicles for equivalent mileages, generally contribute to better emission reductions. However, 
this effect varies across different cities, months, and vehicle models, with a notable reduction in efficacy during 
winter. Larger vehicles, such as B, C, and MPV models, exhibit higher carbon efficiency over 100 km compared 
to smaller vehicles (e.g., A0, A) and show less sensitivity to climatic changes.

The study also found a significant decrease in total vehicle mileage (fuel vehicles + BEVs) in 2020, largely 
attributable to COVID-19 related restrictions42. Interestingly, BEVs experienced a smaller change in total travel 
mileage but an increase in travel frequency, possibly influenced by rising fuel prices due to the Russia-Ukraine 
conflict43, making electric vehicles a more attractive travel option44.

Further analysis using a two-way fixed-effect model on air quality and BEV trip frequency revealed that 
increased BEV usage significantly improves air quality by reducing levels of PM2.5, PM10, CO, SO2 and O3. Envi-
ronmental benefits vary across BEV classes, with A0-, A-, B-, and SUV-type BEVs making a substantial impact 

Table 1.   Baseline estimates. Note: The independent variable, BEVtrips, represents the natural logarithm of 
the monthly travel frequency of battery electric vehicles (BEVs). The unit-of-analysis is at the BEV-month 
level. Columns (1) and (2) detail the relationship between BEV monthly travel frequency and the Air Quality 
Index (AQI). Columns (3) through (8) explore the relationship between BEV monthly travel frequency with 
individual air pollutants: PM2.5, PM10, CO, SO2, NO2 and O3, respectively. Both month and city fixed effects 
are controlled in all regressions. The control variables are not included for the regression in Column (1) and 
are included in the regressions in Columns (2)–(8). Robust standard errors are shown in parentheses. *p < 0.1; 
**p < 0.05; ***p < 0.01.

(1) (2) (3) (4) (5) (6) (7) (8)

lnAQI lnAQI lnPM2.5 lnPM10 lnCO lnSO2 lnNO2 lnO3

BEVtrips
− 0.0007*** − 0.0011*** − 0.0005*** − 0.0002 − 0.0007*** − 0.0014*** 0.0025*** − 0.0063***

(0.0002) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0002)

lngdp
3.7261*** 2.4949*** 4.8514*** 0.1419*** 4.4983*** 0.6094*** 8.5795***

(0.0199) (0.0268) (0.0187) (0.0126) (0.0137) (0.0096) (0.0194)

Industry
7.6482*** 4.8892*** 12.8716*** -2.4121*** 8.8990*** − 5.1767*** 19.1043***

(0.0571) (0.0713) (0.0629) (0.0283) (0.0366) (0.0267) (0.0420)

lnpopula
− 0.0817*** − 0.2044*** 0.4304*** 0.2349*** 0.5667*** − 0.0268*** 0.1800***

(0.0052) (0.0066) (0.0059) (0.0026) (0.0035) (0.0024) (0.0057)

Govern
0.2019*** 0.1991*** 0.2627*** − 0.0136*** 0.1677*** 0.0161*** 0.2973***

(0.0006) (0.0009) (0.0007) (0.0003) (0.0003) (0.0005) (0.0007)

lntemp
0.0276*** 0.0177*** 0.0517*** − 0.0912*** − 0.1274*** − 0.0327*** 0.1622***

(0.0003) (0.0004) (0.0003) (0.0002) (0.0002) (0.0002) (0.0005)

lnhumi
− 1.0840*** − 1.0594*** − 1.4243*** 0.0418*** − 1.0669*** 0.1149*** − 1.6298***

(0.0023) (0.0029) (0.0023) (0.0010) (0.0012) (0.0010) (0.0026)

lnprecip
− 0.0336*** − 0.0680*** − 0.0302*** − 0.0037*** − 0.0165*** − 0.0391*** − 0.0360***

(0.0002) (0.0003) (0.0002) (0.0002) (0.0003) (0.0002) (0.0004)

lnsun
− 0.3120*** − 0.4206*** − 0.2201*** − 0.0500*** − 0.0477*** − 0.0708*** − 0.0964***

