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Quantification of diffusion restriction lesions in sporadic Creutzfeldt-Jakob disease (sCJD) may
provide information of the disease burden. We aim to develop an automatic segmentation model

for sCJD and to evaluate the volume of disease extent as a prognostic marker for overall survival.
Fifty-six patients (mean age+SD, 61.2 +9.9 years) were included from February 2000 to July 2020.

A threshold-based segmentation was used to obtain abnormal signal intensity masks. Segmented
volumes were compared with the visual grade. The Dice similarity coefficient was calculated to
measure the similarity between the automatic vs. manual segmentation. Cox proportional hazards
regression analysis was performed to evaluate the volume of disease extent as a prognostic marker.
The automatic segmentation showed good correlation with the visual grading. The cortical lesion
volumes significantly increased as the visual grade aggravated (extensive: 112.9 +73.2; moderate:
45.4 +30.4; minimal involvement: 29.6 + 18.1 mm?3) (P <0.001). The deep gray matter lesion volumes
were significantly higher for positive than for negative involvement of the deep gray matter (5.6 + 4.6
mm3vs. 1.0£1.3 mm?3, P<0.001). The mean Dice similarity coefficients were 0.90 and 0.94 for cortical
and deep gray matter lesions, respectively. However, the volume of disease extent was not associated
with worse overall survival (cortical extent: P=0.07; deep gray matter extent: P=0.12).

Abbreviations

sCJD  Sporadic Creutzfeldt-Jakob disease
DWI Diffusion-weighted imaging

DSC  Dice similarity coefficient

Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare neurodegenerative disease that has a dismal prognosis’. sCJD
presents characteristic imaging features on diffusion-weighted imaging (DWI), in which diffusion restriction
lesions are distributed along the cortical gyrus, basal ganglia, thalamus, and less frequently, the cerebellum?®’.
Despite the typical imaging patterns, the lesions are usually visible in only high b-value DWI and diffusion
restriction lesions are not infrequently subtle. Thus, general radiologists who are unaware of sCJD at initial
diagnosis might frequently miss the positive imaging findings**. Indeed, a recent study demonstrated that 70%
sensitivity of MRI for sCJD diagnosis at initial reports from referring centers while 99% sensitivity was achieved
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in retrospective reading®. Therefore, automatic detection and segmentation model for diffusion restriction lesions
in sCJD may aid clinicians for accurate diagnosis and reduce a number of missed cases.

Accurate segmentation of diffusion restriction lesions might also aid in estimating the disease severity and
predicting prognosis. It is known that the extent of diffusion restriction lesions generally increases with the
progression of sCJD”8. However, the role of the disease extent on DWT as an imaging prognostic marker has
not yet been fully answered and controversy remains regarding the issue. The previous study including 55 sCJD
has demonstrated a significant shorter disease duration in patients with more than 3 cortical regions involve-
ment than in patients with less than 3 cortical regions involvement’. On the other hand, a more recent study
including 60 sCJD has reported that the extent of cortical lesions was not associated with poor overall survival'’.
However, all of these studies had a limitation because quantification of the cortical diffusion restriction lesions
was not performed. Volumetry of the diffusion restriction lesions would have more accurately reflected the true
disease extent.

Although, manual segmentation is considered as a gold standard for segmenting a lesion in brain MRI,
manual segmentation of DWI is very time-consuming and laborious work due to the extreme morphological
complexity of diffusion restriction lesions in sCJD. Threshold-based segmentation is the traditional, statistical
method applied to segmentation'!. It is one of the simplest methods of image segmentation, which discriminates
pixels according to their grayscale level'. It performs well when there is a high contrast between the abnormal
lesion and a normal background'® As a result, a threshold-based segmentation has been implemented in several
studies for segmenting diffusion restriction lesions in acute ischemic stroke'®. However, to our knowledge, this
method has not previously been applied for segmenting diffusion restriction lesions in sCJD.

Therefore, the purpose of our study was to develop a threshold-based segmentation model for evaluating
diffusion restriction lesions in sCJD. In addition, we aimed to evaluate whether the quantified volume of the
lesion is an independent prognostic factor for overall survival.

