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Designing a novel fractional order 
mathematical model for COVID‑19 
incorporating lockdown measures
Waleed Adel 1,2*, Hatıra Günerhan 3,4, Kottakkaran Sooppy Nisar 5,6, Praveen Agarwal 7,8,9 & 
A. El‑Mesady 10

This research focuses on the design of a novel fractional model for simulating the ongoing spread 
of the coronavirus (COVID-19). The model is composed of multiple categories named susceptible 
S(t) , infected I(t) , treated T(t) , and recovered R(t) with the susceptible category further divided into 
two subcategories S

1
(t) and S

2
(t) . In light of the need for restrictive measures such as mandatory 

masks and social distancing to control the virus, the study of the dynamics and spread of the virus 
is an important topic. In addition, we investigate the positivity of the solution and its boundedness 
to ensure positive results. Furthermore, equilibrium points for the system are determined, and 
a stability analysis is conducted. Additionally, this study employs the analytical technique of the 
Laplace Adomian decomposition method (LADM) to simulate the different compartments of the 
model, taking into account various scenarios. The Laplace transform is used to convert the nonlinear 
resulting equations into an equivalent linear form, and the Adomian polynomials are utilized to treat 
the nonlinear terms. Solving this set of equations yields the solution for the state variables. To further 
assess the dynamics of the model, numerical simulations are conducted and compared with the results 
from LADM. Additionally, a comparison with real data from Italy is demonstrated, which shows a 
perfect agreement between the obtained data using the numerical and Laplace Adomian techniques. 
The graphical simulation is employed to investigate the effect of fractional-order terms, and an 
analysis of parameters is done to observe how quickly stabilization can be achieved with or without 
confinement rules. It is demonstrated that if no confinement rules are applied, it will take longer for 
stabilization after more people have been affected; however, if strict measures and a low contact rate 
are implemented, stabilization can be reached sooner.

Many diseases have had devastating consequences for human life over many years and decades. For example, 
Ebola is one of those deadly diseases that can be transmitted from infected animals, like fruit bats, to uninfected 
humans. For example, Hepatitis B is one of the viruses that has a deadly effect on infected individuals. It has 
an original form that has been transmitted over the years from Chimps to humans. This was not noticed with 
symptoms during the nineteenth century through its transmission. Five countries reported the spread of this 
disease, and more than 300,000 humans were infected with it. The role of mathematical modeling is crucial in 
simulating such a disease to better understand the dynamics of this disease, which suppresses the spread of 
such a virus. With the aid of mathematical modeling, researchers can suggest and assess several intervention 
techniques that may help slow down the virus. In addition, it plays an important role in estimating key epide-
miological parameters such as the basic reproduction number ( R0 ), which represents the average number of new 
infections caused by a single infected individual. Understanding R0 aids in predicting the potential for disease 
spread and designing effective control strategies. Additionally, mathematical modeling can be used to analyze 
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the impact of vaccination programs, antiviral treatment, and behavior change interventions on the prevalence of 
Hepatitis B. Researchers have been using these models to gain better insight into optimal strategies for preven-
tion, screening, and treatment, guiding public health policies and resource allocation. For example, Din et al.1,2 
proposed a fractional model based on the definition of Caputo and Atangana-Baleanu Caputo (ABC) deriva-
tives, respectively, to highlight the effect of vaccination and immunization on the population, slowing down the 
spread of Hepatitis B. In addition, another work by Liu et al.3 proposed another fractional model for simulating 
the Hepatitis B virus model with non-singular and non-local kernels. Moreover, Sabbar et al.4 investigated the 
solution of fractal–fractional differentiation and independent quadratic Lévy jumps on the dynamics of a general 
epidemiological model. Other examples of deadly diseases that have been simulated using mathematical models 
may include Lassa fever5,6, Influenza virus7,8, Monkeypox virus9–12, Zika virus13, Leptospirosis virus14 and Lassa 
disease15. All of these viruses have a life-threatening effect on human lives. Therefore, the need to create several 
medical operations and measures to stop these diseases and others like them from spreading, along with an 
effective cure, is a must.

By the end of 2019, the new Middle East respiratory syndrome (COVID-19) emerged in China, specifically 
from the seafood markets in Wuhan, and since then it has been spreading to all parts of the world. Both unde-
veloped and developing countries have been reporting new cases daily, leading to an alarming increase in infec-
tions. The total number of confirmed cases until now is more than 676 million individuals, with a total death rate 
of more than 6 million, according to the WHO16. The virus is identified spreading through small air sole parts 
ejaculated from the infected person while sneezing or coughing to another uninfected person, causing respira-
tory infection, and is considered highly infectious when the infected person coughs or sneezes17. The droplets 
are considered heavy and may land on surfaces near the infected person after coughing, causing the infection 
in some uninfected populations when touching the contaminated surface with their eye, mouth, or nose, which 
may cause them to catch the virus. The symptoms of the virus can range from mild to gradually worsening, with 
nearly every infected individual experiencing them. One out of every six patients may require hospital admission 
for respiratory difficulties, and elderly adults with underlying medical illnesses are particularly affected. To slow 
the spread of COVID-19, lockdowns, mandating masks in public places, and promoting social distancing are 
some of the effective methods that countries have taken to ensure a slow rate of infection. These measures have 
helped to some degree in containing the spread of the virus.

The signs of the infection COVID-19 may vary from person to person, but the most common are a fever of 
38 °C or higher, a dry cough, and muscle pain. Other less frequent symptoms may include a sore throat, among 
others. These symptoms usually start mild and become more severe over time. Most of the infected individuals 
experience symptoms that can be treated without special medications; however, some medications may be used 
to reduce the severity of the symptoms. In rare cases, approximately one in six people becomes severely ill and 
requires hospitalization due to difficulty breathing. To better understand the complexity of the virus and its effect 
on human health, several factors have to be taken into consideration. It should be noted that the true cause of the 
illness remains unknown, although there is a potential connection to wild animals, such as bats. The incubation 
period for the virus ranges from 2 to 14 days, depending on the health condition of the infected individual and 
the treatment he can get. The primary goal of any treatment is to boost the patient’s immune system to better 
fight off the infection. Until the body can fight off the infection, different types of medications have been used 
to treat the symptoms of the infection. This was the only solution until a new vaccine was distributed in 2022. 
Several vaccines have been developed, including Modena, Pfizer, and Johnson & Johnson. These vaccines have 
been helping to slow the spread of the virus, making it easier for mankind to get back to their normal lives. Until 
today, more than 13 billion doses of vaccines have been administered to the world population, helping a huge 
part of the world get back to a normal life. Still, the threat of the emergence of new variants of COVID-19 can 
be predicted using mathematical simulation, especially the fractional order models.

