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YOLOFM: an improved fire 
and smoke object detection 
algorithm based on YOLOv5n
Xin Geng , Yixuan Su *, Xianghong Cao , Huaizhou Li  & Linggong Liu 

To address the current difficulties in fire detection algorithms, including inadequate feature 
extraction, excessive computational complexity, limited deployment on devices with limited 
resources, missed detections, inaccurate detections, and low accuracy, we developed a highly accurate 
algorithm named YOLOFM. We utilized LabelImg software to manually label a dataset containing 
18644 images, named FM-VOC Dataset18644. In addition, we constructed a FocalNext network, 
which utilized the FocalNextBlock module from the CFnet network. This improves the integration 
of multi-scale information and reduces model parameters. We also proposed QAHARep-FPN, an 
FPN network that integrates the structure of quantization awareness and hardware awareness. This 
design effectively reduces redundant calculations of the model. A brand-new compression decoupled 
head, named NADH, was also created to enhance the correlation between the decoupling head 
structure and the calculation logic of the loss function. Instead of using the CIoU loss for bounding box 
regression, we proposed a Focal-SIoU loss. This promotes the swift convergence of the network and 
enhances the precision of the regression. The experimental results showed that YOLOFM improved the 
baseline network’s accuracy, recall, F1, mAP50, and mAP50-95 by 3.1%, 3.9%, 3.0%, 2.2%, and 7.9%, 
respectively. It achieves an equilibrium that combines performance and speed, resulting in a more 
dependable and accurate solution for detection jobs.

Fires often cause serious casualties and property damage. Therefore, early detection and accurate identification of 
fires are crucial for reducing losses and protecting people’s lives and property. Traditional fire detection technolo-
gies rely primarily on temperature, light, and smoke sensors. However, these approaches have several limitations, 
such as limited detection range and low detection accuracy. The development of computer vision has resulted 
in substantial enhancements in tackling these challenges. According to Celik et al.’s YCbCr separation1, “they 
analyzed shape, color, and texture to identify fire smoke.” Yamagishi et al.2 employed color CCD cameras. Nev-
ertheless, these approaches performed well only in properly lit and uncomplicated contexts but struggled in 
complex environments with insufficient lighting, resulting in poor detection and incorrect alerts. Support vector 
machine (SVM)3 are inadequate at detecting fires because they frequently generate false alarms when cameras 
move or function in vibrating surroundings. Chi et al.4 addressed several problems related to videos captured 
by stationary cameras. However, difficulties such as restricted location choices and expensive upkeep continue 
to exist. Toreyin et al.5 proposed a real-time video processing system but encountered performance degradation 
issues when dealing with high-resolution videos.

With the upgrading of computer hardware and the development of deep learning technology, an increasing 
number of deep learning algorithms are being utilized in fire detection. The algorithms currently used include 
Faster R-CNN6, YOLO7, EfficientDet7, YOLOX8, SSD9, RetinaNet10, and CenterNet11. Chaoxia et al.6 reduced 
Faster R-CNN false alarms by adopting a color-guided anchoring strategy. However, this improvement came 
at the expense of increased computational complexity. Xu et al.7 improved EfficientDet to detect forest fires. 
Nevertheless, acquiring complete global information remained a challenge. Liau et al.9 improved the detection 
speed of SSD networks, but accuracy in complicated circumstances still has to be improved. To boost network 
robustness, Li et al.11 proposed a lightweight backbone network and anchor-free detection methods. However, 
this improvement has serious drawbacks when dealing with complicated scenarios with shifting lighting condi-
tions. These deep learning algorithms employed comprehensive analyses of various fire features, such as color, 
texture, and shape. In contrast to traditional visual processing algorithms, they show greater resilience in complex 
scenarios, decreasing the frequency of incorrect detection and better meeting the requirements of complex tasks. 
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However, challenges remain, including increased computational complexity, data acquisition difficulties, and 
potential interference when handling high-resolution videos or large data streams.