Materials and methods

This retrospective study was approved by the institutional review board of Asan Medical Center. The need for
informed consent was waived by the Ethics committee of Asan Medical Center. All methods were performed in
accordance with the relevant guidelines and regulations.

Patients

Patients diagnosed with sCJD at our institution based on the European MRI-CJD consortium criteria were con-
secutively enrolled between February 2000 and July 2020'. The patient cohort is part of a previously published
patient population'®. The previous study focused on searching for clinco-radiologic markers predicting poor
overall survival of sCJD, while the current study more specifically focused on quantifying the lesion volume and
its role as a prognostic marker. A brief summary of the eligibility criteria of the original cohort were as follows:
(1) patients who underwent DWTI for the work-up of sCJD; (2) patients without serious comorbid diseases;
(3) patients without concurrent brain pathology other than sCJD; and (4) good imaging quality. Patients were
excluded if DWI did not cover whole brain (e.g., DWI without basal brain coverage). To develop a segmentation
model, 197 control subjects with absence of DWI signal abnormality were randomly selected from the patients
who visited the memory clinic of our institution during November 2019 and April 2021. The clinical diagnoses
of these 197 controls and their demographics are described in the Supplemental Table e-1.

Imaging protocol

Due to the retrospective nature of the study with 20 years of long recruitment period, heterogenous MR protocols
(Protocol #1, #2, and #3) were used for the diagnosis of the patients. MRI was performed in three different pro-
tocols using a 3.0 T system (Ingenia; Philips Medical Systems, Best, The Netherlands) or a 1.5 T system (Avanto;
Siemens Healthineers, Erlangen, Germany). The detailed parameters for the sequences are summarized in the
Supplemental Materials S1 and Supplemental Tables e-2-e-4. The identical imaging protocols (protocol #1 and
2) were used for control subjects.

MR image pre-processing
We performed the following pre-processing steps to obtain a volume mask for abnormally increased signal
intensity in the DWT of sCJD patients (Fig. 1).

1. Volume registration.

Before the affine transformation, the brain extraction of DWI was performed using the Brain Extraction Tool
of the FMRIB’s Software Library software (FSL) to improve the performance of the registration'®. After the brain
extraction, the DWI was registered to the DWT template space using the FMRIB’s Linear Image Registration Tool
(FLIRT) of the FSL'¢. The DWI (b=1000 s/mm?) template was constructed in the Montreal Neurological Institute
(MNI) standard brain template space using the mean DWI from the 197 control subjects (Supplemental Fig. e-1).

2. Inverse transformation of the segmentation masks to the DWI space.

To define the segmentation mask of the gray matter, deep gray matter, and white matter in the MNI space,
the mean gray matter and white matter segmented masks and the HarvardOxford-sub-maxprob-thr25-2 mm
segmentation mask were used to make the deep gray matter mask, including the caudate nucleus, putamen, and
thalamus (Supplemental Fig. e-1). These segmentation masks were inverse transformed to the subject DWI space
using the inverse functions of FLIRT obtained from step 1.
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Figure 1. Automatic segmentation of diffusion restriction lesions (DRL) in the supratentorial brain area of
the diffusion-weighted image (DWI, b=1000). (a) Affine transformation to the DWI (b=1000) template (see
Supplemental Fig. e-1). (b) Inverse transformation of the regional masks (gray matter (GM), Deep GM, and
white matter (WM)) to the original DWI space. (c) Voxel intensities of the DWT were normalized using the
mean signal intensity of the inversely transformed WM mask area. (d) Diffusion restriction lesion masks were
automatically segmented using the thresholding method (see the “Materials and methods” section) in both GM
and deep GM regions.

Automatic threshold-based segmentation of the diffusion restriction lesion volume mask
To segment the volume mask, which exhibited an abnormally increased signal intensity (SI) in the supratentorial
brain area based on the voxel thresholds of DWI, the following steps were performed:

1. Normalization step of DWI was performed as previously described with the addition of some
modifications'’. Briefly, the SI of each voxel in DWI was normalized by dividing of mean SI of white matter area
(Fig. 1). This method normalizes the DWI by dividing j1was corresponding to the mean intensity of the white
matter mask, from each voxel intensity SI(x):

SI(x)
HWM

SI(x) =

The mean intensity value was calculated using the Analysis of Functional NeuroImages software package
(AFNI, 3dROIstats, and 3dcalc)®.