Fractional differential equations (FDEs) have been playing a major role in understating the dynamics of 
real-life phenomena. Not only in understanding the complex dynamics of biological systems, but it has also 
been used in other fields such as thermoelectricity. The use of FDEs has been increasing throughout the last few 
years, making them one of the most important tools to be used in simulations. There have been several defini-
tions of fractional operators, each of which has advantages and drawbacks. One of the most important and 
original definitions is the Caputo fractional derivative18. This was introduced by Michel Caputo in the 1960s as 
a way to generalize the classical derivative and provide a framework for modeling and analyzing phenomena 
that exhibit fractional-order dynamics. The Caputo fractional derivative possesses several advantages over other 
definitions. One key advantage is its ability to handle the initial conditions of any problem that involves a frac-
tional derivative. In addition, unlike other definitions, the Caputo fractional derivative allows for the inclusion 
of initial conditions involving integer-order derivatives. This makes it useful in modeling real-world processes 
that involve fractional-order dynamics and have initial conditions with integer-order derivatives. Moreover, it 
allows for the formulation of fractional differential equations that capture the memory and hereditary properties 
of systems, enabling a more accurat e representation of their dynamics. This is especially valuable in modeling 
systems with long-term memory effects or systems exhibiting anomalous diffusion and power-law behavior. 
Several researchers have been using this definition to understand the complex behavior and dynamics of the 
spread of the COVID-19 pandemic. For example, Khan and Atangana in Ref.19 first modeled a fractional model 
and described its dynamics. Alkahtani et al.20 proposed a numerical approach for solving a fractional-order 
model with the aid of Lagrange polynomials. The spreading of the virus in Indonesia has been investigated, and 
the stability analysis of the model has been examined. Moreover, Sabir et al.21 applied a heuristic computational 
technique for simulating the behavior of the SITR COVID-19 model with the aid of the morlet wavelet neural 
network. Okuonghae et al.22 employed a mathematical model for understanding the spreading behavior of 
COVID-19 with real-life data from Nigeria. To help in controlling the virus, Djaoue et al.23 proposed a model 
that takes into account the transmission and mitigation of control strategies with data from Cameroon. Other 
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models can be found in Ref.24–28 and references therein. These models, among others, participated in controlling 
the spread of the virus, which reached the world in a safer environment.

In this research, we are also exploring the potential of using the Laplace Adomian decomposition method 
(LADM) to solve the fractional COVID-19 model. This method is a powerful yet straightforward approach to 
tackling epidemic models and has been successfully applied in biology, engineering, and applied mathematics. 
It combines the Laplace transform and the Adomian decomposition method, offering several advantages for 
solving complex problems. One of the advantages of this method is its accuracy, as by employing the Laplace 
transform, it transforms the differential equations into algebraic equations, which are often easier to solve. This 
transformation reduces the complexity of the problem and enables the use of powerful algebraic techniques to 
obtain accurate solutions. Additionally, the Adomian decomposition method provides a systematic and robust 
approach to handling nonlinear terms, allowing for accurate approximation of the solution even in the presence 
of nonlinearity. This method does not require any perturbation or linearization, nor does it need a defined size 
of the step like the Rung-Kutta of order 4 technique. Additionally, it is independent of any parameters, unlike the 
Homotopy Perturbation Method (HPM), which depends on certain parameters. This has led to its use in solving 
various models, such as the HIV CD4 + T cell problem29, Volterra integrodifferential equations30, fractional-
order smoking model31, epidemic childhood disease model32, vector-borne disease model33, fractional partial 
differential equation34, RadhakrishnanKunduLakshmanan equation35, and other similar and related models.

We are interested in this paper to capture the dynamics of the fractional COVID-19 model, taking into 
account the effect of the lockdown that several countries have been taking to control the spread of the virus. 
To the best of our knowledge, this is the first time this model has been solved using the Caputo definition. The 
novelty of the paper lies in the following points:

1.	 A novel Caputo fractional COVID-19 has been propped to capture the dynamics of the model, incorporating 
lockdown measures.

2.	 The existence, uniqueness, and positivity of the new proposed fractional model are examined in detail, which 
proves that the presented model has a unique solution.

3.	 A detailed stability analysis for the model is presented to highlight the stability region and conditions for the 
model.

4.	 The results for simulating the different compartments of the model are obtained for different values of the 
fractional order, and real data from Italy is presented.

5.	 The results prove that the control measures represented in this case by lockdown have an effect on slowing 
down the spread of the virus and ending the pandemic.

The organization of the rest of the paper is as follows: The formulation of the model is detailed in Sect. “Model 
formulation” with the interaction of the different compartments. Section “Basic definitions” provides some 
basic definitions and fundamentals. Positivity, boundedness, existence, and uniqueness are discussed in detail 
in Sect. “Positivity, boundedness, existence, and uniqueness”. The stability analysis and the equilibrium points 
are illustrated in Sect. “Equilibrium points and stability analysis”. The proposed technique for solving the main 
model is highlighted in Sect. “Proposed technique”, along with a verification with real data. Section “Numerical 
Simulations” presents the numerical results of the work using different techniques, and the conclusion for the 
work is provided in Sect. “Conclusion”.

Model formulation
In this section, we will present the novel COVID-19 model, which is composed of four primary components: 
susceptible S , infected I , treated T , and recovered R . In addition, the susceptible category is divided into two 
more subcategories: S1(t) those that include uninfected individuals and S2(t) those that refer to those who are 
uninfected but have pre-existing health conditions or are elderly. The parameter I(t) is considered the infected 
person with the virus at the time t  and T(t) is part of the treatment of the virus where no treatment or vaccina-
tions are yet, but some measures can be taken to act against it. With these precautionary measures, the infected 
person who has recovered from this disease can take the parameter R(t) at a time t .

The general form of the fractional SITR model can take the following form36,

With the following conditions,

The order α defines the fractional order in the main model, which can take several values. The above model 
represents a fractional model of the SITR model with fractal parameters, and the state variable parameters are 
summarized in Table 1. In addition, Fig. 1 demonstrates the interaction between different compartments of the 
model.

In the next section, we will provide some basic definitions that will be needed later.

(1)



















Dα
∗ S1(t) = �− βS1(t)I(t)− ζ1S1(t)R(t)− γ S1(t)+ δ1I(t)+ δ2T(t)+ η1S2(t),

Dα
∗ S2(t) = ζ1S1(t)R(t)− γ S2(t)− η1S2(t),

Dα
∗ I(t) = βS1(t)I(t)− δ1I(t)− ξ1I(t)− γ I(t)− ζ2I(t)R(t)+ η2T(t),

Dα
∗T(t) = ζ2I(t)R(t)− γT(t)− η2T(t)− δ2T(t)− ξ2T(t),

Dα
∗R(t) = ϑI(t)− ψR(t),

(2)S1(0) = H1, S2(0) = H2, I(0) = H3,T(0) = H4,R(0) = H5.
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Basic definitions
In this section, some basic definitions will be presented.

Definition 3.1  Reference20 A real function f (x), x > 0 belongs to the space of Cµ,µǫR if there is a number P > µ 
under the condition that f (x) = xpf1(x) where f1(x) ∈ C[ 0,∞) and  Cµ < Cβ if µ < β.

Definition 3.2  Reference20 A function f (x), x > 0 belongs to the space Cm
µ , m ∈ N

⋃

{0} if f (m)∈ Cµ.

Definition 3.3  Reference37 The fractional integral operator of Riemann–Liouville with order α > 0 for 
f ∈ Cµ,µ ≥ −1 can be defined as follows,

In addition, the following properties hold, for f ∈ Cµ,µ ≥ −1,α,β ≥ 0, and γ > −1 we have,

(3)(Jαa f )(x) =
1

Ŵ(α)

∫ x

a
(x − τ)α−1f (τ )dτ , x > a,

(4)(J0a f )(x) = f (x).

Table 1.   State variable definitions for the SITR model.