YOLO, as a single-stage object detection algorithm, is widely utilized in fire detection because of its dis-
tinctive network structure and outstanding performance. Several modifications and optimizations have been 
proposed, including ELASTIC-YOLOv312 for urban nighttime fire detection; YOLOv313 for forest fire detection; 
and YOLOv414 for fire detection at construction sites. Several recent versions, including YOLOv515, YOLOv616, 
YOLOv717,18, and YOLOv819,20, have been developed to address various fire detection tasks. Despite the potential 
of YOLOv717 in ship fire detection, there are still difficulties to address in intricate fire scenarios. Luo et al.21 
used Swin Transformer, CBAM, and Slim Neck to make it easier to identify lab fires, but this increased the 
computational load of the network too much. Zhang et al.8 proposed T-YOLOX to detect multiple targets but 
have accuracy issues in complex fire circumstances. The latest YOLO version is YOLOv819,20. This version greatly 
improves upon its prior version. Nevertheless, due to network-related upgrades, the official version still exhibits 
some degree of instability. YOLOv515 is the previous version of the YOLO series. Compared to YOLOv8, the 
network is significantly streamlined, resulting in a reduced model size and improved efficiency in deployment 
and operation. In addition, YOLOv5 utilizes a less computationally demanding backbone network and several 
optimization techniques to improve the efficiency of object detection, making it highly suitable for real-time 
scenarios. Furthermore, YOLOv5 provides a straightforward API interface and pre-trained model, making it a 
convenient and user-friendly choice. The YOLOv5n version demonstrates outstanding efficiency in resource-
constrained contexts. However, it shows shortcomings in fire detection capabilities when compared to larger 
YOLO versions.

Because object detection algorithms have been used successfully in fire detection, we used images of fire and 
smoke to improve YOLOv5n and proposed YOLOFM, an effective fire and smoke object detection algorithm 
that can quickly and accurately detect different fire scenes. The main contributions of this paper can be sum-
marized as follows:

•	 To address the limited availability and inadequate quality of publicly accessible fire object detection datasets, 
we created a dataset named FM-VOC Dataset18644. The dataset contains 16,844 images depicting fire and 
smoke. In addition, we employed image enhancement methods such as flipping, rotating, and adjusting image 
brightness to preprocess the dataset, which improved the quality and quantity of data for the experiments.

•	 Considering the importance of YOLOv5n’s fusion network in multiscale feature fusion and the issue of 
insufficient feature fusion caused by limited parameters, we proposed the FocalNext network. This network 
takes inspiration from the design concept of the CFNet network22,23 and incorporates the FocalNextBlock 
focusing module to reconstruct the backbone network. This network can integrate feature fusion operations 
into the backbone network, simultaneously merging detailed local features and broad global characteristics. 
This allows the fusion network to function efficiently in the subsequent phase.

•	 We integrated network quantization and reparameterization methods to construct a QARepVGG-style24,25 
feature pyramid network QAHARep-FPN. It solves the issue of detection accuracy loss during network quan-
tization and re-parameterization, as well as the difficulty of completing complex fire and smoke detection 
tasks on mobile devices and embedded systems with constrained hardware resources. This design achieves 
an effective balance between detection accuracy and inference speed.

•	 The original YOLOv5n head network uses an integration and sharing method for classification and regression 
tasks. However, this method results in inadequate focus on the bounding box regression task and uneven 
feature acquisition. To address this issue, we proposed a new asymmetric decoupled head (NADH) that uses 
multi-level channel compression technology to address the issue of insufficient feature learning in bounding 
box regression tasks26,27.

•	 The original YOLOv5n’s CIoU Loss has obvious flaws in effectively balancing the weights of positive and 
negative samples, handling overlapping targets, and addressing the relative ratio of length and width between 
detection and prediction boxes. To address these concerns, we proposed a new loss function called Focal-
SIoU Loss. This loss function combines SIoU Loss28 and Focal L1 Loss29–37. More loss-related parameters, 
such as angle, distance, form, and IoU, are considered. This effectively increases the model’s convergence 
speed during training and improves the accuracy of the bounding box regression.