2. To find the threshold value, the probability density function histograms of gray matter and deep gray
matter area were calculated in the normalized DWTI of control subjects (n=197). The range of 99% confidence
intervals (CIs) were calculated using the Gaussian curve fitted values of probability density function (PDF)
in the gray matter and deep gray matter area of control subjects. For the mean PDF calculation, we used each
subject’s PDF histogram (Fig. 2b). We used each upper value of the 99% CI of the control as the thresholds of
abnormally increased SI (Fig. 2). The threshold values of gray matter and deep gray matter were 1.5367 and
1.3524, respectively.

3. To measure the volume in the abnormal SI mask sets in the gray matter and deep gray matter areas, the
FSLUTILS program (fslstats) of FSL was used.

Additionally, the same method was applied for segmentation of diffusion restriction lesions using ADC map.
The lower value of the 99% CI of the ADC values in control subjects was set as the threshold (Supplemental Fig.
e-2). The segmented regions using ADC values were visually compared with those using high b-value (b=1000s/
mm?) images.

Manual segmentation of the volume mask
The manual segmentation of the diffusion restriction lesions was performed using ITK-SNAP software by two
radiologists (H.Y.P. and C.H.S.)". In case of discrepancies, two reviewers reached consensus through discussion.
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Figure 2. Thresholds selection for the auto-segmentation. (a) DWI and overlaid mask image in a 59-year-old
control subject. (b) Probability density function (PDF) histogram of gray matter (GM) or deep GM area were
calculated in the normalized DWI (nDWTI) of control subjects (n=197). (¢,d) The DRA thresholds (7hr) for GM
and deep GM were set as the upper value of 99% CI range in the fitted PDF curves.

The process for manual segmentation is provided in the Supplemental Materials S1. In addition, visual estimation
of the extent of cortical involvement on DWI was performed based on a previous study’: minimal involvement
(0-2 lobes), moderate involvement (3-5 lobes), and extensive involvement (6-8 lobes).

Statistical analysis

The primary goal of this study was to develop the automatic segmentation model. To this end, the following
approaches were used. First, volumes of the segmented lesions were compared between sCJD patients and control
subjects to see if a significant volume difference was present. Second, segmented volumes were compared with
the visual grading to demonstrate a correlation between the two measures. Third, the Dice similarity coefficient
(DSC) was calculated to evaluate the similarity between the two segmentation methods (automatic vs. manual).
The DSC was compared between different MR protocols and magnet strengths to evaluate the effect of MR
parameters on the performance of automatic segmentation. Since the data distribution did not satisfy normality,
Kruskal-Wallis test and Mann-Whitney U test were performed for the comparisons. Additionally, Receiver-
operating characteristic (ROC) curves and the area under the curve (AUC) were used to evaluate the discrimi-
native power of our model in detecting sCJD. The optimal cut-off values of cortical and deep gray matter lesion
volumes were respectively derived using Youden’s index?’. The segmented volume was divided by intracranial
volume (ICV) of each patient to compensate the variability in brain sizes. The sensitivity and specificity at the
optical cut-off value were calculated. The secondary goal was to evaluate the prognostic effect of disease extent on
overall survival. Overall survival was defined as the time interval between the date of the initial DWI and the date
of death. Patients were censored at the last follow-up date. Hazard ratios (HRs) for the volumes of cortical or deep
gray matter lesions were calculated based on univariable and multivariable Cox proportional hazards regression
models. For the survival analysis, manually segmented volumes of cortex or deep gray matter lesions were used.
The segmented volumes were adjusted by ICV. The other variables were chosen based on our previously published
prognostic model, which were the patients’ age, diffusion restriction in the caudate nucleus or putamen, and the
visual grading of cortical diffusion restriction lesions (moderate to severe involvement)'®. Additionally, the time
interval between symptom onset and brain imaging was included as a variable. P-values <0.05 were considered
to be statistically significant and Bonferroni adjusted P-values were used for multiple comparisons. Statistical
analyses were performed using the SPSS software version 13.0 (SPSS, Chicago, IL, USA).

