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Towards knowledge‑infused 
automated disease diagnosis 
assistant
Mohit Tomar 1,2, Abhisek Tiwari 1,2 & Sriparna Saha 1*

With the advancement of internet communication and telemedicine, people are increasingly 
turning to the web for various healthcare activities. With an ever-increasing number of diseases and 
symptoms, diagnosing patients becomes challenging. In this work, we build a diagnosis assistant 
to assist doctors, which identifies diseases based on patient–doctor interaction. During diagnosis, 
doctors utilize both symptomatology knowledge and diagnostic experience to identify diseases 
accurately and efficiently. Inspired by this, we investigate the role of medical knowledge in disease 
diagnosis through doctor–patient interaction. We propose a two-channel, knowledge-infused, 
discourse-aware disease diagnosis model (KI-DDI), where the first channel encodes patient–doctor 
communication using a transformer-based encoder, while the other creates an embedding of 
symptom-disease using a graph attention network (GAT). In the next stage, the conversation and 
knowledge graph embeddings are infused together and fed to a deep neural network for disease 
identification. Furthermore, we first develop an empathetic conversational medical corpus comprising 
conversations between patients and doctors, annotated with intent and symptoms information. The 
proposed model demonstrates a significant improvement over the existing state-of-the-art models, 
establishing the crucial roles of (a) a doctor’s effort for additional symptom extraction (in addition to 
patient self-report) and (b) infusing medical knowledge in identifying diseases effectively. Many times, 
patients also show their medical conditions, which acts as crucial evidence in diagnosis. Therefore, 
integrating visual sensory information would represent an effective avenue for enhancing the 
capabilities of diagnostic assistants.

The development of the Internet was primarily aimed at providing global access to information. In the last few 
years, the Internet has become one of the most popular and reliable platforms for accessing healthcare-related 
information. A survey by Cohen et al.1 found that more than 65% of US adults use the Internet for performing 
several healthcare-related activities. Over the past 5 years, numerous surveys have highlighted an alarming 
population-to-doctor ratio in different countries, emphasizing the urgent need for improvements in healthcare 
systems. According to the report of the World Health Organisation (WHO), 20132, there is a shortage of 7.2 
million health workers globally which can reach 12.9 million in the upcoming decade. With the motivation of 
assisting doctors and utilizing their time more efficiently, there has been a significant rise in the popularity of 
artificial intelligence-based virtual assistants and tools for various medical activities, including automatic disease 
diagnosis. The objective of Automatic Disease Diagnosis (ADD)3–6 is to support doctors by performing an initial 
examination of symptoms. It also diagnoses disease from the conversation between the patient and the doctor. 
First, the user reports their problems and symptoms (called explicit symptoms) in their self-report, and then the 
agent inquires about additional symptoms (called implicit symptoms) to diagnose the disease. Hence, an auto-
matic disease diagnosis system can be summarised as a system where an agent inquires about symptoms step by 
step and then can diagnose disease based on implicit and explicit symptoms. Hence, in a healthcare setting that 
incorporates this system, when a patient visits a doctor, the doctor is provided with comprehensive information 
about the patient and his/her situation. Some automatic disease diagnoses systems, such as Mayo Clinic, Babylon 
Healthcare, and GMAN7, are already deployed, which are being extensively used by both hospitals and end-users.

In online communication with doctors, patients first inform their chief complaints, known as self-reports 
to doctors. Based on the chief complaint, a doctor is assigned, who conducts a detailed symptom investiga-
tion and extracts relevant symptoms through chat. An example is shown in Figure 1. Over the last 5 years, 
significant efforts have been made by both the dialogue and healthcare communities to develop an artificial 
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intelligence-based diagnosis assistant that can act as a third eye for disease diagnosis8,9. In the study3, they 
introduced a task-oriented dialogue system, which collects patient self-reported information and extracts fur-
ther signs and symptoms during conversational interactions. In6, the authors have illustrated the impact of 
different reward functions utilized to provide feedback to a reinforcement learning-based diagnosis system on 
diagnosis efficacy. Following the work, the work5 incorporated a medical department-driven disease diagnosis 
system, which illustrated superior performance in terms of both quantitative and qualitative metrics. However, 
most of the diagnosis assistants5,10 are based on some data-driven approaches, which learn solely from existing 
and underlying medical corpora. Thus, given the scarcity of publicly available medical corpora, they are likely 
to result in a model with local knowledge concentrated in the underlying corpus. In real life, doctors also learn 
from knowledge bases and well-established principles in addition to diagnosis experience.

It is common for us to communicate only our most prominent and urgent health concerns to doctors during 
consultations. However, doctors do not rely solely on our reported symptoms to make diagnoses and prescribe 
treatments. Instead, they conduct a thorough investigation to arrive at a conclusive diagnosis. This is necessary 
because we tend to report only the most common and noticeable symptoms, overlooking other potential clues. 
They collect additional evidence to better understand medical issues and treat them properly. Motivated by the 
above two observations, we aim to build knowledge-infused, discourse-aware disease identification (KI-DDI) 
that incorporates an external knowledge graph and uses an attention mechanism that emphasizes the importance 
of self-report in the whole conversation. We also create a symptom disease knowledge graph (S–S–D) where 
symptoms and diseases act as nodes, and an edge between them is treated as a co-occurrence of both of them. We 
then determine edge weights using the symptom frequency–inverse disease frequency (sf–idf) method, inspired 
by the term frequency–inverse document frequency (tf–idf) method11. The edge weight between a symptom and 
a disease determines the co-occurrence of the symptom and disease. In KI-DDI, we pass the whole dialog to the 
language model to extract embedding. We then extract symptoms from the dialog and retrieve the sub-graph 
from the knowledge graph relevant to the dialog. We then form a joint graph by connecting the dialog node and 
subgraph. Finally, we obtain graph embedding by considering the mean pool, and then an attention mechanism 
is used to calculate the weighted sum of the dialog node and self-report, where graph embedding is infused with 
dialogue embedding to perform disease classification.