YOLOFM network
The YOLOFM network architecture consists of four parts: the input, backbone, neck, and head. The network 
structure of YOLOFM is shown in Fig. 1. When conducting fire and smoke detection, begin by resizing the image 
in the input network and standardizing the pixel values to a range of 0 to 1. The shape of the input image after 
preprocessing in this paper is (640, 640, 3). Subsequently, the preprocessed images are conveyed to the YOLOFM 
backbone network. Initially, perform two conventional convolution operations on the features with shape (640, 
640, 3), yielding features with dimensions (320, 320, 12) and (320, 320, 64). Subsequently, three FocalNext+CBS 
feature extraction processes are executed, yielding features with dimensions of (160, 160, 128), (80, 80, 256), and 
(40, 40, 512), respectively. Next, execute the FocalNext+SPPF operation to acquire a feature with dimensions 
of (20, 20, 1024). During the feature extraction phase, YOLOFM generates numerous feature layers to detect 
objects, resulting in a total of three feature layers. The three feature layers are situated at distinct places inside the 
backbone network, namely the middle layer, the middle-lower layer, and the bottom layer. The dimensions of the 
three feature layers are as follows: feature1 = (80, 80, 256), feature2 = (40, 40, 512), and feature3 = (20, 20, 1024). 
The FPN network is formed in the neck network after acquiring three feature layers that are proven to be useful. 
The building approach involves performing a 1× 1 GhostConv convolution on the feature layer of feature3, which 
has dimensions (20, 20, 1024), to change the channel and generate feature5. Feature5 utilizes transpose operations 



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:4543  | https://doi.org/10.1038/s41598-024-55232-0

www.nature.com/scientificreports/

to perform upsampling and then merges the result with feature2, which has dimensions of (40, 40, 512). Next, 
it employs QARepNeXt to extract features, resulting in the feature layer feature5_Transpose with dimensions of 
(40, 40, 512). The feature5_Transpose=(40, 40, 512) does a 1× 1 GhostConv convolution to modify the chan-
nel and obtain feature4. Feature4 is subsequently upsampled and merged with feature1=(80,80,256) using the 
Transpose operation. Afterward, QARepNeXt is utilized to extract features, which leads to the creation of the 
feature layer feature3_out=(80, 80, 256). The feature3_out=(80, 80, 256) uses a 3× 3 QARepVGGB convolution 
for downsampling, followed by the merging of the downsampled feature3 with feature4. QARepNeXt is subse-
quently employed for feature extraction, getting the feature layer feature2_out with dimensions (40, 40, 512). 
The feature2_out=(40, 40, 512) performs a 3× 3 QARepVGG convolution to reduce the size and then combines 
it with feature5 after downsampling. QARepNeXt is subsequently employed for feature extraction, getting the 
feature layer feature1_out with dimensions of (20, 20, 1024). The FPN yields three important features: (20, 20, 
1024), (40, 40, 512), and (80, 80, 256). Subsequently, we employ these three features as input for the YOLOFM 
Head network to acquire prediction outcomes. Given that our categories are restricted to “fire” and “smoke”, the 
resulting forms of the three feature layers are ultimately (20, 20, 21), (40, 40, 21), and (80, 80, 21).

Proposed FocalNext network
Traditional YOLO models employ the backbone network to extract multiscale features, which are subsequently 
fused in lightweight networks such as the feature pyramid network (FPN). However, the lightweight YOLOv5n 
model has fewer parameters assigned for the FPN network compared to the backbone network. We proposed a 
FocalNext network, which incorporates the FocalNextBlock focusing module and draws inspiration from the 
architecture of CFNet22,23 to improve the integration of features without compromising the lightweight design. 
This network can integrate feature fusion operations into the backbone network, simultaneously merging detailed 
local features and broad global characteristics. This increases the number of parameters that can be used for 
feature fusion while still allowing the model to benefit from the weights obtained from pre-training.

The structure of the FocalNext network is shown in Fig. 1. The structure consists of a skip connection and 
a series of stacked FocalNextBlock modules. The input tensor X processes a sub-path and an independent 
convolution operation before combining it with the feature X2 that has undergone FocalNextBlock stacking 
to produce X3 . Finally, the combined feature X3 undergoes a convolutional operation to produce the ultimate 
output X4 . For feature fusion and multilayer processing, the FocalNext network used skip connections to make 
the network better at showing details. This approach effectively mitigates the issue of gradient disappearance 
that arises with increasing network depth.