Parameters Description

S1(t) Population of susceptible individuals that aren’t yet under lockdown

S2(t) Susceptible populations that are under lockdown

I(t) An infected population that isn’t under lockdown

T(t) Infective populations that are under lockdown

R(t) Recovered population after infection

� Recruitment rate

β Infection contact rate

δ1 The recovery rate for infected individuals

δ2 The recovery rate for treated individuals

ζ1 Imposing lockdown measures for susceptible individuals

ζ2 Imposing lockdown measures for infected individuals

ξ1 The death rate for infected individuals

ξ2 Death rate for treated individuals

γ Death rate of natural circumstances

η1 Transfer rate from susceptible individuals from lockdown to normal class

η2 Transfer rate from infected individuals from lockdown to normal class

ν Lockdown application rate

ψ Lockdown depletion rate

Figure 1.   Schematic diagram of the interaction of different compartments.
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The definition of the fractional order in terms of Riemann-Louville possesses certain advantages when simu-
lating real-world models. To this end, Caputo proposed a better version of Dα in his work on viscoelasticity38, 
which is summarized below.

Definition 3.4  Reference18 The Caputo fractional derivative of the function f (x) is in the form,

for m− 1 < α < m, m ∈ N, x > 0.

Lemma 3.1  If −1 < α < m , m ∈ N and µ ≥ −1 , then,

Definition 3.5  Reference30 Suppose G(s) is the Laplace transform of g(t). Then, the Laplace transform of the Caputo 
fractional derivative is defined as,

Definition 3.6   For t ∈ R,  the generalized Mittag–Leff ler  function Ep,q(t) i s  def ined by 
Ep,q(t) =

∑∞
m=0

t
Ŵ(pm+q) , p > 0, q > 0, and verifies the following property39:

Then, the Laplace transform of tq−1Ep,q
(

±�tp
)

 is defined by,

In the next section, we shall provide details on the positivity of the acquired solution along with its bounded-
ness for model (1).

Positivity, boundedness, existence, and uniqueness
Positivity and boundedness
In this section, we will provide a detailed study of the positivity and boundedness of the main model (1). We 
first follow the generalized mean values theorem in Ref.40, and we prove that the solution to model (1) is non-
negative and bounded for all time t ≥ t0 , where all the parameters and initial conditions have positive values. 
We need the following lemma.

Lemma 4.1.1  Suppose g(t) and  Ct0D
α
t g(t) belong to C

[

t0, tf
]

. Therefore, we get,

Corollary 4.1.1  Suppose g(t), Ct0D
α
t g(t) belong to C

[

t0, tf
]

 , and α ∈ (0, 1]. From Lemma 4.1.1 if,

	 (i)	 C
t0
Dα
t g(t) ≥ 0, ∀t ∈ (t0, tf ) then g(t) is non-decreasing ∀t ∈

[

t0, tf
]

.

	 (ii)	 C
t0
Dα
t g(t) ≤ 0, ∀t ∈ (t0, tf ) then g(t) is non-increasing ∀t ∈

[

t0, tf
]

.

We can now prove the following theorems.

(5)(Jαa J
β
a f )(x) = (Jα+β

a f )(x),

(6)(Jαa J
β
a f )(x) = (Jβa J

α
a f )(x)

(7)Jαa x
γ =

Ŵ(γ + 1)

Ŵ(α + γ + 1)
xα+γ .

(8)
(

D
α
a
f

)

(x) =

(

J
m− α

a
Dmf

)

(x) =
1

Ŵ(m− a)

x
∫

a

(x − t)m−α−1f
(m)

(t)dt

(9)
(

Jαa D
α
a f

)

(x) = f (x)−

m−1
∑

k=0

f k(a)

(

(x − a)k

k!

)

, a ≥ 0

(10)(Dα
a J

α
a f )(x) = f (x)

{C0D
α
t g(t)} = s−αG(s)−

m−1
∑

i=1

sα−i−1g (i)(0), (m− 1 < α ≤ m);m ∈ N.

(11)Ep,q(t) = tEp,p+q(t)+
1

Ŵ(q)
.

(12)
{

tq−1Ep,q
(

±�tp
)}

=
sp−q

sp ∓ �
.

g(t) = g(t0)+
1

Ŵ(α)

C
t0
Dα
ε g(ε).(t − t0)

α , t0 ≤ ε ≤ t, ∀t ∈
(

t0, tf
]

.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2926  | https://doi.org/10.1038/s41598-023-50889-5

www.nature.com/scientificreports/

Theorem 4.1.1  The region �+ = {(S1, S2, I ,T ,R); S1 > 0, S2 ≥ 0, I ≥ 0,T ≥ 0,R ≥ 0} is a positive invariant for 
model (1).

Proof  The first step is to prove that model (1) has a unique solution on the period (0,∞) , see Refs.41,42. From 
model (1), we have,

Hence the region �+ is a positive invariant based on Corollary 4.1.1, and the solution of model (1) will remain 
inside �+ . ∎

We then need the following theorem.

Theorem 4.1.2  The total population for the model (1) verifies 0 < N(t) ≤ �
γ
.

Proof  Summing the first four equations of the main mode leads to the following.

that can be rewritten as follows:

Taking Laplace to transform the defined form Eq. (12) for both sides of Eq. (15) we get,

Hence,

From (11) and (12) and if (S1(0), S2(0), I(0),T(0)) ∈ �, then,

Hence, we conclude that

From inequality (16) and Theorem 4.1.1, we deduce that 0 < N(t) ≤ �
γ
.∎

Existence and uniqueness
This subsection is devoted to proving the existence and boundedness of the solution of model (1). We start with 
the next theorem.

Theorem 4.2.1  There exists a unique solution for the model (1) for each non-negative initial condition.

Proof  Let the region ℧× (0,T] be defined in the form,

Also, let A(X) be a mapping where,

(13)























C
0D

α
t S1

�

�

S1=0
= �+ δ1I(t)+ δ2T(t)+ η1S2(t) > 0,

C
0D

α
t S2

�

�

S2=0
= ζ1S1(t)R(t) ≥ 0,

C
0D

α
t I
�

�

I=0
= η2T(t) ≥ 0,

C
0D

α
t T

�

�

T=0
= ζ2I(t)R(t) ≥ 0,

C
0D

α
t R

�

�

R=0
= ϑI(t) ≥ 0.

(14)C
0D

α
t N(t) = �− γ [S1(t)+ S2(t)+ I(t)+ T(t)] − ξ1I(t)− ξ2T(t),

(15)C
0D

α
t N(t) ≤ �− γN(t),

sαN(s)− sα−1N(0) ≤
�

s
− γN(s),

N(s) ≤
s−1

sα + γ
�+

sα−1

sα + γ
N(0).

N(t) ≤ �tαEα,α+1

(

−γ tα
)

+ Eα,1
(

−γ tα
)

N(0),

N(t) ≤ �tαEα,α+1

(

−γ tα
)

+ Eα,1
(

−γ tα
)

=
�

γ

[

γ tαEα,α+1

(

−γ tα
)

+ Eα,1
(

−γ tα
)]

=
�

γ

[

−

(

Eα,1
(

−γ tα
)

−
1

Ŵ(1)

)

+ Eα,1
(

−γ tα
)

]

,

(16)N(t) ≤
�

γ
.

℧ =
{

(S1, S2, I ,T ,R) ∈ R
5 : max(|S1|, |S2|, |I|, |T|, |R|) ≤ µ

}

.

A(Y) = (A1(Y),A2(Y),A3(Y),A4(Y),A5(Y));
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Next, for any Y ,Y ∈ ℧ , it follows from (17) that,

Then we have,

Thus, the Lipschitz condition is verified for A(Y). Consequently, model (1) possesses a unique and bounded 
solution. ∎

The following section will be devoted to determining the system’s equilibrium points and their stability 
behavior.