In the last few years, there have been tremendous efforts by both research and industrial communities to 
automatize many medical operations to assist physicians12. Nevertheless, the exploration and outcome of these 
efforts are limited primarily due to the lack of an adequate amount of medical data13. For example, there is not 
a single conversational disease diagnosis dialogue corpus in English. Motivated by the limitation, we curate an 
empathetic medical dialogue dataset called Empathical Dialogue Dataset. We annotate each utterance of a con-
versation with its corresponding intent and symptom information. There are two types of intent tags: Symptom 
and Affirmative. Symptom intent indicates the presence of a symptom, and Affirmative intent indicates that the 
patient agrees with the doctor, but the symptom is not present in the patient’s utterance. The role of empathy 
in this dataset is that it helps patients feel trusted and cared for by the doctor. The dialogue corpus bridges the 
following gaps in the medical diagnosis research community: (a) End-to-End communications directly with 
end-users in the English language, (b) Medical utterance understanding modules could be pre-trained using the 
curated corpus for symptom extraction, and (c) Context coherent response generation.

Research questions and hypotheses
In this paper, we investigate the following three research questions: (i) Are self-reports from patients sufficient 
for an accurate diagnosis? We hypothesize that the patient’s self-report (first utterance by the patient) alone is 
insufficient for disease diagnosis. We performed empirical studies that showed that self-report is insufficient in 
diagnosing disease as the model achieves poor diagnosis accuracy. Thus, it indicates the need for further symptom 
investigation. (ii) How does the medical knowledge graph influence the disease diagnosis model’s performance? 

Figure 1.   An illustration of online symptom investigation and disease diagnosis.
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We hypothesize that the external medical knowledge graph aids in disease diagnosis. We showed through empiri-
cal studies that our model KI-DDI incorporating external knowledge outperformed the baseline models without 
external knowledge. This shows external knowledge provides valuable insights in diagnosing disease. (iii) Does the 
mechanism of knowledge infusion impact the efficacy of disease diagnosis? We hypothesize that incorporating 
knowledge using graph structure is an efficient mechanism of infusing them. We showed through empirical studies 
that when external knowledge is infused in a graph structure, it performs better than when it is infused in a linear 
structure. Thus, adding external knowledge in a graph structure helps diagnose disease. 

Key contributions
The key contributions of the work are threefold, which are enumerated as follows:

•	 We propose a two-channeled knowledge-infused, discourse-aware disease identification (KI-DDI) model 
that leverages external medical knowledge encoded through a context-aware filtered knowledge graph for 
identifying diseases accurately and efficiently from patient–doctor communications.

•	 We first curate a conversational medical dialogue corpus named Empathical dialogue dataset in English, 
where each utterance is annotated with its corresponding intent and slot information.

•	 The proposed KI-DDI model achieves a significant improvement over an existing state-of-the-art model and 
establishes a new benchmark for the conversation-driven diagnosis problem.

Background
Related works
The research primarily pertains to the following areas: electronic health records, automatic disease diagnosis, 
graph neural network, knowledge infusion, and Dynamic Uncertain Causality Graph. In the subsequent para-
graphs, we provide summaries of the pertinent works in these domains.

Electronic health records (EHR)
During the early 2000s, systems based on Electronic Health Records (EHR) were introduced with the goal of 
aiding patients, driven by the motivation to provide virtual assistance to individuals in rural areas14 In BEHRT15, 
the authors developed a transformer-based model for mining electronic health records (EHR). It uses patients’ 
EHR data to perform multi-label classification for given all possible diseases. It is also capable of personal-
ized recommendations, and it can incorporate concepts such as diagnosis, medication, and measurements. In16 
authors proposed a reinforcement learning algorithm based on EHR to optimize the sequential processing of 
diseases. It considers both physiological variables and major disease factors during EHR modeling to improve 
the interpretability of the model. It utilizes Deep Q Learning (DQN)17 algorithm to explore the optimal insulin 
dosage for the patients. In18, authors handled the problem of Generalized Anxiety Disorder (GAD) and Major 
Depressive Disorder (MAD) using an ensemble of machine learning pipelines (Support Vector Machine, XG 
Boost, K Nearest Neighbor, Random Forest, Logistic Regression, Neural Network). It also utilized SHAP values 
to highlight which features had the major impact on the prediction for each disease. In Med-BERT19, authors 
adapt BERT20 in the EHR setting. As an input, it receives three types of embeddings: the diagnosis code, the order 
of code within each visit, and the position of each visit. It achieved remarkable performance when fine-tuned 
on EHR. In Med721, authors introduced a named-entity recognition model that is trained on EHR. The goal 
of the model is to recognize seven categories such as drug names, route of administration, frequency, dosage, 
strength, form, and duration.

Automatic disease diagnosis
The utilization of an Electronic Health Record (EHR) system necessitates the coordination and synchronization 
of multiple devices22. To streamline the process, researchers have introduced a novel technique for automatically 
diagnosing non-fatal or sensitive diseases. In this approach, an interactive system conducts symptom investi-
gation and provides disease diagnoses23. Wei et al.3 devised a task-oriented dialogue procedure for symptom 
investigation. In this process, the agent gathers symptoms through conversation and subsequently diagnoses a 
disease based on the observed symptoms. In10, the authors presented a context-aware symptom checker, which 
also models patients’ personal information, such as gender and age, in disease diagnosis. The experimental 
results of the contextual model confirm the vital role of patients’ personal information in executing an appropri-
ate and efficient diagnosis. Liao et al. (Liao 2020 Task) have proposed an integrated and synchronized two-level 
policy framework using hierarchical reinforcement learning24. The model demonstrated superior performance 
compared to the flat policy approach3 by a considerable margin. In25, authors considered disease diagnosis as 
a generation process. It uses a symptom attention framework for the generation of symptoms and diagnosis. It 
uses an orderless training mechanism.