(0.0008) (0.0008) (0.0010) (0.0007) (0.0015) (0.0006) (0.0010)

lnwind
− 0.8004*** − 1.0176*** − 0.8406*** − 0.5517*** − 0.3023*** − 0.3665*** − 1.4846***

(0.0018) (0.0023) (0.0016) (0.0013) (0.0018) (0.0008) (0.0029)

cons
4.3315*** − 23.4060*** − 10.6200*** − 37.5529*** − 1.8889*** − 39.4803*** 0.0840 − 70.2107***

(0.0012) (0.1980) (0.2617) (0.1941) (0.1106) (0.1203) (0.0948) (0.1819)

Month Yes Yes Yes Yes Yes Yes Yes Yes

City Yes Yes Yes Yes Yes Yes Yes Yes

N 1,826,095 1,826,095 1,826,095 1,826,095 1,826,095 1,826,095 1,826,095 1,826,095

R2 0.5668 0.7880 0.8201 0.8548 0.9069 0.8904 0.9012 0.8466
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on reducing AQI and improving air quality. In contrast, A00-, C-, and MPV-type BEVs show less pronounced 
benefits due to lower emissions, fewer trips, and higher energy consumption for longer ranges.

The study also differentiates the environmental impacts of BEVs based on their usage. Private passenger BEVs 
substantially improve air quality, while taxi BEVs have lesser environmental benefits due to their operational 
characteristics. Online ride-hailing BEVs, having lower energy consumption per unit than taxi BEVs, offer 
slightly better environmental advantages.

Based on our findings, we propose several strategic recommendations to enhance the environmental efficacy 
of Battery Electric Vehicles (BEVs). We advocate for the prioritization of larger BEVs, as A-class and higher 
models demonstrate more significant carbon emission reduction benefits over their entire lifecycle compared 
to smaller BEVs. Additionally, the continuous monitoring of pollutants, especially NO2, is crucial to under-
stand and mitigate the potential environmental impacts of widespread BEV adoption. Advancements in battery 
technology are also imperative, with the development of new-generation solid fuel cells and low-temperature-
resistant ternary lithium batteries essential for maintaining emission efficiency in cold weather. Ternary lithium 
batteries, functional down to -30℃, exhibit superior low-temperature discharge performance, and the use of 
iron phosphate lithium batteries, with less than 15% mileage degradation in winter, could significantly enhance 
EV performance in extreme conditions. Furthermore, promoting online ride-hailing services can offer a more 
sustainable alternative to traditional taxi BEVs, covering wider areas and providing cost-effective, time-efficient 
commuting options41. Implementing energy-efficient air conditioning and electric power systems is pivotal for 
reducing winter energy consumption and enhancing EV efficiency, addressing the increased energy demands 
of EVs during colder months. Finally, policymakers should encourage more eco-friendly travel methods during 
winter, such as buses, subways, shared bicycles, trolley buses, and carpooling, which are particularly suitable for 
short-distance journeys and in areas with challenging road conditions. These recommendations collectively aim 
to maximize the environmental benefits of BEVs, contributing to sustainable urban transportation solutions and 
addressing the challenges posed by climate variability and technological limitations. These recommendations 

Table 2.   Heterogeneity analysis: private BEVs. Note: The independent variable, BEVtrips, represents the 
natural logarithm of the monthly travel frequency of battery electric vehicles (BEVs). The unit-of-analysis is at 
the BEV-month level. Column (1) details the relationship between private BEV monthly travel frequency and 
the Air Quality Index (AQI). Columns (2) through (7) explore the relationship between private BEV monthly 
travel frequency with individual air pollutants: PM2.5, PM10, CO, SO2, NO2 and O3, respectively. All regressions 
account for both month and city fixed effects, and incorporate control variables to ensure robustness and 
accuracy in capturing the true impact of private BEV travel frequency on air quality. Robust standard errors 
are shown in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01.