The FocalNextBlock is a focusing block within the FocalNext network. The module combines two skip 
connections and extended depth convolution, which lets fine-grained local interactions and coarse-grained 
global interactions merge at the same time. Fig. 1 illustrates the internal structure of the FocalNextBlock. 
The first step for the input tensor X entails a 7× 7 convolution in the backbone path, then fusion with X. 
Subsequently, DropPath processing is applied to obtain X1 . Subsequently, X1 undergoes fusion with itself after 
a 7× 7 convolution. Subsequently, the combined features undergo a sequence of operations, such as DropPath, 

Figure 1.   The YOLOFM network structure.
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Permute, and normalization, to derive X2 . Subsequently, the input X2 undergoes processing through a 1× 1 
convolution and GELU activation function to obtain the output X3 . Subsequently, the tensor X3 is subjected to 
a 1× 1 convolution and permutation operation before being combined with the input tensor X. Following the 
fusion process, the final DropPath processing is carried out to derive the fusion feature X4.

Proposed QAHARep‑FPN network
The neck network plays a crucial role in efficiently handling multiscale features from the backbone network. 
Increasing the quantity of convolutional layers in the neck network might optimize the advantages of fusion. 
However, it also increases the computational complexity, resulting in an adverse impact on processing efficiency, 
especially in devices with restricted resources. Network quantization38,39 can decrease the cost and computational 
requirements but may sacrifice detection accuracy. Parameterization24,25 can achieve a trade-off between detecting 
performance and speed, although it may experience a decline in performance when subjected to quantization. 
In this paper, we integrated network quantization and reparameterization methods to construct a QARepVGG-
style24,25 feature pyramid network QAHARep-FPN. The QAHARep-FPN structure uses QARepVGGB, QARep-
NeXt, the Transpose operation40,41, and the GhostConv convolution42,43. This can be seen in Fig. 2. This approach 
seeks to achieve an optimal balance between maintaining the accuracy of the detection of fires and achieving 
fast and efficient inference on devices that have limited resource availability.

There are 3× 3 convolution, 1× 1 convolution, identity, and batch normalization (BN) in both the RepVGG-
style and QARepVGG-style convolutional structures (see Fig. 3). During the process of inference, the multi-
branch structure is converted into a single-branch 3× 3 convolution structure through reparameterization. 
Nevertheless, the incorporation of three branches results in a covariate shift, which leads to significant 
performance deterioration during quantization. To address this problem, the QARepVGG-style convolutional 
structure adds more BN operations and gets rid of BN operations after the 1× 1 convolution and identity 
layers to make the training process more stable. This adjustment greatly enhances the quantization effects 
of the QARepVGG-style convolutional structure24,25. The QARepVGGB module in the paper employed the 
QARepVGG-style Convolutional structure. We substituted two standard convolutions with the QARepVGGB 
module.

Furthermore, we draw inspiration from the EfficientRep network44 and design the QAR Unit (Fig. 4) and 
QARepVGG-Block (Fig. 5). The QAR Unit establishes a linear connection between two QARepVGG-style con-
volutional structures. The QARepVGG-Block establishes a linear connection between n2 QAR units. The struc-
ture of QARepNeXt is illustrated in Fig. 5, using QARepVGGB and QARepVGG-Block. The input variable X 
undergoes the QARepVGG-style convolutional operation in the backbone path, resulting in the generation of 
X1 . Subsequently, X1 is fed into the QARepVGG-Block to undergo more extensive feature extraction, yielding 
the feature X2 . After the QARepVGG-style convolutional operation in the subpath, the feature X3 is combined 
with X2 through fusion. Ultimately, the combined characteristics undergo the QARepVGG-style convolutional 
operation to produce X4.

Moreover, we replaced the nn.Upsample operation with the Transpose operation40,41. The nn.Upsample 
mainly uses interpolation to resize images. Although it has some utility in some image-processing applications, 

Figure 2.   The QAHARep-FPN.
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it usually requires an immense computational load. Conversely, the Transpose operation can restructure the 
dimensions of the input tensor to fit different network architectures and task needs. It can also reduce the 
increased computational load and memory utilization. Transpose operation has notable benefits in terms of 
improving model adaptability and coping with resource-constrained scenarios. Finally, we used GhostConv42,43 
to replace two standard convolutions. GhostConv’s channel grouping strategy improves the model’s ability to 
capture nonlinear features, which improves object detection accuracy and minimizes computing costs.