Graph neural network
Graph Convolutional Network (GCN)26 uses graph data and updates the node embedding depending upon the 
neighboring nodes. Graph Attention Network (GAT)27 uses an attention mechanism to get the embedding of 
nodes depending on which neighboring node is relevant. In Graph Transformer28, authors proposed the adap-
tation of the transformer network to graphs. It uses an attention mechanism that depends on a neighboring 
connection for each node. In29, authors present a systematic approach to building a scalable graph transformer. 
Its time complexity is linear in the number of nodes and edges. In30, authors used a modified Markov decision 
kernel to derive Simple Spectral Graph Convolution. Upon using this method, it trades off between low and high 
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pass filter bands, which capture global and local context for each node. In31, authors found that using reversible 
connections with deep networks allows the effective training of an overparameterized graph neural network. 
In32, authors showed the limitation of using static attention in a graph attention network (GAT). They further 
developed the dynamic attention mechanism, which attends dynamically to neighboring nodes depending on 
the query node, to overcome the limitation.

Knowledge graph and knowledge infusion
Numerous studies have been conducted to integrate external knowledge into the language model. ERNIE33 adds 
external knowledge by infusion of token embedding and entity embedding. It has an information fusion layer 
that mixes token embedding and its corresponding entity embedding. In34, it retrieves the subgraph based on the 
entities. Further, it forms the joint graph of language embedding and subgraph and applies Graph Neural Net-
work (GNN) for knowledge infusion. GreaseLM35 focuses on the deep fusion of embeddings from the language 
model and the graph neural network using a modality interaction unit over multiple layers. In36 authors utilized 
self-supervised learning methods such as masked language modeling and knowledge graph link prediction for 
learning joint representation of text and knowledge graph. In37 authors studied the capabilities of the multimodal 
BERT model in storing the grammatical and linguistic knowledge that is learned with the help of objects in 
images. In38, authors developed the method of knowledge prompting in which they first extracted knowledge 
from a language model, and later they used that knowledge in question-answering tasks.

Dynamic uncertain causality graph (DUCG)
has been used for the purpose of the clinical diagnosis. DUCG​39 has been utilized to diagnose vertigo by incor-
porating symptoms, signs, medical histories, etiology, and pathogenesis. Also, Cubic DUCG​40 has been used for 
fault diagnosis for complex systems by representing dynamic casualties in the system fault spreading process in 
a compact manner and conducting accurate reasoning. Also, in the context of diagnosing and treating Hepatitis 
B., DUCG​41 based diagnosis and Treatment Unification Model is utilized. It uses Reverse logic gates to enhance 
the accuracy of treatment planning.

Problem formulation
The proposed model aims to identify the disease of the patient based on patient–doctor interaction. Thus, the 
input to an autonomous system will be dialogue, and the output will be disease. A dialogue can be regarded as 
sequences of patient and doctor utterances, i.e., D =< (P1,D1)(P2,D2) · · · · · · (Pn,Dn) > where (Pi ,Di) denote 
ith utterance of patient and doctor, respectively, and n signifies the total number of turns in the dialogue. The 
disease identification through patient–doctor dialogue can be expressed as follows:

where Dis is the set of diseases, the term, θ denotes the diagnosis model’s parameter.

Dataset
We begin by investigating the benchmark medical diagnosis dialogue datasets, and the findings are presented 
in Table 1. We could not find a single dyadic conversational diagnosis dataset in English, which motivated us to 
curate a new medical dialogue corpus. Doctors usually engage with and respond empathetically to their patients, 
which increases patient compliance and further helps in building trust between patient and doctor. We developed 
an Empathetic Medical (Empathical) Dialogue dataset with the help of the benchmarked SD42 dataset and clinical 
guidelines provided by medical experts.

Empathical dataset creation and annotation
During our investigation into the benchmarked conversation dataset, we found the SD dataset42, which has a 
database of 30K diagnosis cases covering over 90 diseases and 266 symptoms. We considered the SD dataset as 
a reference for creating the new conversational dataset because of its variety and credibility. We sampled 100 
random diagnosis examples from the SD dataset. With the help of two clinicians, we formed a conversation-based 
sample dataset corresponding to the 100 diagnosis cases and annotated it with its intent and symptom informa-
tion. Then we employed three medical students for the creation and annotation of dialogues based on the SD 

(1)d = argmaxjP(Disj|{(P1,D1)(P2,D2) · · · · · · (Pn,Dn)}, θ)

Table 1.   Comparison of the existing medical datasets for diagnosing disease.

Dataset Language Conversation Intent Symptom

RD3 Chinese × × ×

DX43 Chinese � × �

M
2-MedDialogue44 Chinese � × �

MedDialog-EN45 English × × ×

MedDG46 Chinese � × �

SD42 English × × ×

Empathical (ours) English � � �
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dataset samples. The students created a large dialogue corpus of 1367 diagnosis conversations by following the 
sample dataset and the detailed guidelines with the curated sample dataset. In order to measure the annotation 
agreement among the annotators, we calculated the Fleiss kappa47, which was 0.76, indicating a strong agreement 
among annotators. The dataset statistics are reported in Table 2.

Clinical and ethical guidelines
As the medical field is highly sensitive and specialized, clinical validity holds paramount importance. We have 
strictly followed the guidelines established for legal, ethical, and regulatory standards in medical research dur-
ing the dataset curation process. The key guidelines provided to the annotators are as follows: (i) An annotator 
should not add or remove any entity in a conversation corresponding to the reported diagnosis sample in the 
benchmark SD dataset. (ii) No individual’s personal information, which might disclose their identity, should be 
present in any statement within a dialogue or the entire dialogue itself. (iii) Any personal or sensitive informa-
tion shared in the conversations should be properly de-identified to protect the privacy of individuals. (iv) The 
use of profanity or offensive language is strictly prohibited in conversations. (v) It is important to use the cor-
rect medical terminology in the transcript to ensure that the information is understood correctly by healthcare 
professionals. (vi) If the intent of a counseling talk is unclear, mark it, and it will be examined and confirmed by 
a medical professional. Furthermore, the created corpus by the annotators is thoroughly checked and verified 
by the clinicians. We have also obtained approval from our institute’s ethical committee, IIT Patna to employ the 
dataset and carry out the research (IITP/EC/2022-23/07).