Results

Patient demographics

Figure 3 describes the study selection process. From the 72 patients with CJD based on our database, 16 patients
were excluded: 4 patients were not diagnosed with sCJD, 4 patients lacked DWT data or had poor imaging quality
on their DWI scans, 4 patients had DWI without full coverage of the whole brain, and 4 patients had comorbid
diseases. Finally, 56 patients were included in our analysis. The patient demographics are summarized in Table 1.
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Figure 3. Flow diagram of patient inclusion.
Parameter Probable sCJD (n=56)
Mean age (years) 61.2+£9.9*
Sex
Male 26 (46%)
Female 30 (54%)
Protein 14-3-3
Negative 9 (16%)
Positive 28 (50%)
NA 19 (34%)
PRNP polymorphism
Negative 23 (41%)
Positive 15 (27%)
NA 18 (32%)
Cortex involvement on DWI
Negative 1(2%)
Positive 55 (98%)
Deep gray matter involvement on DWI
Negative 24 (43%)
Positive 32 (57%)
Involved location (cortex)
Frontal lobe 49 (88%)
Parietal lobe 50 (89%)
Temporal lobe 43 (77%)
Occipital lobe 35 (63%)
Number of involved lobes
0-2 (minimal involvement) 8 (14%)
3-5 (moderate involvement) 21 (38%)
6-8 (extensive involvement) 27 (48%)

Involved location (deep gray matter)

Caudate nucleus 11 (42%)
Putamen 8 (31%)
Thalamus 3 (12%)

Table 1. Patient demographics and DWI findings. Unless otherwise specified, data are the number of patients.
sCJD sporadic Creutzfeldt-Jakob disease, PRNP human prion protein, DWI diffusion-weighted imaging, NA
not available. *Mean age + standard deviation.
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The time intervals from the initial clinical manifestation to imaging were available in 54 patients (96%, 54/56),
which ranged from 0.2 to 25.5 months (median 1.8 months).

Validation of the automatic threshold-based segmentation model
The automatically segmented volumes of diffusion restriction lesions using high b-value images (b=1000 s/mm?)
differed significantly between sCJD patients and control subjects (Fig. 4). On the other hand, ADC maps did not
reveal significant difference in the segmented volumes between the two groups (supplemental Fig. e-2). Moreo-
ver, the segmented areas based on ADC values were different from the areas obtained from DWI (Supplemental
Fig. e-3). Thus, segmented volumes based on high b-value DWI was used for the rest of the validation process.
The volumes of cortical diffusion restriction ranged from 10.9 to 248.7 mm?® with a mean value of 75.7 £ 65.2
mm?®. The volume percentage of cortical lesions divided by each patient’s ICV ranged from 1.0 to 24.1% (mean
6.8£6.0%). There was a significant trend that the segmented volumes increased as the visual grade aggravated
(minimal involvement: 29.6 + 18.1 mm?; moderate involvement: 45.4 + 30.4 mm?; extensive involvement: mean
112.9+73.2 mm?) (P<0.001) (Fig. 5a). The volumes of deep gray matter lesions ranged from 0 to 17.9 mm?
with a mean value of 3.6 £4.3 mm®. When compared to the visual estimation, the segmented volumes were
significantly higher for positive than for negative deep gray matter involvement (5.6 +4.6 mm?vs. 1.0+ 1.3 mm’,
P<0.001) (Fig. 5b). ROC analyses of the model performance was shown in the supplemental Fig. e-4. The AUC
for segmented cortical lesion volumes and deep gray mater lesion volumes were 0.92 (95% CI 0.88-0.95) and
0.87 (95% CI 0.80-0.93). The optimal cut-off value for cortical lesion volumes/ICV were 2.17, with sensitivity
and specificity of 82% and 85%. The optimal-cut-oft value for deep gray matter lesion volumes/ICV were 0.04,
with sensitivity and specificity of 75% and 90%.
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Figure 4. Comparison of the semi-automatic segmented diffusion restriction lesions (DRL) volumes between
the control and sCJD subjects. The estimated diffusion restriction lesions volume of sCJD is significantly larger
than the control in the gray matter (GM) (a) and deep GM (b) (***P<0.0001). No significant difference (NS)

in the supratentorial brain volumes was found between the groups (c). The proportions of diffusion restriction
lesions volumes divided by the supratentorial brain volumes were significantly different between the groups in

the GM (d) and deep GM (e) (****P<0.0001).
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Figure 5. Box plots demonstrating the distribution of segmented volumes according to the visual estimation
of (a) cortical lesions (minimal to extensive involvement) and (b) deep gray matter lesions (negative vs. positive
involvement). Blue dots indicate mean values. *** indicates P-value <0.001.