(1) (2) (3) (4) (5) (6) (7)

lnAQI lnPM2.5 lnPM10 lnCO lnSO2 lnNO2 lnO3

BEVtrips
− 0.0007*** − 0.0005*** − 0.0005*** − 0.0006*** − 0.0005*** 0.0011*** − 0.0024***

(0.0001) (0.0001) (0.0001) (0.0000) (0.0001) (0.0001) (0.0001)

lngdp
2.2396*** 0.2369*** 4.0528*** − 0.3066*** 4.2063*** 0.1497*** 9.1053***

(0.0225) (0.0289) (0.0299) (0.0142) (0.0181) (0.0175) (0.0308)

Industry
1.4338*** − 2.6928*** 6.4481*** − 4.6206*** 7.8732*** − 6.5059*** 17.0918***

(0.0714) (0.0745) (0.0949) (0.0330) (0.0554) (0.0470) (0.0928)

lnpopula
− 0.8295*** − 1.1389*** − 0.4523*** 0.0691*** 0.5647*** − 0.1673*** − 0.4481***

(0.0172) (0.0218) (0.0176) (0.0090) (0.0120) (0.0087) (0.0244)

Govern
0.1275*** 0.0710*** 0.2129*** − 0.0377*** 0.1805*** − 0.0237*** 0.3887***

(0.0010) (0.0015) (0.0010) (0.0005) (0.0005) (0.0009) (0.0014)

lntemp
− 0.0004 0.0068*** − 0.0244*** − 0.1096*** − 0.1258*** − 0.0294*** 0.0413***

(0.0006) (0.0006) (0.0009) (0.0004) (0.0004) (0.0004) (0.0015)

lnhumi
− 0.8202*** − 0.5984*** − 1.2309*** 0.0114*** − 1.0238*** 0.0418*** − 1.5934***

(0.0054) (0.0069) (0.0065) (0.0020) (0.0022) (0.0021) (0.0053)

lnprecip
0.0297*** − 0.0121*** 0.0319*** 0.0340*** 0.0228*** − 0.0493*** 0.0690***

(0.0007) (0.0008) (0.0007) (0.0005) (0.0004) (0.0003) (0.0014)

lnsun
− 0.1772*** − 0.3094*** − 0.0380*** 0.0257*** 0.1617*** − 0.1250*** − 0.0295***

(0.0017) (0.0021) (0.0022) (0.0010) (0.0014) (0.0009) (0.0021)

lnwind
− 0.6822*** − 0.7914*** − 0.7085*** − 0.7247*** − 0.5723*** − 0.4304*** − 1.3031***

(0.0030) (0.0039) (0.0039) (0.0019) (0.0023) (0.0011) (0.0037)

cons
− 5.3942*** 15.1315*** − 24.4810*** 3.5309*** − 37.5438*** 5.8214*** − 70.5363***

(0.2744) (0.3442) (0.3419) (0.1451) (0.1869) (0.1798) (0.3375)

Month Yes Yes Yes Yes Yes Yes Yes

City Yes Yes Yes Yes Yes Yes Yes

N 1,369,978 1,369,978 1,369,978 1,369,978 1,369,978 1,369,978 1,369,978

R2 0.8609 0.8868 0.9119 0.9568 0.9592 0.9529 0.9483
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aim to maximize the environmental benefits of BEVs, contributing to sustainable urban transportation solutions 
and addressing the challenges posed by climate variability and technological limitations.

However, this study does not account for specific conditions such as extreme winter temperatures, which 
may increase power consumption, indicating a need for further research. Future studies should delve deeper 
into the interplay between BEVs, carbon emission reduction, air quality, and the substitution patterns between 
BEVs and fuel vehicles.

Methods
Data
BEVs driving data and air quality data
In this paper, we collected available data from the open lab of the National Big Data Alliance of New Energy 
Vehicles. We cleaned the data and kept all normal driving segment data. The rules followed were as follows: 
(1) remove all PHEV vehicles; (2) remove samples with abnormal energy consumption where the post-driving 
battery percentage difference SOC ≥ 0, which is the remaining power of the battery; (3) remove samples with 
an average speed greater than 200 km/h in the driving segments; (4) remove samples with a driving range less 
than 0.1 km in the driving segments.

Each driving segment in this study database contained the number of each type of electric vehicles, the time 
of the start and end of the drive, the start and end mileage, the start and end SOC, the duration of the drive, the 
average speed, the maximum speed, the longitude and latitude of the start of the drive, the longitude and latitude 
of the end of the drive, the distance difference, the type and use of the vehicle, the battery material and capacity, 
the maximum range and the net weight of the vehicle.