Role of dyadic conversation and intent/symptom annotation
Natural language understanding (NLU) is the first stage of a conversation system which aims to recognize users’ 
intentions (intent) and key information from their utterances. In order to make a disease diagnosis system that 
can be used for communicating directly with humans in language, NLU is necessary. Thus, we first curate the 
dyadic corpus and train the NLU module with the corpus. Here we have two kinds of intents (a) Symptom, which 
means the presence of a symptom and (b) Affirmative which means the patient is agreeing with a doctor, but 
there is no mention of the symptom in the patient’s utterance.

Purpose of intent and symptom information
Identifying intent and slot are two key tasks in NLU, which are vital for communicating with humans effectively. 
So, for building the NLU module, we have tagged intent and slot (here symptom) information for every utter-
ance by the user (Figure 2).

Role of empathy
Patients’ comfort and user satisfaction are of the utmost importance during doctor–patient consultations. This 
helps build trust between patient and doctor and increases patient compliance. Moreover, patients’ recovery 
rate gets better when they connect with a doctor on common grounds, which boosts their mental well-being.

Methodology
We proposed a two-stage discourse-aware disease diagnosis framework; the two stages are (a) symptom investiga-
tion encoding and (b) external relevant knowledge infusion. The proposed architecture is illustrated in Figure 3. 
The rationale behind the model is that for obtaining dialog and self-report embedding, we pass through the 
transformer encoder, i.e., SapBERT, and to diagnose the disease properly, we take help from external knowledge. 
To represent this external knowledge, we identify which diseases are more commonly linked with symptoms 
in the conversation and form a knowledge subgraph between symptoms and diseases. Then, to identify which 
symptom and its associated disease is more important in diagnosing disease, we form a joint graph between 
dialog embedding, symptoms, and diseases and apply Graph Attention Network. Finally, we use joint graph 
embedding to attend to dialog and self-report embedding to determine which is more critical for diagnosing, and 
then we diagnose the patient’s disease. External knowledge helps aid clinicians by providing relevant informa-
tion on which diseases are more closely linked with a particular symptom and providing knowledge expansion.

The model is comprised of three parts: (i) Symptom Investigation Encoding: Dialog and Self-Report Encoder, 
which generates the embedding for complete dialog between doctor and patient and also embeds the self-report 
given by the patient. Self-report signifies patients’ chief complaints/major difficulties expressed by themselves. 

Table 2.   Statistics of Empathical Dataset.

Attribute Value

No. of dialogues 1367

No. of utterances 8962

Utterance tags Intent and symptom

Avg. dialogue length 6.56

intent tags Symptom, affirmative

No. of diseases 90

No. of symptoms 228
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(ii) Knowledge Infusion: Knowledge Graph Extraction for extracting relevant sub-graphs from the knowledge 
graph to emphasize information relevant to the context. (iii) Disease Diagnosis Network. We have discussed 
and demonstrated the working principle of each module in the following sections.

Symptom investigation encoding
Symptom investigation is the foundational and essential component of disease diagnosis. Patients first report 
their chief complaints; doctors conduct a thorough investigation and diagnose accordingly. Thus, encoding the 
investigation report efficiently is critical to the autonomous disease diagnosis model. Usually, doctors diagnose 
a disease based on the set of symptoms experienced by patients; however, they prioritize a few symptoms, par-
ticularly the patient’s self-reported symptoms, in diagnosis. Thus, we segregate self-reported symptoms from 

Figure 2.   A dialogue sample from the curated Empathical dataset. Conversation between patient and doctor 
having symptom and intent tagged.

Figure 3.   KI-DDI: Self Report and Dialog are passed through the language model to obtain their embedding. 
The blue nodes are symptoms and Red nodes are diseases linked to symptoms. A joint Graph is formed by 
connecting the dialog node to all symptom nodes.
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the other extracted symptoms and infuse a weighted vector of this information into the diagnosis prediction 
model. To encode patient self-report and dialog, we have utilized SapBERT48 to capture the semantic meaning 
of patient–doctor utterances (Figure 3). We have utilized srstrat , srend for denoting the self-reports start and end, 
respectively. Two more special tokens, pat, and doc have been used to signify the starting position of patient and 
doctor utterances, respectively. We use SapBERT to get contextualized encoded representations (S and C) from 
the vectors (Equations 2 and 3).

where Usi and Doi denote ith user utterance and doctor utterance, and LM is the notion for the utilized language 
model (SapBERT).

Knowledge infusion
Clinical knowledge helps clinicians narrow the investigation space and use the information gathered efficiently 
during the diagnostic process. Thus, we aim to infuse the knowledge structure in the disease diagnosis framework.

Knowledge graph construction
Here, we first created the knowledge graph (S-S-D) from the Empathical dataset, where symptoms (S) and dis-
eases (D) are nodes. An edge between two nodes indicates their co-occurrence. The edges are weighted through 
the symptom frequency–inverse disease frequency (sf–idf) method11 which involves applying the technique term 
frequency–inverse document frequency (TF–IDF) in symptom disease settings. Here, symptom frequency is 
equivalent to term frequency, and inverse disease frequency is equivalent to inverse document frequency. The 
edge weights between symptom–disease e(s, d, D) and symptom–symptom e(si , sj ) are computed as follows:

Here, nsd is the number of cases where symptom (s) has occurred with the disease, d. k ranges in symptom space. 
The term sf(s, d) represents the raw count of the co-occurrence of a symptom s with disease d divided by the 
co-occurrence of every symptom with disease d.

Here |D| signifies the total number of diseases. The term idf(s, D) represents the logarithmic fraction of diseases 
containing the symptom s obtained by dividing the total number of diseases by the number of diseases having 
symptom s and then taking the logarithm of that quotient.