Equilibrium points and stability analysis
In this section, we acquire the equilibrium points for model (1) along with the initial conditions in (2). These 
points are found by equating the system (1) to zero. This shall result in different types of equilibrium points. The 
first is defined as the disease-free equilibrium point (DFE) which can take the form of E0 = (�

γ
, 0, 0, 0, 0). For 

the DFE, we can find the basic reproduction number R0 based on the next-generation matrix technique which 
can take the following form

where ρ is the spectral radius for AB−1 and A,B are defined as

and hence

Finally, R0 can be represented by

As can be seen from Eq. (19), the reproduction number R0 for the DFE depends on several parameters. 
The behavior of R0 while changing the values of these parameters are illustrated in Fig. 2, where a surface plot 
illustrates the behavior with different values of γ , δ1,β and ξ1.

The second point is the endemic point of EEP. In this case, we have multiple endemic points where the absence 

of lockdown and measures indicated by E1 =
(

γ+δ1+ξ1
β

, 0,
−γ+

βθ−γ δ1
γ+ξ1

β
, 0, 0

)

 and with the presence of the lock-

down indicated by E2 = (S∗1, S
∗
2 , I

∗,T∗,R∗ ), where each of the compartments is defined as,

and I∗ can be found by solving the following equation.

A1(Y) = �− βS1(t)I(t)− ζ1S1(t)R(t)− γ S1(t)+ δ1I(t)+ δ2T(t)+ η1S2(t),

A2(Y) = ζ1S1(t)R(t)− γ S2(t)− η1S2(t),

A3(Y) = βS1(t)I(t)− δ1I(t)− ξ1I(t)− γ I(t)− ζ2I(t)R(t)+ η2T(t),

A4(Y) = ζ2I(t)R(t)− γT(t)− η2T(t)− δ2T(t)− ξ2T(t),

(17)A5(Y) = ϑI(t)− ψR(t).

�A(Y)− A
(

Y
)

� =
∣

∣A1(Y)− A1

(

Y
)∣

∣+
∣

∣A2(Y)− A2

(

Y
)∣

∣+
∣

∣A3(Y)− A3

(

Y
)∣

∣

+
∣

∣A4(Y)− A4

(

Y
)∣

∣+
∣

∣A5(Y)− A5

(

Y
)∣

∣

≤ (2βµ+ 2ζ 1µ+ γ )
∣

∣S1 − S1

∣

∣+ (η1 + γ + η1)
∣

∣S2 − S2

∣

∣

+
(

2βµ+ 2δ1 + 2ζ 2µ+ ξ 1 + γ + ϑ
)∣

∣I − I
∣

∣+
(

2δ2 + 2η2 + γ + ξ2
)∣

∣T − T
∣

∣

+ (2ζ 1µ+ 2ζ2µ+ ψ)
∣

∣R − R
∣

∣ ≤ G�Y − Y�.

G = max{(2µ(β + ζ1)+ γ ), (η1 + γ + η1), (2(µ(β + ζ2)+ δ1)+ξ 1 + γ + ϑ), (2(δ2 + η2)+ γ + ξ2), (2µ(ζ 1 + ζ2)+ ψ)}.

(18)R0 = ρ
(

AB−1
)

,

A =

[

β�
γ

0

0 0

]

,B =

[

γ + δ1 + ξ1 −η2
0 γ + δ2 + η2 + ξ2

]

,

AB−1 =

[

β�
γ (γ+δ1+ξ1)

β�η2
γ (γ+δ1+ξ1)(γ+δ2+η2+ξ2)

0 0

]

(19)R0 =
β�

γ (γ + δ1 + ξ1)
.

(20)































S∗1 =
(γ+δ1+ξ1)+

ϑζ2(γ+δ2+ξ2)
ψ(γ+δ2+η2+ξ2)

I∗

β
,

S∗2 =
ϑζ1

�

(γ+δ1+ξ1)I
∗+

ϑζ2(γ+δ2+ξ2)
ψ(γ+δ2+η2+ξ2)

I∗2
�

βψ(γ+η1)

T∗ =
ϑζ2

ψ(γ+δ2+η2+ξ2)
I∗2,

R∗ = ϑ
ψ
I∗,

,
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The Jacobian matrix for model (1) can be obtained in the following form,

For the DFE, the Jacobian matrix at E0 is given by

This is after acquiring the eigenvalues of JE0 , it has the form of,

(βϑψζ2(γ + η1)(γ + ξ2)+ γϑ2ζ1ζ2(γ + δ2 + ξ2))I
∗2 + (γ ϑψδ1ζ1

+ γϑψδ2ζ2(γ + η1)+ γϑψζ2(γ + η1)(γ + ξ2)+ βγψ2(γ + η1)(γ + δ2 + η2 + ξ2)

+ βψ2(γ + η1)ξ1(γ + δ2 + η2 + ξ2)+ γϑψζ1(γ + ξ1)(γ + δ2 + η2 + ξ2))I
∗

+ (γ 2 − βθ)ψ2(γ + η1)(γ + δ2 + η2 + ξ2)+ γψ2δ1(γ + η1)(γ + δ2 + η2 + ξ2)

+ γψ2(γ + η1)ξ1(γ + δ2 + η2 + ξ2) = 0.

(21)J =











−βI − γ − ζ1R η1 −βS1 + δ1 δ2 −ζ1S1
ζ1R −γ − η1 0 0 ζ1S1
βI 0 βS1 − γ − δ1 − ζ2R − ξ1 η2 −ζ2I
0 0 ζ2R −γ − δ2 − η2 − ξ2 ζ2I
0 0 ϑ 0 −ψ











.

JE0 =















−γ η1 −
βθ
γ

+ δ1 δ2 −
θζ1
γ

0 −γ − η1 0 0
θζ1
γ

0 0 −γ +
βθ
γ

− δ1 − ξ1 η2 0

0 0 0 −γ − δ2 − η2 − ξ2 0

0 0 ϑ 0 −ψ















Figure 2.   Behaviour of reproduction number R0 with different variables.
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�1 = −γ , �2 = −ψ , �3 = −γ − η1, �4 = −γ +
βθ
γ

− δ1 − ξ1, �5 = −γ − δ2 − η2 − ξ2. As a result, it can be 

seen that this equilibrium point is stable if βθ
γ (γ+δ1+ξ1)

< 1 which corresponds to R0 < 1.
As for the EEP, the Jacobian matrix at E1 can be found in the form,

The eigenvalues are,

This equilibrium point is stable if βθ
γ (γ+δ1+ξ1)

< 1 . This means that R0 > 1 . Similarly, the endemic stability 
analysis during lockdown can be verified.

Next, we will simulate the results of each of the compartments model (1) through the LADM.

Proposed technique
Here, we will provide the main steps of applying the LADM for investigating the dynamics of model (1). We first 
need the following definitions.

Definition 6.1  Reference37 A function can be defined as an exponentially bounded of order σ ∈ R if it satisfies the 
condition that  � f (t) �≤ Meσ t , for some real constant M > 0.

Definition 6.2  References37–39 The Caputo fractional derivative can be defined in the form,

where m = σ + 1, and [α] is the integer part of the order σ. Then, we get the following

These definitions will be used to discuss the general procedure of the proposed technique for simulating the 
model (1). The first step is to apply the Laplace transform to Eq. (1) which will result

Then, the next step is to apply formula (22) to (24), we conclude,

The next step is to apply the initial conditions defined in Eq. (2), then we get,

It can be noticed from Eq. (26) that the resulting solution is in the form of an infinite series. Next, let the 
values of A = IS1,B = IR, and C = RS1 to apply the ADM technique. We assume the following form of solution.