In 2016, the National Monitoring and Management Centre for New Energy Vehicles was established in China. 
It serves as the national big data platform for EVs. The centre has the only datasets in the world that contain 

Table 3.   Heterogeneity analysis: Taxi BEVs. Note: The independent variable, BEVtrips, represents the natural 
logarithm of the monthly travel frequency of battery electric vehicles (BEVs). The unit-of-analysis is at the 
BEV-month level. Column (1) details the relationship between taxi BEV monthly travel frequency and the 
Air Quality Index (AQI). Columns (2) through (7) explore the relationship between taxi BEV monthly travel 
frequency with individual air pollutants: PM2.5, PM10, CO, SO2, NO2 and O3, respectively. All regressions 
account for both month and city fixed effects, and incorporate control variables to ensure robustness and 
accuracy in capturing the true impact of taxi BEV travel frequency on air quality. Robust standard errors are 
shown in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01.

(1) (2) (3) (4) (5) (6) (7)

lnAQI lnPM2.5 lnPM10 lnCO lnSO2 lnNO2 lnO3

BEVtrips
0.0150*** 0.0228*** 0.0125*** 0.0008*** 0.0018*** − 0.0055*** 0.0131***

(0.0004) (0.0006) (0.0004) (0.0001) (0.0001) (0.0002) (0.0004)

lngdp
− 2.6019*** − 6.6081*** 3.1029*** − 3.1101*** − 1.3691*** 6.5408*** − 7.2754***

(0.1360) (0.1996) (0.1321) (0.0551) (0.0497) (0.0277) (0.1391)

Industry
− 5.3412*** − 9.8655*** 5.4159*** − 4.1792*** − 1.6209*** 20.8273*** − 21.8003***

(0.4803) (0.7101) (0.4368) (0.2124) (0.1471) (0.2066) (0.4907)

lnpopula
− 0.3223*** − 0.1100*** − 0.4848*** 0.3256*** 0.6120*** 0.1280*** − 0.5266***

(0.0135) (0.0203) (0.0107) (0.0063) (0.0084) (0.0053) (0.0151)

Govern
0.3492*** 0.3886*** − 0.0020 0.0575*** 0.3134*** − 0.0222*** 0.3243***

(0.0053) (0.0083) (0.0052) (0.0027) (0.0046) (0.0018) (0.0063)

lntemp
− 0.1765*** − 0.2899*** 0.3122*** − 0.2365*** − 0.3426*** − 0.1296*** 0.1806***

(0.0058) (0.0090) (0.0058) (0.0026) (0.0040) (0.0021) (0.0058)

lnhumi
− 0.6927*** − 0.5579*** − 1.7540*** 0.4433*** − 0.4003*** 0.1591*** − 1.7778***

(0.0176) (0.0255) (0.0139) (0.0065) (0.0109) (0.0058) (0.0170)

lnprecip
− 0.1594*** − 0.2129*** − 0.1294*** − 0.0742*** − 0.0550*** − 0.0999*** − 0.0726***

(0.0012) (0.0018) (0.0010) (0.0006) (0.0007) (0.0004) (0.0014)

lnsun
− 0.4536*** − 0.5445*** − 0.5846*** − 0.0400*** − 0.0429*** − 0.1473*** − 0.2963***

(0.0034) (0.0051) (0.0031) (0.0016) (0.0035) (0.0014) (0.0047)

lnwind
− 0.4782*** − 0.9116*** − 0.1040*** − 0.3735*** 0.0470*** − 0.4298*** − 0.8958***

(0.0071) (0.0105) (0.0060) (0.0026) (0.0036) (0.0026) (0.0062)

cons
38.0254*** 73.0959*** − 10.8924*** 25.1756*** 12.1242*** − 61.1721*** 89.7092***

(1.3607) (2.0013) (1.3013) (0.5405) (0.4501) (0.3131) (1.3780)