The term e(si , sj) represents the number of times symptoms si and sj occur together, divided by the co-occurrence 
of symptom si with all other symptoms. The intuition behind the symptom frequency–inverse disease frequency 
(sf–idf) is that the weight of symptom disease depends on the factor that if a symptom occurs with a particu-
lar disease and it also co-occurs with a large number of diseases, its inverse disease frequency will be close to 
zero (the denominator in “idf ” will be closer to numerator) so the weight of that symptom and disease will be 
lower (since weight is product of symptom frequency(sf) and inverse disease frequency (idf)), indicating that 
the symptom is loosely associated with the disease. If a symptom occurs with a particular disease and it also 
co-occurs with a very small number of diseases, then inverse disease frequency will be large (the denominator 
in “idf ” will be much smaller than the numerator) so the weight of that symptom disease will be much higher, 
indicating that symptom is closely associated with that particular disease.

Knowledge distillation
While knowledge is crucial, focusing on relevant knowledge is more significant while solving a task. Thus, infus-
ing the entire medical knowledge with the proposed disease diagnosis setup would be ineffective and may even 
deteriorate the performance. Thus, the proposed model extracts a subset of the knowledge graph depending on 
context (patients’ symptoms) dynamically. It first extracts medical entities (signs and symptoms) from the con-
versation using joint BERT49 language model and filters the knowledge graph considering the top K associated 
diseases of the symptoms present in the conversation. We experimented with various K values (1, 2, 3).

(2)S = LM(|srstart |SR|srend |)

(3)C = LM(|pat|Us1:t |doc|Do1:t)

(4)e(s, d,D) = sf (s, d) ∗ idf (s,D)

(5)s f (s, d) =
nsd∑
k nkd

(6)id f (s,D) = log
|D|

|d : s ∈ diseasej|

(7)e(si , sj) =
n(si , sj)

∑
k n(si , sk)
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Algorithm 1.   Discourse-aware selective filtering (DSF)

Graph attention network and knowledge infusion
We always prefer to analyze structured data, which helps us summarize effectively and take action path accord-
ingly. Similar behavior has been observed for autonomous models, and thus, graph-based models are gaining 
huge popularity for developing models with a considerable amount of data50. Motivated by efficacy, we build a 
graph attention (GAT) network over the relevant knowledge graph (S–D) and infuse it with context for disease 
diagnosis. In GAT, the vertex i of l-th layer can be described by the following equation

where Ni is the first hop neighbour of vertex i, Wh ∈ Rd′1×d1 is trainable parameter. The attention weight αij for 
vertex i is calculated as follows:

where a ∈ R2d′1 is a trainable parameter. Here || means concatenation. Finally, we obtain graph embedding by 
taking the mean pool of embedding of each vertex in JointGraph.

where L denotes the last layer of GAT. MeanPool is the average of node features across node dimensions. Joint-
Graph means graph obtained after adding dialog node to knowledge subgraph. The obtained global mean pool 
from the graph is passed to the attention layer.

Attention layer
In some cases, patient-reported data is crucial to understanding disease, while in other cases, symptoms extracted 
by physicians are crucial. We use additive attention51 to compute attention. Here, the output of the GAT acts as 
a query, and self-report encoding and encoded dialog act as values. We take the weighted average of self-report 
encoding and dialog encoding and concatenate that with GAT output to finally pass it through the linear layer 
to perform disease classification. It can be expressed as follows:

(8)h
(l)
i = LeakyReLU




�

j∈Ni

αijWhh
(l−1)
j





(9)αij =
exp(LeakyReLU(aT[Whhi||Whhj])

∑
k∈Ni

exp(LeakyReLU(aT[Whhi||Whhk])

(10)s = MeanPool(h(L)v |v ∈ JointGraph) ∈ R
d1

(11)ei = vTtanh(W1hi +W2s)
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Here query s ∈ Rd1 represents GAT output, i ∈ {1, 2} where values h1 ∈ Rd2 means self report encoding and h2 ∈ 
R
d2 means dialog encoding. Here W1 ∈ Rd3×d2 , W2 ∈ Rd3×d1 and v ∈ Rd3 are learnable parameters. Here ei ∈ R , e 

= [ e1; e2 ] ∈ R
2 . The attention value α and final context is determined as follows:

Finally, the attended context is passed to the disease diagnosis network for disease prediction.

Disease diagnosis network
We hypothesized that only patient self-report is not enough for disease diagnosis; we also need to consider 
doctor–patient interaction and additional medical knowledge for diagnosing patients effectively. Thus, our pre-
diction network leverages all three components. We utilize self-report, doctor–patient interaction, and medical 
knowledge (joint graph) and pass the concatenation of attended vector (patient self-report, patient–doctor 
utterances, and knowledge graph) from the previous stage and joint graph embedding to a fully connected 
feed-forward network.

Here σ is the softmax activation function. W ∈ Rn×(d1+d2) and b ∈ R
n . n is the number of diseases.

where i ranges over the set of diseases. We have utilized categorical cross entropy for calculating loss, which can 
be expressed as below.

where m is the number of training examples, n is the number of diseases. Here, y(i)j  is the ground truth label, and 
ŷ
(i)
j  is the predicted disease distribution label for ith dialogue.

Experimental setup
We have used the curated Empathical dataset for training and evaluating the proposed model. We divided the 
dataset as follows: 70% training, 10% validation, and 20% testing. We have utilized the PyTorch framework 
for implementing the proposed discourse-aware disease diagnosis model. We use SapBERT48 for encoding the 
dialog. In Table 3, we have listed the final values of hyperparameters. These values have been chosen through 
empirical experimentation using the validation dataset. The dataset we use is in English and created based on a 
benchmarked medical database SD Dataset42. The proposed model has been trained, validated, and tested with 
the dataset. The model works for English; however, it can be adapted to another language with minimal change, 
such as multi-lingual tokenizer incorporation. We use the BERT tokenizer, capable of processing slang words 
based on its pre-trained vocabulary, which includes a mix of formal and informal language from diverse sources. 
If a slang word is present in the vocabulary, BERT tokenizes it like any other word; otherwise, it may employ 
subword tokenization for out-of-vocabulary terms. Furthermore, the model’s ability to handle slang depends on 

(12)α = softmax(e) ∈ R
2

(13)context =

2∑

i=1

αihi ∈ R
d2

(14)hf = σ(W[s; context] + b)

(15)ŷ = argmaxiP(Di|hf )

(16)L = −

m∑

i=1

n∑

j=1

y
(i)
j log(ŷ

(i)
j ) ∈ R

Table 3.   Different hyperparameters and their values.