JE1 =



















−βθ+γ δ1
γ+ξ1

η1 −γ − ξ1 δ2 −
ζ1(γ+δ1+ξ1)

β

0 −γ − η1 0 0
ζ1(γ+δ1+ξ1)

β

−γ +
βθ−γ δ1
γ+ξ1

0 0 η2 −
ζ2(−γ+

βθ−γ δ1
γ+ξ1

)

β

0 0 0 −γ − δ2 − η2 − ξ2
ζ2(−γ+

βθ−γ δ1
γ+ξ1

)

β

0 0 ϑ 0 −ψ









































−γ − η1,−γ − η2 − δ2 − ξ2,−
ψ

2
−

�

ψ2 − 4vζ2

�

−γ+
βθ−γ δ1
γ+ξ1
β

�

2
,−

ψ

2
+

�

ψ2 − 4vζ2

�

−γ+
βθ−γ δ1
γ+ξ1
β

�

2
,−β

�

βθ − γ (δ1 + ξ1 + γ )

β(ξ1 + γ )

�























,

(22)L {C0D
α
t f (t)} = sσ {f (t)} −

m
∑

k=0

sσ−k−1f (k)(0),

(23)L (tσ ) =
Ŵ(σ + 1)

s(σ+1)
, σ ∈ R+.

(24)























L
�

C
0D

α
t S1(t)

�

= L {�− βS1(t)I(t)− ζ1S1(t)R(t)− γ S1(t)+ δ1I(t)+ δ2T(t)+ η1S2(t)},
L

�

C
0D

α
t S2(t)

�

= L {ζ1S1(t)R(t)− γ S2(t)− η1S2(t)},

L
�

C
0D

α
t I(t)

�

= L {βS1(t)I(t)− δ1I(t)− ξ1I(t)− γ I(t)− ζ2I(t)R(t)+ η2T(t)},
L

�

C
0D

α
t T(t)

�

= L {ζ2I(t)R(t)− γT(t)− η2T(t)− δ2T(t)− ξ2T(t)},
L

�

C
0D

α
t R(t)

�

= L {ϑI(t)− ψR(t)}.

(25)























sαL (S1)− sα−1S1(0) =
�
s − βL (S1I)− ζ1L (S1R)− γL (S1)+ δ1L (I)+ δ2L (T)+ η1L (S2),

sαL (S2)− sα−1S2(0) = ζ1L (S1R)− γL (S2)− η1L (S2),
sαL (I)− sα−1I(0) = βL (S1I)− δ1L (I)− ξ1L (I)− γL (I)− ζ2L (IR)+ η2L (T),
sαL (T)− sα−1T(0) = ζ2L (IR)− γL (T)− η2L (T)− δ2L (T)− ξ2L (T),
sαL (R)− sα−1R(0) = ϑL (I)− ψL (R).

(26)



























L (S1) =
H1

s + �
sα+1 −

β
sα L (S1I)−

ζ1
sα L (S1R)−

γ
sα L (S1)+

δ1
sα L (I)+ δ2

sα L (T)+ η1
sα L (S

2
),

L (S2) =
H2

s +
ζ1
sα L (S1R)−

γ
sα L (S2)−

η1
sα L (S2),

L (I) = H3

s +
β
sα L (S1I)−

δ1
sα L (I)− ξ1

sα L (I)− γ
sα L (I)− ζ2

sα L (IR)+ η2
sα L (T),

L (T) = H4

s +
ζ2
sα L (IR)− γ

sα L (T)− η2
sα L (T)− δ2

sα L (T)− ξ2
sα L (T),

L (R) = H5

s + ϑ
sα L (I)− ψ

sα L (R).
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Next, we treat the nonlinear part of the main model as,

Hence, An,Bn, and Cn can be found with the aid of a convolution procedure as,

Substituting Eq. (27) and Eq. (28) into Eq. (26) and equaling both sides give the following:

Then, applying for Eq. (30) the inverse Laplace we reach,

Similarly, at the final step, we get the rest of the terms as infinite series as,

Equation (32) solves the main SITR model of Eq. (1) which will be illustrated in the next section.

Numerical simulations
In this section, we will demonstrate the simulations for model (1) using multiple approaches. First, in sub-
section “Laplace Adomian decomposition technique”, we will illustrate the results obtained by adapting the 
Laplace Adomian decomposition technique (LADM) for different values of the fractional order α . In addition, 
in Sect. “Numerical technique”, a numerical verification of the obtained results by the LAMD is presented by 
the known Adams–Bashforth-Moulton method (ABM). To further validate the obtained results from both tech-
niques, we compare these results from real data from Italy during the lockdown period at the beginning of 2020 
where it is witnessed that the obtained results are in good agreement with real data. This proves the effectiveness 
of the proposed model for simulating the dynamics of the virus.

(27)S1(t) =

∞
∑

n=0

S1,n(t), S2(t) =

∞
∑

n=0

S2,n(t),T(t) =

∞
∑

n=0

Tn(t), I(t) =

∞
∑

n=0

In(t),R(t) =

∞
∑

n=0

Rn(t).

(28)A =

∞
∑

n=0

An,B =

∞
∑

n=0

Bn,C =

∞
∑

n=0

Cn,

(29)



















An = 1
Ŵ(n+1)

�

d
dε

�n�
�n

i=0 ε
iI i

�n
i=0 ε

iS1,i
�

ε=0
,

Bn = 1
Ŵ(n+1)

�

d
dε

�n�
�n

i=0 ε
iI i

�n
i=0 ε

iRi

�

ε=0
,

Cn = 1
Ŵ(n+1)

�

d
dε

�n�
�n

i=0 ε
iRi

�n
i=0 ε

iS1,i
�

ε=0
.

L
(

S1,0
)

=
H1

s
,L

(

S2,0
)

=
H2

s
,L (I0) =

H3

s
,L (T0) =

H4

s
,L (R0) =

H5

s



























L
�

S1,1
�

= �
sα+1 −

β
sα L (A0)−

ζ1
sα L (C0)−

γ
sα L

�

S1,0
�

+ δ1
sα L (I0)+

δ2
sα L (T0)+

η1
sα L

�

S2,0
�

,

L
�

S2,1
�

=
ζ1
sα L (C0)−

γ
sα L

�

S2,0
�

−
η1
sα L

�

S2,0
�

,

L (I1) =
β
sα L (A0)−

δ1
sα L (I0)−

ξ1
sα L (I0)−

γ
sα L (I0)−

ζ2
sα L (B0)+

η2
sα L (T0),

L (T1) =
ζ2
sα L (B0)−

γ
sα L (T0)−

η2
sα L (T0)−

δ2
sα L (T0)−

ξ2
sα L (T0),

L (R1) =
ϑ
sα L (I0)−

ψ
sα L (R0).

.

.

.

(30)



























L
�

S1,n
�

= −
β
sα L (An−1)−

ζ1
sα L (Cn−1)−

γ
sα L

�

S1,n−1

�

+ δ1
sα L (In−1)+

δ2
sα L (Tn−1)+

η1
sα L

�

S2,n−1

�

,

L
�

S2,n
�

=
ζ1
sα L (Cn−1)−

γ
sα L

�

S2,n−1

�

−
η1
sα L

�

S2,n−1

�

,

L (In) =
β
sα L (An−1)−

δ1
sα L (In−1)−

ξ1
sα L (In−1)−

γ
sα L (In−1)−

ζ2
sα L (Bn−1)+

η2
sα L (Tn−1),

L (Tn) =
ζ2
sα L (Bn−1)−

γ
sα L (Tn−1)−

η2
sα L (Tn−1)−

δ2
sα L (Tn−1)−

ξ2
sα L (Tn−1),

L (Rn) =
ϑ
sα L (In−1)−

ψ
sα L (Rn−1).