Month Yes Yes Yes Yes Yes Yes Yes

City Yes Yes Yes Yes Yes Yes Yes

N 141,762 141,762 141,762 141,762 141,762 141,762 141,762

R2 0.9565 0.9508 0.9763 0.9399 0.9730 0.9872 0.9536
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real-time operating data of nationwide EVs. The coverage of the platform can reach up to 80% in Beijing and 
Shanghai45. In recent years, Shenzhen, as a super-first-tier city in China, has also vigorously promoted new 
energy vehicles. By the end of 2020, the number of new energy vehicles in Shenzhen reached 480,000, account-
ing for about 14% of the city’s motor vehicle ownership46. Our data sample in this paper consisted of panel data 
for three super-tier-1 cities in China (Beijing, Shanghai and Shenzhen) from January 2019 to October 2020. In 
the empirical model analysis, we classified the BEVs data sample by city and month to obtain the total number 
of trips per vehicle per month as one observation. If a vehicle did not make a trip in a month, no observation 
was recorded for that month for that vehicle. In total, there were 1,826,095 observations for 196,387 vehicles 
in the three cities, including 1,288,697 trips for 132,644 vehicles in Beijing, 239,742 trips for 22,240 vehicles in 
Shanghai and 297,656 trips for 41,503 vehicles in Shenzhen. The detailed data are shown in Supplementary Data 
1. In addition to BEVs data, air quality data and meteorological data for each district and county in the three 
cities were obtained based on publicly available data in terms of year, quarter and month.

AQI, CO2, SO2, O3, PM2.5, PM10 and other data indicating air quality for the three cities were obtained from 
the real-time national urban air quality release platform of the China General Environmental Monitoring Sta-
tion at https://​air.​cnemc.​cn:​18007/; GDP per capita, share of secondary industry in GDP and urban population 
density are taken from the China Urban Statistical Yearbook for previous years; implementation of policies 
restricting the driving and purchase of conventional gasoline engines from the official websites of municipalities 
and public security bureaus, etc47. Average temperature, humidity, precipitation, sunshine hours, wind speed 
and other meteorological data for the three cities were taken from the National Climatic Data Centre (NCDC) 
at https://​ngdc.​noaa.​gov/.

Table 4.   Heterogeneity analysis: Ride-hailing BEVs. Note: The independent variable, BEVtrips, represents the 
natural logarithm of the monthly travel frequency of battery electric vehicles (BEVs). The unit-of-analysis is at 
the BEV-month level. Column (1) details the relationship between ride-hailing BEV monthly travel frequency 
and the Air Quality Index (AQI). Columns (2) through (7) explore the relationship between ride-hailing BEV 
monthly travel frequency with individual air pollutants: PM2.5, PM10, CO, SO2, NO2 and O3, respectively. 
All regressions account for both month and city fixed effects, and incorporate control variables to ensure 
robustness and accuracy in capturing the true impact of ride-hailing BEV travel frequency on air quality. 
Robust standard errors are shown in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01.

(1) (2) (3) (4) (5) (6) (7)

lnAQI lnPM2.5 lnPM10 lnCO lnSO2 lnNO2 lnO3

BEVtrips
− 0.0004 0.0003 0.0017*** 0.0008*** 0.0005** 0.0028*** − 0.0064***

(0.0003) (0.0004) (0.0003) (0.0002) (0.0002) (0.0002) (0.0004)

lngdp
3.6317*** 2.3301*** 4.7422*** − 0.3675*** 3.8677*** 1.4354*** 6.4401***

(0.0382) (0.0521) (0.0335) (0.0190) (0.0228) (0.0187) (0.0597)

Industry
9.1720*** 7.5611*** 13.3100*** − 2.3952*** 7.9436*** − 3.2861*** 16.2161***

(0.0908) (0.1179) (0.0938) (0.0399) (0.0577) (0.0484) (0.1104)

lnpopula
− 0.0749*** − 0.0476*** 0.3284*** 0.1646*** 0.3346*** − 0.0236*** 0.1474***

(0.0067) (0.0080) (0.0079) (0.0030) (0.0034) (0.0029) (0.0075)

Govern
0.2161*** 0.2212*** 0.2788*** − 0.0062*** 0.1586*** 0.0335*** 0.2611***

(0.0011) (0.0015) (0.0014) (0.0006) (0.0006) (0.0008) (0.0014)

lntemp
0.0285*** 0.0127*** 0.0751*** − 0.0880*** − 0.1256*** − 0.0358*** 0.1897***