Figure 3.   The reparameterization of RepVGG-style Conv and QARepVGG-style Conv.

Figure 4.   The QAR Unit.
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Proposed NADH decoupled head
By dealing with the data that the neck network has processed, the head network makes final predictions. 
The YOLOv5 head network adopts an integration and sharing method for classification and regression tasks 
(Fig. 6a). This structure potentially results in detecting conflicts for both classification and regression tasks, 
ultimately leading to subpar performance. YOLOX8,21 divides the classification and regression tasks into separate 
subnetworks. This lets it do more calculations and have more parameters (Fig. 6b). This effectively resolves 
conflicts but also makes the parameters and computations bigger. YOLOv616 employs hybrid channels as a 
solution, resulting in parameter reduction at the expense of accuracy (Fig. 6c). YOLOCS27 uses asymmetric 
multichannel compression and decoupling head technology to create separate subnetworks for different detection 
tasks. This makes the model much more accurate at finding things. However, it has challenges in adjusting the 
number of convolutional layers and resolving the problem of the vanishing gradient issue (Fig. 6d).

We proposed a new asymmetric multistage channel compression decoupled head named NADH (Fig. 6e). 
Within NADH, we employed three separate subnetworks to handle classification, object scoring, and bounding 
box regression. To address the bounding box regression problem, we employed three GhostConv convolutions, 
which effectively expand the receptive field and augment the parameter count. We used a 3× 3 ChostConv 
convolution and two 3× 3 DWConv convolutions to expand the network path for the object scoring and object 
classification tasks, respectively. At the same time, we compressed the features of the three channels with the same 
dimension. This allows the three channels to maintain the three-layer convolutional network architecture (Fig. 6).

Proposed Focal‑SIoU loss
The loss function is divided into three parts: classification loss, object scoring loss, and bounding box regression 
loss. The classification loss evaluates the model’s accuracy in categorizing each bounding box as a member of the 
corresponding class. The categorical cross-entropy loss is commonly employed to quantify the difference between 
the model’s classification prediction and the actual label. The calculation procedures for the classification loss are 
represented by Eqs. (1)–(2).The N denotes the total number of classes, xi represents the predicted value of the 
current class, yi represents the probability that the current class will occur given the processing of the activation 
function, and y∗i  represents the true value of the current class (which can be either 0 or 1).

The object scoring loss quantifies the model’s level of certainty for each bounding box and assesses whether the 
bounding box encompasses the object. Binary cross-entropy loss is commonly used to quantify the discrepancy 
between the model’s predicted confidence and the true label. Eq. (3) illustrates the computation process. The Lobj 
denotes the loss of the object score. The Nobj denotes the number of positive samples, which corresponds to the 
number of bounding boxes that include the actual target. The yi represents the actual label of sample i, usually 
assigned as 1 to indicate the existence of a target or 0 to indicate the lack of a target. The Ci denotes the model’s 
confidence estimation for sample i. This estimate, which uses the sigmoid function, typically falls between 0 and 1.

The bounding box regression loss evaluates the precision of localizing bounding boxes in object detection, which 
is essential for achieving successful results. The YOLOv5n utilizes the CIoU Loss, which considers the overlap 
between bounding boxes, the position of the center point, and the difference in size. Nevertheless, the CIoU Loss 
has difficulties in achieving sample weight balancing, effectively handling overlapping objectives, and adapting 
to diverse aspect ratios during the training process. We came up with a Focal-SIoU Loss that combines SIoU 
Loss29,32 with Focal L1 Loss to make object detection better. This new loss function considers both positive and 

(1)yi =Sigmoid(xi) = 1/(1+ e−xi )

(2)Lclass =

N
∑

n=1

y∗i log (yi)+ (1− y∗i ) log (1− yi)

(3)Lobj = −
1

Nobj

Nobj
∑

i=1

[

yi log(Ci)+ (1− yi) log(1− Ci)
]

Figure 5.   The QARepNeXt and QARepVGG-Block.
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negative sample weights, as well as angle, distance, shape, and IoU between the predicted and true bounding 
boxes. It expedites the convergence of the model and enhances the accuracy in the bounding box regression job 
(as shown in Eq. (4), where γ is usually set to 0.5).