Hyperparameters Selected values

Max sequence length 512

Batch size 16

GAT layers 2

GAT hidden dim 384

GAT attention heads 3

GAT dropout 0.5

Attention layer hidden dim 1 768

Attention layer hidden dim 2 384

Attention layer projection dim 64

Optimizer Adam

Loss function CrossEntropyLoss

Learning rate 1e−3

Epochs 25
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exposure to such terms during pre-training. While it excels with common slang, it may struggle with more niche 
or emerging expressions. Furthermore, the dataset and code are available at https://​github.​com/​NLP-​RL/​KI-​DDI.

Ethical consideration
While creating the dataset, we followed guidelines aligned with medical research’s legal, ethical, and regulatory 
standards. We utilized a benchmarked dataset named SD (Zhong et al.42) to construct a conversational corpus. 
It’s important to note that the dataset includes samples with user consent. With this in mind, we have not added 
or removed any entity in a conversation corresponding to the reported dialogues in the benchmark SD dataset. 
Also, the curated dataset does not disclose users’ personal information. Hence, we ensure that the Empathical 
dataset and each step of its formation do not violate ethical and clinical principles. We have also obtained approval 
from our institute’s ethical committee, IIT Patna, to employ the dataset and carry out the research (IITP/EC/2022-
23/07). Please note that the research does not involve any human beings or living entities.

Informed consent and privacy
We utilized a benchmarked dataset named SD (Zhong et al.42) to construct a conversational corpus. It’s important 
to note that the dataset includes samples with user consent. They do not include any personal patient informa-
tion, such as names, ages, or genders. Instead, they solely contain information about symptoms discussed during 
conversations with doctors and the identified diseases by the doctors.

Societal ramifications
Over the last 5 years, numerous surveys and reports have consistently highlighted an imbalanced doctor-to-
population ratio. These findings strongly advocate for addressing the concerning statistics by augmenting the 
healthcare workforce and optimizing their time more effectively. With the objective of aiding doctors and stream-
lining early diagnosis, the suggested automated disease diagnosis assistant plays a pivotal role in assisting health-
care professionals in precisely identifying illnesses. The research delves into the impact of knowledge infusion on 
disease identification through doctor–patient conversations. Rigorous experiments and human analyses across 
diverse algorithms underscore the substantial influence of knowledge infusion in deducing diseases.

Reproducibility
We have used the curated Empathical dataset for training and evaluating the proposed model. We divided the 
dataset as follows: 70% training, 10% validation, and 20% testing. We have utilized the PyTorch framework 
for implementing the proposed discourse-aware disease diagnosis model. We use SapBERT (Liu et al.38) for 
encoding the dialog. In Table below, we have listed the final values of hyperparameters. These values have been 
chosen through empirical experimentation using the validation dataset. The dataset we use is in English and 
created based on a benchmarked medical database SD Dataset. The proposed model has been trained, validated, 
and tested with the dataset. The model works for English; however, it can be adapted to another language with 
minimal change, such as multi-lingual tokenizer incorporation. We have provided details of our experimental 
setup, including hyperparameter values and evaluation metrics, and made our code available (https://​github.​
com/​NLP-​RL/​KI-​DDI).

Accession codes
We have made a GitHub repository that contains the curated conversational dataset and the experimental setup 
(code). The dataset and code are available at https://​github.​com/​NLP-​RL/​KI-​DDI.

Result and discussion
In order to comprehend the efficacy and limitations of the proposed model, we compared it with the following 
baselines and state-of-the-art models. The baselines and state-of-the-art models are as follows:

•	 BioLinkBert52—It is the pretraining method that uses links between different documents to train BERT. 
BioLinkBert is pretrained on PubMed articles with citation links on two self-supervised tasks masked lan-
guage modeling and document relation prediction.

•	 KrissBert53—It trains PubMedBERT using entity list to generate self-supervised mention examples of bio-
medical entities and further it uses contrastive learning for training.

•	 KI-CD54—It has a potential candidate (PCM) module which is based on Bayesian learning for symptom 
investigation. Also, it uses Hierarchical Reinforcement Learning for diagnosing disease.

•	 Coder55—It uses contrastive learning along with Unified Medical Language System (UMLS) knowledge graph 
to produce the embedding for medical terms.

•	 SapBert48—It trains the language model in a way that uses hard positive and hard negative samples to align 
synonymous biomedical entities. It uses a UMLS knowledge graph.

Evaluation metrics
We utilize the most popular classification evaluation metrics, namely accuracy, F1-Score, and Jaccard similar-
ity for evaluating the performance of different diagnosis models. The different metrics are defined as follows:

•	 Accuracy It is defined as the number of correct predictions divided by the total number of predictions. It is 
represented as follows: 

https://github.com/NLP-RL/KI-DDI
https://github.com/NLP-RL/KI-DDI
https://github.com/NLP-RL/KI-DDI
https://github.com/NLP-RL/KI-DDI
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 For a binary classification task, it can also be expressed as follows: 

 Where TP—True Positive, TN—True Negative, FP—False Positive, FN—False Negative.
	   True Positive (TP)—Number of examples predicted to be positive by the machine learning model and its 

label is actually positive.
	   True Negative (TN)—Number of examples predicted to be negative by the machine learning model and 

its label is actually negative.
	   False Positive (FP)—Number of examples predicted to be positive by the machine learning model and its 

label is actually negative.
	   False Negative (FN)—Number of examples predicted to be negative by the machine learning model and 

its label is actually positive.
•	 F1 score is the harmonic mean of the precision and recall. 

 Precision—It indicates the proportion of positive predictions that are actually correct. It is given as the ratio 
of True positive divided by the sum of True Positive and False Positive. 

 Recall—It indicates the proportion of actual positives that are identified correctly. It is given as the ratio of 
True Positive divided by the sum of True Positive and False Negative. 