(0.0005) (0.0006) (0.0004) (0.0002) (0.0003) (0.0003) (0.0007)

lnhumi
− 1.0294*** − 1.0735*** − 1.3501*** 0.1357*** − 0.9685*** 0.0937*** − 1.4838***

(0.0038) (0.0042) (0.0038) (0.0020) (0.0030) (0.0019) (0.0051)

lnprecip
− 0.0608*** − 0.0927*** − 0.0555*** − 0.0236*** − 0.0387*** − 0.0391*** − 0.0765***

(0.0004) (0.0005) (0.0004) (0.0002) (0.0004) (0.0003) (0.0006)

lnsun
− 0.3474*** − 0.4372*** − 0.2783*** − 0.0839*** − 0.1597*** − 0.0778*** − 0.1144***

(0.0010) (0.0014) (0.0012) (0.0012) (0.0025) (0.0008) (0.0019)

lnwind
− 0.7400*** − 1.0350*** − 0.7522*** − 0.4088*** − 0.0364*** − 0.3628*** − 1.4249***

(0.0034) (0.0039) (0.0031) (0.0017) (0.0025) (0.0016) (0.0063)

cons
− 23.2430*** − 10.9216*** − 36.6064*** 2.9428*** − 32.1257*** − 7.1975*** − 51.2195***

(0.3833) (0.5135) (0.3533) (0.1675) (0.1927) (0.1734) (0.5713)

Month Yes Yes Yes Yes Yes Yes Yes

City Yes Yes Yes Yes Yes Yes Yes

N 314,355 314,355 314,355 314,355 314,355 314,355 314,355

R2 0.8097 0.8285 0.8706 0.8210 0.8181 0.8765 0.7389

https://air.cnemc.cn:18007/
https://ngdc.noaa.gov/
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Factors leading to carbon emission in fuel vehicles
As the BEVs considered in this study were mainly sedans, the fuel for the corresponding car model of the gasoline 
vehicles was mainly petrol. Therefore, the carbon emission factor for gasoline vehicles driving was taken as the 
carbon emission factor for petrol. The carbon emission factors of fuel vehicles, Eco223,27 was calculated as follows:

where, Eco2 denotes CO2 emissions per litre of gasoline in kg CO2, CQg denote default gasoline net calorific value 
in KJ/kg. According to the General Rules for Calculating Comprehensive Energy Consumption (GBT2589-2020) 
issued by the State Administration of Market Administration of China and the State Standardization Administra-
tion, the net calorific value of gasoline is 43,124 kJ/kg48. CFco2 is the default value of the effective CO2 emission 
factor for petrol in KG/TJ. We referred to the IPCC guidelines for fuel carbon emission factors to obtain a default 
value of 74 100 kg/TJ for the effective CO2 emission factor of petrol49. Therefore, 3.1954884 kg CO2 is emitted 
per kilogram of gasoline. According to information from PacificCar.com, there are three gasoline brands in 
China, 90, 93 and 97, which have an average density of 0.720 g/mL, 0.725 g/mL and 0.737 g/mL, respectively50. 
We took the average of the densities of the three types of gasoline as the density of gasoline, i.e., 0.7273333 g/
mL. Therefore, each litre of gasoline emitted 2.3241852 kg CO2, i.e., the carbon emission factor of the gasoline 
vehicles was 2.3241852 kg CO2/L.

Models
Carbon emission model for the driving phase of BEVs
We developed a model for calculating the carbon emissions of BEVs during their driving phase based on real 
vehicle data from three cities: Beijing, Shanghai and Shenzhen. As BEVs do not produce carbon emissions dur-
ing driving, all references to BEVs carbon emissions in the text refer to the carbon emissions from electricity 
production corresponding to the energy consumed while driving. The model was primarily divided into two 
parts: carbon emissions from fuel vehicles and those from BEVs. The emission savings per kilometre of a BEVs 
were calculated by taking the difference between the emissions calculated in Eq. (2) with the corresponding 
gasoline vehicle emissions23, represented as:

where, ΔCE denotes emission savings per kilometre of a BEVs in kg CO2; Fco2 denotes carbon emission factors of 
fuel vehicles in kg CO2/L; Cf  denotes fuel consumption of fuel-powered vehicles in L/100 km; Eco2 denotes elec-
tric carbon emission factor in kg CO2/(kW·h) and Ce denotes actual grid energy consumption in kW·h/100 km.