S1,0(t) = H1, S2,0(t) = H2, I0(t) = H3,T0(t) = H4,R0(t) = H5

(31)































S1,1(t) = [�− βA0 − ζ1C0 − γH1 + δ1H3 + δ2H4 + η1H2]
tα

Ŵ(α+1)
,

S2,1(t) = [ζ1C0 − γH2 − η1H2]
tα

Ŵ(α+1)
,

I1(t) = [βA0 − δ1H3 − ξ1H3 − γH3 − ζ2B0 + η2H4]
tα

Ŵ(α+1)
,

T1(t) = [ζ2B0 − γH4 − η2H4 − δ2H4 − ξ2H4]
tα

Ŵ(α+1)
,

R1(t) = [ϑH3 − ψH5]
tα

Ŵ(α+1)
.

(32)
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



























S1(t) =
�∞

n=0 S1,n(t) = H1 + [�− βA0 − ζ1C0 − γH1 + δ1H3 + δ2H4 + η1H2]
tα

Ŵ(α+1)
+ · · · ,

S2(t) =
�∞

n=0 S2,n(t) = H2 + [ζ1C0 − γH2 − η1H2]
tα

Ŵ(α+1)
+ · · · ,

T(t) =
�∞

n=0 Tn(t) = H3 + [βA0 − δ1H3 − ξ1H3 − γH3 − ζ2B0 + η2H4]
tα

Ŵ(α+1)
+ · · · ,

I(t) =
�∞

n=0 In(t) = H4 + [ζ2B0 − γH4 − η2H4 − δ2H4 − ξ2H4]
tα

Ŵ(α+1)
+ · · · ,

R(t) =
�∞

n=0 Rn(t) = H5 + [ϑH3 − ψH5]
tα

Ŵ(α+1)
+ · · · .
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Laplace Adomian decomposition technique
In this section, we test the effectiveness of the proposed technique by examining the acquired results for model 
(1) for different α . The values of the parameters that have been used for simulating model (1) are summarized 
in Table 236. The results obtained by ALDM match the exact solutions when α = 1 . Figure 3 provides a compari-
son of the results acquired by the LADM and the MATLAB code ODE45 for the different model categories. It 
is evident from this figure that the proposed technique is efficient and accurate, as it perfectly agrees with the 
MATLAB code results. The results of the addition of the fractional term can be seen in Fig. 4, where compart-
ments are drawn for varying values of α = 1, 0.9, 0.8, 0.7 . It is evident that the effect of the fractional order is 
visible as S1 , I and T compartments decrease gradually while other categories increase at that rate. Furthermore, 
it can be observed that all categories become more stable for fewer values of α when changing its value, which 
demonstrates the success of the proposed problem in modeling the COVID-19 pandemic. The charts indicate 
that an LADM method is an effective tool to better simulate and understand epidemic models with fractional 
order problems; this is especially noticeable when looking at how they behave at t = 20 and beyond.

Numerical technique
In this section, we shall determine the numerical results of model (1) by making use of an effective numerical 
technique. We employ the Adams–Bashforth-Moulton method, also known as the ABM method, to perform 
numerical simulations and obtain solutions for the proposed nonlinear fractional order model. The ABM method 
offers several notable advantages. First and foremost, it enhances the convergence rate of the simulations. One key 
advantage of the ABM method is its ability to bypass the need for linearization, discretization, and the imposition 
of physically unrealistic assumptions. By avoiding these limitations, the method provides a more accurate repre-
sentation of the proposed system. The ABM method is generally stable for a broad class of fractional differential 
equations (FDEs). Stability is a crucial property in numerical methods since it ensures that the solutions remain 
bounded and do not exhibit unphysical behavior or divergence. Its efficacy has been demonstrated in solving a 
wide range of nonlinear FDEs, further emphasizing the suitability of fractional order differential equations for 
modeling the dynamics of the proposed model realistically. First, we review the fundamentals of the proposed 
numerical method that has been used to numerically simulate fractional IVPs with Caputo derivatives. The 
following formulas give a complete presentation of the fractional ABM approach (The same as S1 , all additional 
states can be discovered).

Suppose that the domain of the solution is [0, T] and, n = 0, 1, 2, . . . ,N , where h = T/N  , tn = nh . If we 
assume that C0Dα

t S1(t) = φ1(t, S1(t), S2(t), I(t),T(t),R(t)), then,

where

S1(tn+1) =

⌈α⌉−1
∑

i=0

S
(i)
1,0

tin+1

i!
+

hα

Ŵ(α + 2)
φ1(tn+1, S

p
1(tn+1))+

hα

Ŵ(α + 2)

n
∑

j=0

�j,n+1φ1(tj , S1(tj)),

S
p
1(tn+1) =

⌈α⌉−1
∑

i=0

S
(i)
1,0

tin+1

i!
+

1

Ŵ(α)

n
∑

k=0

�k,n+1φ1(tk , S1(tk)),

Table 2.   Values of the main parameters in Eq. (1).

Parameters Values

H1 900

H2 300

H3 300

H4 497

H5 200

� 400

β 0.000017

δ1 0.16979

δ2 0.16979

ζ1 0.0002

ζ2 0.002

ξ1 0.03275

ξ2 0.03275

γ 0.0096

η1 0.2

η2 0.02

ν 0.0005

ψ 0.06
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And �j,n+1 =
hα

α
((n+ 1− j)α − (n− j)α).

The authors in Refs.29,30 provide details and a complete analysis of the proposed technique. The convergence 
order of the used fractional Adams–Bashforth-Moulton method is p = min(2, 1+ α) , and hence the error is 
O(hp) , see Refs.43 for more details. We present the obtained results by the predictor–corrector (PECE) of ABM 
method for the proposed model. Figure 5 shows the results for simulating the SITR model at α = 0.8, 0.9, 1 . The 
results are similar to the results obtained by the LADM. Figures 6,7, 8, and 9 depict different phase portraits for 
the SITR model at α = 0.7, 0.8, 0.9, 1 . Additionally, Fig. 10 displays space plots of different populations of various 
values of the fractional order α . It can be seen from these figures that the obtained results are the same found by 
the LADM method which proves the effectiveness of both methods for simulating such a model.