DSC between automatic vs. manual segmentation were calculated for all patients. The mean DSC were 0.90
(range: 0.06-1.00) for cortical lesions and 0.94 (range: 0.42-1.00) for deep gray matter lesions. The major dif-
ferences between the two methods were mainly observed in the basal brain, especially in the bilateral inferior
temporal lobes (Fig. 6). Table 2 shows a significant difference in the DSC for cortical lesions between the MR
protocols (protocol #1: 0.98 +0.02; protocol #2: 0.86 £ 0.26; protocol #3: 0.90 £ 0.16, P=0.008). However, no sig-
nificant difference was observed for deep gray matter lesions. The DSC for cortical and deep gray matter lesions
were both similar between 1.5 and 3.0 T MRI (Supplemental Table e-5).

Survival and prognostic factors

Among the 56 patients, 48 patients died but 8 patients survived to the study endpoint. The median overall
survival was 12.9 months (range: 0.2-116.5 months; mean + SD: 20.0 + 24.0 months). Table 3 summarizes the
factors affecting overall survival based on the univariable and multivariable Cox proportional hazard regression
model. The ICV adjusted volumes of the cortical and deep gray matter lesions were included as both quantitative
variables and categorical variables [three subgroups, (cortical lesions: 0-5%, 5-10%, and > 10%; deep gray mat-
ter lesions: 0-0.25%, 0.25-0.5%, and > 0.5%)]. Among the 8 clinico-radiologic features, age [HR: 1.07 (95% CI
1.03-1.11); P<0.001] and diffusion restriction to the putamen [HR: 4.68 (95% CI 2.11-10.37); P<0.001] were
independent risk factors for poor overall survival. Neither the volumes of the cortical (P=0.07) nor deep gray
matter lesions (P=0.12) were associated with poor overall survival.

Discussion

In this study, we presented a technical method for automatically segmenting diffusion restriction lesions in
sCJD patients. The threshold-based segmentation using probability density function histograms demonstrated
an excellent agreement with the manual segmentation, as shown by the mean DSC of 0.90 and 0.94 for cortical
and deep gray matter lesions, respectively. The volumes of the diffusion restriction lesions were not associated
with poor overall survival.

Despite the wide use of image segmentation, studies presenting automatic segmentation methods on DWI
are sparse except for a few studies with infarct core calculations?'**. This may due to low spatial resolution and
proneness to susceptibility artefacts in DWI, which makes DWI difficult for image segmentation®**°. In this
study, the low spatial resolution issue was overcome by registration of high resolution T1-weighted images to
DWI for developing a DWI template. Segmentation masks of gray matter, deep gray matter, and white matter
were created on DWI template. Then, each subject’s DWI in the disease group was registered to the DWI tem-
plate. The signal intensity of DWI was normalized by dividing of mean SI of white matter area to solve the issue
of varying signal intensities across different MR machines®'. In addition, two radiologists visually analyzed the
various thresholds in segmenting diffusion restriction lesions and reached a consensus in setting the optimal
cut-off value (upper value of 99% CI range).

In this study, the automatic segmentation model demonstrated an excellent agreement with the manual
segmentation. Our finding indicates that the threshold-based approach could accurately segment the diffusion
restriction lesions in patients with sCJD. However, subgroup analysis demonstrated that the DSC for cortical
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Figure 6. Comparison between automatic versus manual segmentation. (a,d) 56 years-old male patient

with extensive involvement of cortical diffusion restriction lesions at bilateral hemispheres. (b,e) Automatic
segmentation model regarded susceptibility artefacts as true lesions at bilateral temporal lobes near petrous apex
and frontal lobes near frontal sinus (arrows). (c,f) These artefacts were excluded in manual segmentation. Note,
excellent agreement between automatic segmentation and manual segmentation in the rest of the lesions.