Air quality model for the driving phase of BEVs
Based on the analysis (Supplementary information 1, 2 and 4), the air quality model of BEVs travel was con-
structed as follows:

The dependent variable ln AQIc,t represents the natural logarithm of the Air Quality Index (AQI) for city c in 
month t, which represents the level of air pollution in the city. Contaminants for AQI calculations and evaluation 
include sulfur dioxide (SO2), nitrogen dioxide (NO2), suction particulate matter (PM10), fine particulate matter 
(PM2.5), carbon monoxide (CO) and ozone (O3). To more comprehensively reflect the emission reduction effect 
of BEV trips replacing fuel vehicle trips, we also included CO, SO2, O3, PM2.5 and PM10 as dependent variables, 
and recorded their logarithmic values as lnCO, lnSO2, lnO3, lnPM2.5, and lnPM10.

The independent variable BEVtripsc,t is the log of BEV’s monthly trips. The more the fuel vehicles are driven, 
the more emissions they produce28. Assuming a constant total monthly travel demand, more BEVs trips per 
month meant fewer fuel vehicle trips per month and stronger air quality improvement. Controlc,t are control 
variables affecting air pollution, including GDP (lngpd), share of secondary industry in GDP (Industry), urban 
population density (lnpopula), a dummy variable Govern for whether policies restricting driving and purchasing 
of conventional gasoline engines are implemented, average temperature (lntemp), humidity (lnhumi), precipita-
tion (lnprecip), sunshine hours (lnsun), and wind speed (lnwind). The classical environmental Kuznets curve 
(EKC) theory postulates that the relationship between air pollution and economic growth is a significant inverted 
U-shaped curve51. In general, the higher the GDP per capita, the higher the vehicle stock and associated carbon 
emissions52,53. Therefore, GDP (lngpd) was included in the model. The secondary sector contributed the most 
to China’s energy consumption and emissions54; hence, the higher the proportion of the secondary sector, the 
more serious the air pollution. Therefore, the share of the secondary sector in the GDP (Industry) was used to 
control the impact of the secondary sector55. Urban population concentrations and activities can contribute to air 
pollution56, so we controlled for the possible effects of urban population concentrations using the urban popula-
tion density (lnpopula), which was the urban population divided by the area of the urban administrative district. 
Vehicle emissions are a significant source of urban air pollution, and the Chinese government has implemented 
policies to restrict the driving and purchasing of conventional gasoline engines57 hich restricted vehicle trips. We 
added a dummy variable (Govern) for whether the city implements these two restrictive policies. Air pollution is 
most likely related to natural climatic conditions, such as local dispersion and the deposition of pollutants. Hence, 
we used annual average temperature (lntemp), humidity (lnhumi), precipitation (lnprecip), sunshine duration 
(lnsun) and wind speed (lnwind) to control the effects of different natural climatic factors on air pollution. µc 
are city fixed effects. µt are city fixed effects. Robust standard errors εc,t are clustered at the city-month level.

(1)Eco2 = CQg × CFco2

(2)�CE = Fco2 × Cf − Eco2 × Ce

(3)ln AQIc,t = β*BEVtripsc,t + γControlc,t + µc + µt + εc,t
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Fuel consumption by fuel vehicles
The fuel mileage of gasoline vehicles is based on the weighted average of the sales volume and fuel mileage of 
gasoline vehicles sold each year, and the annual sales volume and fuel consumption information are obtained 
from the owner’s home website (www.​16888.​com). The price for getting on the website ranges from 30,000 yuan 
to 650,000 yuan, and fuel consumption spans from 6 L/100 km to 18 L/100 km, which is a good representation. 
The formula for calculating the 100 km fuel consumption for fuel vehicles is as follows:

where Cf  is the fuel consumption of a gasoline vehicle in L/100 km per 100 km, Qi is the annual sales of fuel 
vehicles in units, f denotes the model, i is the annual sales ranking and n takes the value according to different 
models. For convenience, this paper compares gasoline vehicle models and BEVs models as follows: according 
to the length, wheelbase and displacement of vehicles, BEVs models can be divided into A00-, A0-, A-, B-, C-, 
SUV- and MPV-type vehicles. Amongst them, gasoline vehicle models of micro car, small car, medium car and 
medium and large car correspond to A00-, A0-, A-, B- and C-type models of BEV, respectively; gasoline vehicle 
SUV models correspond to BEV’s SUV models; gasoline vehicle MPV models correspond to BEV MPV models 
and gasoline vehicle sedan models correspond to BEV’s A00-, A0-, A-, B- and C-type models.

BEV energy consumption
The 100 km energy consumption of BEVs was calculated based on the driving segment and charging segment 
data of the vehicle, and the actual grid energy consumption of each vehicle was obtained based on the changes 
in the driving range and battery power of BEVs, as shown in Eq. (5) 58:

where, Ce is the power consumption in kW·h/100 km over a period of time. We calculated the total power con-
sumption in travelling 100 km for each vehicle for one month; soci1 was the remaining power at the end of the ith 
charging segment; soci0 was the remaining power at the beginning of the ith charging segment; Pi is the battery 
capacity in kW·h corresponding to the ith charging segment and Sj is the mileage in km of the jth driving segment.

Electric carbon emission factors
We calculated the local carbon emission factor for electricity based on the regional energy mix, i.e. the carbon 
dioxide emissions generated per 1 kW·h of electricity output from the grid in each region. In this paper, we refer 
to the BEV energy conversion method and the reference value of the National Standard of the People’s Repub-
lic of China (GB/T 37340-2019) to calculate the carbon emission factor of electricity. The specific calculation 
method is shown in Eq. (6):

where Eco2 was the electricity CO2 emission factor in kg CO2/(kW h). TE was the standard coal consumption 
for thermal power supply in kg/(kW h), which was 0.3064 kg/(kW h) and 0.3055 kg/(kW h) in 2019 and 2020, 
respectively59. TC was the CO2 emission factor for fuel coal, using the parameter value of 3.09; ϕ was the thermal 
power ratio, i.e. the share of thermal power generation in total power generation, which is the main source of 
power generation in China. According to the China Energy Statistics Yearbook, China emits more than 90% of 
greenhouse gases from coal and thermal power, which is 10 times more than other technologies (hydropower, 
nuclear and wind)60. Because carbon emissions from power generation are mainly produced by thermal power 
generation, we assumed in this paper that other energy generation does not produce carbon emissions. According 
to the National Bureau of Statistics, the national electricity generation in 2019 and 2020 was 750,342,428 million 
kW h and 777,960 million kW h, respectively, while thermal power generation was 5,220,150 million kW/h and 
5,330,250 million kW h, making the share of thermal power generation in 2019 and 2020 69.57% and 71.04%, 
respectively61. tM was the discount factor between fuel coal and standard coal; the parameter value used was 
1.07. ich was the charge efficiency, i.e. the ratio of the electrical energy input to the power battery to the electri-
cal energy from the grid, based on the initial charge/discharge efficiency of BEVs batteries calculated by Yang 
et al.62, which is 98%. itr was line loss rate, which is the percentage of power supply, and the amount of power 
supply according to the data released by the National Energy Administration of China. The integrated line loss 
rates of the grid in 2019 and 2020 were 5.93% and 5.62%, respectively61. According to Eq. (4), the carbon emis-
sion factors for electricity in 2019 and 2020 were 0.6818506 kg/(kW h) and 0.6776147 kg/(kW h), respectively.

Data availability
The data supporting the findings of this study are under the custodianship of the corresponding author, Jin Liu. 
These data are subject to access restrictions as they were used under a specific license for this study and are not 
publicly available. However, access to the data can be granted upon reasonable request and with the express 
permission of Jin Liu.
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(4)Cf =

∑n
i=1

(

Qi × Cfi

)

∑n
i=1 Qi

(5)Ce = 100×

∑n
i=1 (soci1 − soci0)× Pi

∑m
i=1 Sj

(6)Eco2 =
TE × TC × ϕ

tM × ich × (1− itr)

http://www.16888.com
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