Validation using real data
In this subsection, we will validate the obtained results from the LADM and numerical techniques by comparing 
them to real data. We will verify the obtained results with the obtained results from Italy. During the begin-
ning of 2020, especially from March until May 2020, Italy declared the first lockdown for several facilities in 
the country as a proper reaction to slow done the spread of COVID-19. The number of infected (confirmed) 

�j,n+1 =











nα+1 − (n− α)(n+ 1)α , if j = 0,

(n− j + 2)α+1 + (n− j)α+1 − 2(n− j + 1)α+1, if 1 ≤ j ≤ n,

1 if j = n+ 1,

Figure 3.   The solution of the copartments (a) S1(t) , (b) S2(t) , (c) T(t) , (d) I(t) , and (e) R(t) obtained by ODE 
45 (REd), LADM (Green) for α = 1, and0 < t < 200.
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cases per million, number of hospitalized (treated) cases, and number of deaths are shown in Fig. 11. The results 
reported in Fig. 11 have been collected form World in Data website44. In addition, we have run the simulations 
using the AMB method described in subsection “Numerical technique” over a shorter interval for 0 ≤ x ≤ 300 . 
Based on the results of these figures, it can be noticed that during the first lockdown in Italy, after March 2020, 
the number of infected, hospitalized, and death cases dropped significantly reaching a stabilized behavior until 
Augst 2020. This is because governments have taken proactive actions such as lockdown, mandate masking and 
apply social distancing which helps to reduce the spread of the virus. According to Fig. 11, we can notice that a 

Figure 4.   The solution of the copartments (a) S1(t) , (b) S2(t) , (c) T(t) , (d) I(t) , and (e) R(t) obtained by LADM 
for different values of α.
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Figure 5.   Solution profiles of the different compartments for α = 1, 0.9, 0.8 using the PECE method of ABM.
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good agreement between the obtained results from the simulation and the real data from Italy is witnessed. For 
example, Fig. 11a demonstrates the number of infected cases in Italy until August 2020, where it seems that the 
number of infected cases increased and then began declining as of March 2020 and this can be also seen from 
Fig. 11b. The adaptation of the fractional order term is noticed in Fig. 11b where changing the value of α from 1 
to 0.9 has a great effect on stabilizing the number of infected cases which gives the simulations a better physical 
understating of the dynamics of the spread of the virus. In addition, the actual number of hospitalized cases in 
Italy has been graphed in Fig. 11c and compared with the simulated data in (d). The obtained results have a good 
fit with the real data and reduced the number of hospitalized cases during the lockdown. Finally, the number of 
deaths in this period is provided in Fig. 11e where the number drops dramatically during the lockdown phase. 
All of these figures prove that the results from the proposed model fit the real data obtained for Italy.

Conclusion
This study presents a Caputo fractional SITR model to highlight some new dynamics of the coronavirus COVID-
19. The model is composed of four categories: susceptible S(t) , infected I(t) , treatment T(t) , and recovered R(t) 
at time t  . Additionally, the susceptible population is further divided into S1(t) and S2(t) which indicates the 
susceptible populations that are not under lockdown measurements or lockdown, respectively. To ensure the 
consistency of the presented model and to obtain the system’s equilibrium points, we investigate the bounded-
ness and positivity of the solution. Furthermore, stability analysis is conducted to measure the effect of different 
values of the parameters. To solve the COVID-19 model, we employ an effective analytical approach known as 
the Laplace Adomian decomposition method (LADM), which yields accurate results for this problem. To verify 
the theoretical findings, an efficient LADM technique is employed for multiple of the fractional order α . Confine-
ment rules are necessary for managing this pandemic promptly. We can see that is the time of contact between 
the human populations, all types of compartments become more stable much faster. Therefore, it is clear that 
wearing mandatory masks and adhering to social distancing are essential for reducing the spread of this pandemic 

Figure 6.   Relation between susceptible S1 and different comaprtements for α = 0.7, 0.8, 0.9, and α = 1.
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Figure 7.   Relation between susceptible S2 and different comaprtements for α = 0.7, 0.8, 0.9, and α = 1.

Figure 8.   Relation between infected state I and other different compartments for α = 0.7, 0.8, 0.9, and α = 1.
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and gaining control over it. To further verify the obtained results, a comparison with real data from Italy was 
shown during the lockdown. This shows a perfect agreement between the real results and the obtained results of 
the effect of control measures and lockdown in slowing down the spread of the virus. Thus, we are interested in 
further exploring this model more thoroughly with more categories taken into account using a similar effective 
analytic method and comparing it with real data from other countries.

Figure 9.   Relation between T and R for α = 0.7, 0.8, 0.9, and α = 1.
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Figure 10.   3D plots of the compartment’s populations versus time and fractional order α with the 
corresponding contour plots.
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Figure 10.   (continued)
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Figure 11.   Number of infectd cases from (a) real data form Italy44, (b) form simulation, hospitalized cases from 
(c) real data from Italy44, (d) form simulation and (e) death cases during the lockdown44.



21

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2926  | https://doi.org/10.1038/s41598-023-50889-5

www.nature.com/scientificreports/

Data availability
All data generated or analyzed during this study are included.

Received: 8 May 2023; Accepted: 27 December 2023

References
	 1.	 Din, A., Li, Y., Khan, F. M., Khan, Z. U. & Liu, P. On Analysis of fractional order mathematical model of Hepatitis B using Atangana-

Baleanu Caputo (ABC) derivative. Fractals 30(01), 2240017 (2022).
	 2.	 Din, A., Li, Y., Yusuf, A. & Ali, A. I. Caputo type fractional operator applied to Hepatitis B system. Fractals 30(01), 2240023 (2022).
	 3.	 Liu, P., Din, A. & Zarin, R. Numerical dynamics and fractional modeling of hepatitis B virus model with non-singular and non-

local kernels. Results Phys. 39, 105757 (2022).
	 4.	 Sabbar, Y., Din, A. & Kiouach, D. Influence of fractal–fractional differentiation and independent quadratic Lévy jumps on the 

dynamics of a general epidemic model with vaccination strategy. Chaos Solitons Fractals 171, 113434 (2023).
	 5.	 Madueme, P.-G. & Chirove, F. Understanding the transmission pathways of Lassa fever: A mathematical modeling approach. Infect. 

Dis. Model. 8(1), 27–57 (2023).
	 6.	 Rashid, S., Karim, S., Akgül, A., Bariq, A. & Elagan, S. K. Novel insights for a nonlinear deterministic-stochastic class of fractional-

order Lassa fever model with varying kernels. Sci. Rep. 13(1), 15320 (2023).
	 7.	 Sabir, Z., Said, S. B. & Al-Mdallal, Q. A fractional order numerical study for the influenza disease mathematical model. Alex. Eng. 

J. 65, 615–626 (2023).
	 8.	 Ebenezer, V., Sachin, R., Hiruthic, S. S., Sam Sergius, S. and Shivnesh, R. SDNS: Artificial Neural network scheme to solve the 

nonlinear skin disease model. In 2023 Second International Conference on Electronics and Renewable Systems (ICEARS), 931-935 
(IEEE, 2023).

	 9.	 El-Mesady, A., Adel, W., Elsadany, A. A. & Elsonbaty, A. Stability analysis and optimal control strategies of a fractional-order 
monkeypox virus infection model. Phys. Scr. 98(9), 095256 (2023).

Figure 11.   (continued)



22

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2926  | https://doi.org/10.1038/s41598-023-50889-5

www.nature.com/scientificreports/

	10.	 Waleed, A., Elsonbaty, A., Aldurayhim, A. & El-Mesady, A. Investigating the dynamics of a novel fractional-order monkeypox 
epidemic model with optimal control. Alex. Eng. J. 73, 519–542 (2023).

	11.	 Peter, O. J., Abidemi, A., Ojo, M. M. & Ayoola, T. A. Mathematical model and analysis of monkeypox with control strategies. Eur. 
Phys. J. Plus 138(3), 242 (2023).

	12.	 Elsonbaty, A., Adel, W., Aldurayhim, A. & El-Mesady, A. Mathematical modeling and analysis of a novel monkeypox virus spread 
integrating imperfect vaccination and nonlinear incidence rates. Ain Shams Eng. J. 15, 102451 (2023).

	13.	 Sabir, Z., Bhat, S. A., Raja, M. A. Z. & Alhazmi, S. E. A swarming neural network computing approach to solve the Zika virus 
model. Eng. Appl. Artif. Intell. 126, 106924 (2023).