•	 Jaccard Similarity is defined as the size of the intersection divided by the size of the union of two label sets. It 
compares predicted labels to the ground truth labels for a sample. For ground truth label set “a” and predicted 
label set “b”, it is given as: 

All the reported values in the following tables are statistically significant, which are validated using the statistical 
t-test56 at a significant level of 5%. The obtained performance by the joint BERT natural language understand-
ing model for intent and symptom identification is provided in Table 4. With the conducted experiments and 
performance comparison with the state-of-art/baseline models, the raised research questions (RQs) can be 
answered as follows.

RQ1: Are self‑reports from patients sufficient for accurate diagnosis?
Table 5 shows the efficacy of models that utilize only patient self-report for diagnosing a disease. The model 
that considers both self-reports and symptoms extracted by clinicians is way superior in terms of diagnostic 
accuracy. It firmly establishes the importance of the detailed symptom investigation conducted by clinicians. It is 
primarily due to the inadequacy of self-reports to accurately recognize patient diseases. It’s also obvious because 
most of the time, we report symptoms that used to be common across several diseases, such as cold, cough, and 
fever. It shows the doctor needs to further investigate symptoms in addition to patient self-reports. Hence, the 
answer is no; we need further symptom investigation (in addition to patient self-report) to diagnose accurately.

RQ2: How does the medical knowledge graph influence the disease diagnosis model’s 
performance?
The performance obtained by the state-of-the-art model and our proposed knowledge-infused disease diagno-
sis models are reported in Table 6. It shows that KI-DDI improved the performance of disease diagnosis by a 

(17)Accuracy =
Number of correct predictions

Total number of predictions

(18)Accuracy =
(TP + TN)

(TP + TN + FP + FN)

(19)F1 =
2 ∗ (precision ∗ recall)

(precision+ recall)

(20)Precision =
(TP)

(TP + FP)

(21)Recall =
(TP)

(TP + FN)

(22)Jaccard(a, b) =
|a ∩ b|

|a ∪ b|

Table 4.   Performance of the joint intent and symptom module.

Task Accuracy (%) F1-score

Intent classification 95.49 0.9388

Symptom labeling 92.04 0.9131
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margin of 2.57% compared to the SapBERT48 model. Hence, we conclude that the knowledge graph is helpful in 
improving disease diagnosis accuracy. We also show the Top 1, 3, and 5 disease coverage accuracies for different 
models in Figure 4.

RQ3: Does the mechanism of knowledge infusion impact the efficacy of disease diagnosis?
In addition to the knowledge being essential for autonomous models, its representation also matters. As humans, 
we always prefer to have information presented in a structured manner. With this motivation, we investigated 
the performance of different models having knowledge incorporated with different approaches. The obtained 
findings are reported in Table 7. It demonstrates that the model that infuses medical knowledge using a graph 
structure outperformed the model that employs a linear structure by a significantly large margin of 4.76%. Hence, 

Table 5.   Performance of model using Self Report with Linear and Knowledge. Here Knowledge_2 means 
every symptom (blue node see Figure 3) has at most two diseases (red node) connected to it.

Model Accuracy F1-score Jaccard

SRE + Linear 23.80 0.183 0.122

Knowledge 26.49 0.197 0.135

SRE + Knowledge_1 24.78 0.198 0.136

SRE + Knowledge_2 24.90 0.201 0.140

SRE + Knowledge_3 24.53 0.190 0.131

Table 6.   Performance of the proposed KI-DDI model. Significant values are in bold.

Model Accuracy F1-score Jaccard

BioLinkBERT52 47.25 0.4067 0.3129

KrissBERT53 57.14 0.4977 0.4091

KI-CD54 57.84 – –

Coder55 59.70 0.5612 0.4630

SapBERT48 61.53 0.5801 0.4834

KI-DDI 64.10 0.6035 0.5099

Figure 4.   Disease diagnosis accuracy of different models.

Table 7.   Performance comparison of adding knowledge in self report and dialog. Significant values are in 
bold.

Model Accuracy (%) F1-score Jaccard

SRE + Linear 23.80 0.183 0.122

SRE + Knowledge 24.90 0.201 0.140

DE + Linear 58.97 0.5306 0.4331

DE + Knowledge 63.73 (4.76 ↑) 0.5752 0.4796
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the answer is yes, knowledge representation matters and the graph-based symptom–disease infusion is more 
effective in disease diagnosis than infusing it as a linear vector.

Ablation study
We have also conducted an ablation study to comprehend the importance of different components and concepts 
linked to the proposed model. The obtained findings are summarized in Table 8. It leads to the following evidence 
and observations: i. We see that concatenating dialog encoding with knowledge graph embedding improves the 
performance. ii. We also observed that the behavior of constantly increasing knowledge width does not lead to 
superior performance, mainly because extraneous and large information sizes are included. iii. We see that using 
an attention mechanism between self-report encoding and dialog encoding leads to improvement.

Analysis
The comprehensive analysis of the performances of different models led to the following major observations: 
(i) We analyze the performance of different models on common test cases and one such case study is shown in 
Figure 5. Our model correctly diagnosed the disease, while the other models misclassified the disease. This can 
be attributed to the knowledge infusion mechanism that the model is able to attend to symptoms that are more 
important for diagnosing the disease. (ii) In order to exploit the structure of medical departments in healthcare 
systems, we also experimented with a hierarchical-based disease classifier. The first layer classifier triggers an 
appropriate medical department, and the activated disease classifier identifies the disease. The obtained results 
are reported in Table 9. (iii) In the case of hierarchical classification, we observed that the model identifies dis-
ease groups/medical departments quite adequately, but it gets confused among the diseases of the same medical 
group. (iv) We report the impact of variation of layers of GAT on the model’s performance in Figure 7. We find 

Table 8.   Result of the ablation study, which shows the efficacy of different components of the proposed model. 
Significant values are in bold.