Dice similarity coefficient

Range, 0.60-1.00

Range, 0.42-1.00

Range, 0.64-1.00

Protocol #1 (n=14) Protocol #2 (n=26) Protocol #3 (n=16) P-values Post-hoc analysis
Mean, 0.98 +0.02 Mean, 0.86+0.26 Mean, 0.90+0.16 Protocol #1 > protocol #2 (P-values*: 0.02)
Gray matter 0.008
Range, 0.93-1.00 Range, 0.06-1.00 Range, 0.48-1.00 Protocol #1 > protocol #3 (P-values*: 0.02)
Mean, 0.94+0.11 Mean, 0.92+0.18 Mean, 0.96 +£0.09
Deep gray matter 0.15 -

Table 2. Comparison of dice similarity coefficient among MR protocols. *Bonferroni adjusted P-values.

lesions were significantly higher in MR protocol #1 when compared to MR protocol #2 or #3. We think that this
difference is partly due to the difference in DWI acquisition sequence. Protocol #1 used 2D turbo spin echo,
while protocol #2 and #3 used 2D single-shot echo planar imaging for DWI. Echo planar imaging is more prone
to susceptibility artifact and geographic distortion?®, and susceptibility artifact may result in erroneous high SI
at the brain regions near skull base?”. Since the threshold-based approach only focused on SI for segmentation,
false-positive results may occur in these regions, causing slight overestimation of the lesion volumes at the basal
brain. Indeed, most of the differences between the automatic vs. manual segmentation method arose from the
artefacts in the basal brain. Additionally, there were two outlier patients that showed poor agreement between
the two methods (DSC: 0.06 and 0.19). The automatic segmentation model did not include true lesions at right
frontal lobe in one patient and lesions at left parietal lobe in the other patient (Supplemental Fig. e-5). In our
model, the threshold was set at the upper value of 99% CI range of SI to prevent including the false positive
lesions. However, our conservative approach in setting the threshold may increase the false negative lesions in
a few patients, as observed in the outlier cases. Removing the outliers, the DSC for cortical lesions ranged from
0.43 to 1.00 with the mean value of 0.93. No remarkable discrepancy was observed between the two methods in
segmenting deep gray matter lesions.
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Univariable Multivariable

Parameter hazard ratio (95% CI) | Pvalue | hazard ratio (95% CI) | P value
Age (years) 1.05 (1.01, 1.08) 0.004 1.07 (1.03, 1.11) <0.001
Sex
Women Reference
Men 0.92 (0.51, 1.66) 0.80
Time intervals between symptom onset and imaging | 0.98 (0.02, 1.05) 0.55
Volume of cortical lesion/ICV (%) 0.97 (0.92, 1.01) 0.17 0.95 (0.89, 1.00) 0.07
Volume of cortical lesion/ICV (%)
0-5 Reference 0.43
5-10 1.02 (0.50, 2.08) 0.97
>10 0.62 (0.29, 1.32) 0.22
Number of involved lobes
0-2 (minimal involvement) Reference Reference
3-5 (moderate involvement) 3.06 (1.03,9.12) 0.04 2.12 (0.66, 6.84) 0.21
6-8 (extensive involvement) 1.92 (0.67, 5.55) 0.23 2.30(0.72, 7.33) 0.16
Deep gray matter involvement
Caudate

Negative Reference

Positive 1.62 (0.90, 2.93) 0.11
Putamen

Negative Reference Reference

Positive 1.87 (1.04, 3.36) 0.04 4.68 (2.11, 10.37) <0.001
Thalamus

Negative Reference

Positive 0.94 (0.44, 2.03) 0.88
Volume of deep gray matter lesion/ICV (%) 1.10 (0.57, 2.12) 0.79 0.52 (0.23,1.17) 0.12
Volume of deep gray matter lesion/ICV (%)
0-0.25 Reference 0.80
0.25-0.5 1.26 (0.54, 2.97) 0.59
>0.5 1.19 (0.63, 2.24) 0.60

Table 3. Univariable and multivariable Cox proportional hazard regression analysis of factors affecting overall
survival. Data in parentheses are 95% confidence intervals.