	14.	 Sabir, Z., Ali, M. R., Raja, M. A. Z. & Sadat, R. An efficient computational procedure to solve the biological nonlinear Leptospirosis 
model using the genetic algorithms. Soft Comput. https://​doi.​org/​10.​1007/​s00500-​023-​08315-5 (2023).

	15.	 Higazy, M., El-Mesady, A., Mahdy, A. M. S., Ullah, S. & Al-Ghamdi, A. Numerical, approximate solutions, and optimal control on 
the deathly lassa hemorrhagic fever disease in pregnant women. J. Funct. Spaces 2021, 1–15 (2021).

	16.	 https://​covid​19.​who.​int/.
	17.	 Alrabaiah, H., Arfan, M., Shah, K., Mahariq, I. & Ullah, A. A comparative study of spreading of novel corona virus disease by 

ussing fractional order modified SEIR model. Alex. Eng. J. 60(1), 573–585 (2021).
	18.	 Li, C., Qian, D. & Chen, Y. Q. On Riemann-Liouville and caputo derivatives. Discret. Dyn. Nat. Soc. 2011, 1–15 (2011).
	19.	 Khan, M. A. & Atangana, A. Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative. Alex. Eng. J. 

59(4), 2379–2389 (2020).
	20.	 Alkahtani, B. S. T. & Alzaid, S. S. A novel mathematics model of covid-19 with fractional derivative stability and numerical analysis. 

Chaos Solitons Fractals 138, 110006 (2020).
	21.	 Sabir, Z. et al. Numerical computational heuristic through morlet wavelet neural network for solving the dynamics of nonlinear 

SITR COVID-19. Cmes-Comput. Model. Eng. Sci. 131, 763–785 (2022).
	22.	 Okuonghae, D. & Omame, A. Analysis of a mathematical model for COVID-19 population dynamics in Lagos, Nigeria. Chaos 

Solitons Fractals 139, 110032 (2020).
	23.	 Djaoue, S., Kolaye, G. G., Abboubakar, H., Ari, A. A. A. & Damakoa, I. Mathematical modeling, analysis and numerical simula-

tion of the COVID-19 transmission with mitigation of control strategies used in Cameroon. Chaos Solitons Fractals 139, 110281 
(2020).

	24.	 Annas, S., Pratama, M. I., Rifandi, M., Sanusi, W. & Side, S. Stability analysis and numerical simulation of SEIR model for pandemic 
COVID-19 spread in Indonesia. Chaos Solitons Fractals 139, 110072 (2020).

	25.	 Naveed, M. et al. Mathematical analysis of novel coronavirus (2019-ncov) delay pandemic model. Comput. Mater. Continua 64(3), 
1401–1414 (2020).

	26.	 Ghasemi, S. E. & Gouran, S. Evaluation of COVID-19 pandemic spreading using computational analysis on nonlinear SITR model. 
Math. Methods Appl. Sci. 45(17), 11104–11116 (2022).

	27.	 Sanchez, Y. G., Sabir, Z. & Guirao, J. L. G. Design of a nonlinear SITR fractal model based on the dynamics of a novel coronavirus 
(COVID). Fractals https://​doi.​org/​10.​1142/​S0218​348X2​04002​65 (2020).

	28.	 Yang, C. & Wang, J. A mathematical model for the novel coronavirus epidemic in Wuhan, China. Math. Biosci. Eng. 17(3), 
2708–2724 (2020).

	29.	 Ongun, M. Y. The Laplace adomian decomposition method for solving a model for HIV infection of CD4+ T cells. Math. Comput. 
Model. 53(5–6), 597–603 (2011).

	30.	 Wazwaz, A.-M. The combined Laplace transform–Adomian decomposition method for handling nonlinear Volterra integro–dif-
ferential equations. Appl. Math. Comput. 216(4), 1304–1309 (2010).

	31.	 Haq, F., Shah, K., Rahman, G. & Shahzad, M. Numerical solution of fractional order smoking model via Laplace Adomian decom-
position method. Alex. Eng. J. 57(2), 1061–1069 (2018).

	32.	 Baleanu, D., Aydogn, S. M., Mohammadi, H. & Rezapour, S. On modelling of epidemic childhood diseases with the Caputo-Fabrizio 
derivative by using the Laplace Adomian decomposition method. Alex. Eng. J. 59(5), 3029–3039 (2020).

	33.	 Veeresha, P., Malagi, N. S., Prakasha, D. G. & Baskonus, H. M. An efficient technique to analyze the fractional model of vector-
borne diseases. Phys. Scr. 97(5), 054004 (2022).

	34.	 Shah, R., Khan, H., Arif, M. & Kumam, P. Application of Laplace-Adomian decomposition method for the analytical solution of 
third-order dispersive fractional partial differential equations. Entropy 21(4), 335 (2019).

	35.	 Gonzalez-Gaxiola, O. & Biswas, A. Optical solitons with Radhakrishnan–Kundu–Lakshmanan equation by Laplace-Adomian 
decomposition method. Optik 179, 434–442 (2019).

	36.	 Baba, I. A., Yusuf, A., Nisar, K. S., Abdel-Aty, A.-H. & Nofal, T. A. Mathematical model to assess the imposition of lockdown during 
COVID-19 pandemic. Results Phys. 20, 103716 (2021).

	37.	 Sefidgar, E., Celik, E. & Shiri, B. Numerical solution of fractional differential equation in a model of HIV infection of CD4 (+) T 
cells. Int. J. Appl. Math. Stat. 56, 23–32 (2017).

	38.	 Caputo, M. Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. Int. 13(5), 529–539 (1967).
	39.	 Kai, D. The analysis of fractional differential equations: An application-oriented exposition using operators of Caputo type (2004).
	40.	 Odibat, Z. M. & Shawagfeh, N. T. Generalized Taylor’s formula. Appl. Math. Comput. 186(1), 286–293 (2007).
	41.	 Lin, W. Global existence theory and chaos control of fractional differential equations. J. Math. Anal. Appl. 332(1), 709–726 (2007).
	42.	 Antosiewicz, H. A. Studies in Ordinary Differential Equations Vol. 14 (Mathematical Assn of Amer, 1977).
	43.	 Diethelm, K., Ford, N. J. & Freed, A. D. Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004).
	44.	 https://​ourwo​rldin​data.​org/​explo​rers/​coron​avirus-​data-​explo​rer.

Acknowledgements
This study is supported via funding from Prince Sattam bin Abdulaziz University project number 
(PSAU/2023/R/1444). In addition, authors would like to convey their thanks to the Editor and Reviewers for 
the helpful comments and suggestions which improved the work.

Author contributions
All authors contributed equally and signicantly in writing this paper. All authors read and approved the final 
manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to W.A.

https://doi.org/10.1007/s00500-023-08315-5
https://covid19.who.int/
https://doi.org/10.1142/S0218348X20400265
https://ourworldindata.org/explorers/coronavirus-data-explorer


23

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2926  | https://doi.org/10.1038/s41598-023-50889-5

www.nature.com/scientificreports/

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Designing a novel fractional order mathematical model for COVID-19 incorporating lockdown measures
	Model formulation
	Basic definitions
	Positivity, boundedness, existence, and uniqueness
	Positivity and boundedness
	Existence and uniqueness

	Equilibrium points and stability analysis
	Proposed technique
	Numerical simulations
	Laplace Adomian decomposition technique
	Numerical technique
	Validation using real data

	Conclusion
	References
	Acknowledgements