Model Accuracy F1-score Jaccard

Knowledge_1 58.60 0.5353 0.4474

Knowledge_2 60.31 0.5479 0.4610

Knowledge_3 58.48 0.5337 0.4446

DE + Knowledge_1 63.36 0.5909 0.4987

DE + Knowledge_2 62.39 0.5884 0.4903

DE + Knowledge_3 63.73 0.5752 0.4796

KI-DDI_1 64.10 0.6035 0.5099

KI-DDI_2 63.61 0.5969 0.5073

KI-DDI_3 63.24 0.5911 0.5007

Figure 5.   Performance of KI-DDI and other models on a common test case.



14

Vol:.(1234567890)

Scientific Reports |        (2024) 14:13442  | https://doi.org/10.1038/s41598-024-53042-y

www.nature.com/scientificreports/

that upon increasing layers up to two model’s performance increases then it starts decreasing. (v) Sometimes 
patient self-report is vital to disease, whereas other times symptoms extracted by doctors are critical (Figure 6). 
We must thus take into account both and make a diagnosis that is appropriate to the situation rather than rely-
ing solely on one.

Our model also has some data biases like the majority of deep learning models; however, it is minimal while 
evaluating its impact. The model is trained on textual data, and some diseases have few examples, so our model 
is biased toward identifying diseases with many training examples. Also, many symptoms are expressed visu-
ally, and our model doesn’t integrate multi-modal input. Our model is trained on a single language corpus, i.e., 
English; its effectiveness is reduced in code-mixed scenarios. Our model has low diagnostic accuracy (64.10%). 
Therefore, it can give inaccurate diagnoses and shouldn’t be used in real-world medical settings. But our model 
(KI-DDI) performs relatively better in the Top3 (86.8%) and Top5 (94.01%) accuracy in disease diagnosis.

Table 10 shows that Bio Link Bert and KI-CD models take the highest train and inference time. BioLinkBert 
takes longer because of the bigger model size (having a total parameter count of 333 Million), and KI-CD takes 
longer train time because its architecture consists of 10 hierarchical models to train and has a longer inference 
time because it performs symptom investigation and disease diagnosis. In contrast, the remaining model only 
performs disease diagnosis. Models SapBert, KrissBert, and Coder take approximately the same train and infer-
ence time because of nearly the same parameter count (around 109 Million and 7 Thousand trainable param-
eters). KI-DDI takes longer because it is larger than SapBERT (as it involves SapBERT and Graph Attention 
Network), having (110 Million total parameters and 622 Thousand trainable parameters) but less time than 
BioLinkBERT because of its smaller model size.

Figure 6.   Distribution of attention scores for two test examples.

Table 9.   Hierarchical classification. Group Acc—Group Classification Accuracy, Acc—Disease classification 
within that group. Significant values are in bold.

Model Group Acc. Accuracy F1-score Jaccard

KI-DDI_1 79.24 58.97 0.555 0.457

KI-DDI_2 81.19 62.27 0.583 0.487

KI-DDI_3 80.70 60.07 0.565 0.467

Table 10.   Train and Inference time comparison of various models. Here, * means the model performs 
symptom investigation along with disease diagnosis.

Model Training time (for 1 epoch) (s) Inference time (s)

KI-DDI 22.26 5.00

BioLinkBert 30.34 8.27

SapBert 9.55 2.57

KrissBert 7.91 2.52

Coder 9.35 2.52

KI-CD 30.14 9.44*
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Scalability Our model KI-DDI utilizes a joint graph by incorporating a knowledge graph subgraph. It requires 
diseases associated with the symptoms. We experimented with each symptom associated with one to three dis-
eases, and our model is scalable with more than three diseases associated with a symptom.

Reliability Our model achieves an accuracy of 64.10% for disease diagnosis, which is low for diagnosing dis-
eases in real-world settings. Hence, our model is not suitable for practical applications. But our model performs 
well in the Top3 (86.8%) and Top5 (94.01%) diagnosis accuracy. This shows that our model is getting confused 
to diagnose diseases linked common symptoms but works well in case of diagnosing diseases in the Top3 and 
Top5 settings.

Robustness We have tested the robustness of our model concerning the number of layers and diseases linked 
with the symptoms and provided the results in Figure 7 and Table 8.

Limitations
While the proposed KI-DDI has demonstrated superior performance compared to baseline models, certain limi-
tations have been observed. The key limitations are as follows: (i) The model has been trained and evaluated solely 
on a single-language corpus, specifically English. It exhibits reduced effectiveness when encountering code-mixed 
sentences. Therefore, an important avenue for future work is the incorporation of multilingual capabilities. (ii) 
The model’s performance across different diseases is influenced by the frequency of disease samples in the train-
ing data. Consequently, it may not perform well when there are very few samples available for certain diseases. 
Therefore, it is essential to integrate few-shot learning capabilities to address this limitation. (iii) Many symptoms 
are often conveyed through visual cues, but the model currently operates exclusively with text-based data. In 
future developments, we aim to integrate a multi-sensory input processing module into the diagnostic assistant.

Conclusion
In this paper, we investigate the importance of knowledge infusion and doctor-driven symptom research in 
identifying patients’ illnesses through dialogue. We presented a two-channel knowledge-infused, discourse-aware 
disease identification (KI-DDI) model that leverages external medical knowledge encoded through a context-
aware filtered knowledge graph for identifying diseases accurately. We first developed a conversational disease 
diagnosis dataset in English, which is comprised of patient–doctor communication and annotated with semantic 
information (intent and symptom). The proposed model outperformed baselines and the existing state-of-the-
art model significantly across all evaluation metrics. With the rigorous set of experiments conducted, the work 
evidences the paramount importance of (a) medical knowledge infusion, (b) doctor’s collected symptoms (in 
addition to the patient’s self-reported symptom), and (c) structured approaches for the knowledge representation. 
We note that the model’s performance with respect to a specific disease is directly correlated with the quantity 
of samples available for that disease in the dataset. To mitigate this effect and ensure effective performance 
even for diseases with limited samples, the inclusion of a few-shot learning module could be considered. When 
we consult with doctors, we often report and describe our health conditions with visual aids. Moreover, many 
people are unacquainted with several symptoms and medical terms. Thus, we would like to extend the work 
by investigating the role of multi-modality in symptom investigation and diagnosis and building a multimodal 
diagnosis dialogue system.
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