When compared to the visual grade, the segmented cortical volumes significantly increased as the visual
grade aggravated. Regarding the deep gray matter lesions, the segmented volumes were significantly higher
in the positive group for visual grade than in the negative group. The correlation observed between the visual
grade and the segmented volumes indirectly reflects the high accuracy of our model. Nonetheless, there was
an overlap in the volume distribution between the visual grade groups. Visual grading was performed merely
based on the number of involved cortical lobes. Therefore, there might be large discrepancies between visual
grade vs. automatic segmentation in patients where multiple small diffusion restriction lesions were scattered
throughout the whole brain. Indeed, three patients with extensive involvement on visual grade showed markedly
lower segmented volumes (range: 19.0-36.9 mm?) compared to the mean value of all of the patients (75.7 mm®).

In a previous study, the extent of cortical lesions on DWI was not associated with overall survival in sCJD'.
However, this result had a limitation because quantification of the cortical lesions was not performed. In the cur-
rent study, we showed that the quantified volume of the cortical lesions was not a significant prognostic factor in
sCJD. The reason why the prognosis of sCJD is not associated with the disease extent in the cortex or deep gray
matter is difficult to answer, since the extent of the disease generally increases with the progression of sCJD”*-%,
Additional studies with larger sample sizes are required to validate our results.

Our study has several limitations. First, only a small number of patients were included and the survival time
data was unevenly distributed. Therefore, the results of the survival analysis should be interpreted with cau-
tion because the regression coefficients may be biased®'. In addition, external validation of our model was not
performed. Nevertheless, this is the first study to develop the feasibility of a threshold-based segmentation in
automatically segmenting the complex lesions on DWT in sCJD. Second, the included patients showed varying
intervals from symptom onset to imaging work-up. In the course of sCJD, the extent of diffusion restriction
lesion is usually changed. Indeed, there was a weak positive correlation between the time intervals and the extent
of the cortical lesions (Spearman’s rho: 0.36, P=0.006) (Supplemental Fig. e-6). This might have influenced the
disease manifestation on DWI. However, our analysis demonstrated that the time interval from symptom onset
to brain imaging did not significantly affect the survival. Moreover, most of the patients (84%, 47/56) showed
the time intervals below 6 months and the time intervals for only four patients were over 12 months (range,

Scientific Reports |

(2024) 14:4215 | https://doi.org/10.1038/s41598-024-51927-6 nature portfolio



www.nature.com/scientificreports/

19.3-25.5 months). The reasons for delayed diagnosis in these patients were due to the lack of DWT in the initial
MR or due to nonspecific symptoms. Third, we did not use a deep learning model for current task. Although deep
neural networks are currently promising methods for segmentation tasks including ischemic volume calculation
in stroke, such approaches have not been implemented in sCJD. This may be due to the scarcity of imaging data
in rare disease, and the difficulty in labeling a ground truth resulting from the anatomical complexity of diffusion
restriction lesion in sCJD***. Future study is warranted to demonstrate whether a deep learning-based segmen-
tation model developed from any disease showing diffusion restriction could be applied well in sCJD. Fourth,
lesions with T2 shine through could have been included in the segmentation. This might have overestimated
the segmented volumes in our study. However, T2 shine through had little effect on the results because patients
with concurrent brain pathology other than sCJD were excluded from our study. Fifth, manual segmentation
was performed using the threshold-based results as a template. This might have introduced some degree of bias
and the DSC might have been overestimated between the two segmentation methods. To minimize the bias, two
radiologists independently performed manual segmentation and made a consensus. Finally, a histopathologic
correlation was not performed. Since there is no ground truth reference standard, the interpretation of subtle
abnormalities on DWI can be controversial. In our study, two experienced radiologists came to a consensus for
these ambiguous lesions.

In conclusion, a threshold-based segmentation using probability density function histograms may be a feasible
option for automatically segmenting diffusion restriction lesions on DWI for patients with sCJD. Larger studies
are necessary to validate our results.

Data availability
The datasets generated and analyzed from the current study are available from the corresponding author on
reasonable request.
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