The calculation procedures for the angle cost are represented by Eqs. (5)–(8). Fig. 7 illustrates that � is dependent 
on α . α represents the relative angle between the two boxes. The calculation involves utilizing x = sin α and taking 
into account the π4  . When α approaches 0, the angular disparity between the two boxes becomes negligible. When 
� approaches 1, this suggests the necessity for optimization of the angle α . When α approaches π4  , and � is tiny, 
suggesting that β is required to be optimize.

(4)L(Focal−SIoU) = IoUγ LSIoU

(5)� =1− 2 sin2
(

arcsin(x)−
π

4

)

(6)x =
ch

σ
= sin σ

(7)σ =

√

(b
gt
cx − bcx )

2 + (b
gt
cy − bcy )

2

Figure 6.   The head network structure comparison between YOLOFM, YOLOCS, YOLOv6, YOLOv5, and 
YOLOX.
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The calculation procedures for distance cost are represented by Eqs. (9)–(10). Fig. 8 illustrates that � is 
dependent on ρx and ρy , which quantifies the distance difference between the predicted box and the genuine 
box. The weight of the distance cost is controlled by � , which utilizes γ to balance the losses of ρx and ρy . The 
γ varies in response to changes in � . When α falls and the γ increases, the impact of distance cost diminishes, 
suggesting that distance optimization is hindered. When α approaches π4  , γ decreases, and the importance of 
distance cost grows, suggesting that distance optimization becomes more prominent.

The calculation procedures for shape cost are represented by Eqs. (11)–(12). When θ = 1 , the shape cost 
optimizes the bounding box’s shape and constrains the freedom of the shape. The ωw and ωh denote the relative 
variances in width and height, respectively. Eq. (13) is a representation of the IoU cost calculation procedures. 
The intersection-over-union ratio (IoU) loss between the predicted and real boxes is measured by the LIoUCost . 
This quantifies the extent of overlap within the bounding box. The SIoU loss consists of the angle cost, the 
distance cost, the shape cost, and the IoU cost. Eq. (14) serves as a representation of the calculation procedures.

(8)ch =max(b
gt
cy , bcy )−min(b

gt
cy , bcy )

(9)� =

∑

t=x,y

(1− e−γρt)

(10)ρx =
b
gt
cx − bcx
cw

, ρy =
b
gt
cy − bcy

ch
, γ = 2−�

(11)� =

∑

t=w,h

(1− e−ωt)θ

(12)ωw =

∣

∣ω − ωgt
∣

∣

max(ω,ωgt)
,ωh =

∣

∣h− hgt
∣

∣

max(h, hgt)

(13)LIoUCost =1− IoU

(14)Lbox =1− IoU + (�+�)/2

Figure 7.   The angle cost.

Figure 8.   The distance cost.
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Experimental setup and data enhancement
The environmental parameters are displayed in Table 1. Batch Size=640×640, Epochs=200, Batch-size=16, 
Optimizer=SGD, Patience=100, mosaic=1.0, learning rate is 0.01, momentum is 0.937, and weight attenuation 
coefficient is 0.0005. We used LabelImg software to label fire images and added two types of labels: “fire” 
and “smoke”. Afterward, we divided the dataset into a 9:1 ratio of training and test sets. We also used image 
enhancement techniques, including flipping, rotating, and adjusting brightness, to increase the data set. Finally, 
we acquired a dataset for target detection with 18,644 fire images, which we named FM-VOC Dataset18644. This 
dataset includes various fire scenarios, such as structure fires, grassland fires, indoor fires, forest fires, road fires, 
and small target fires. To assess the performance of the model, we employed various metrics such as precision, 
recall, F1, mean average precision at 50% (mAP50), mean average precision from 50% to 95% (mAP50-95), 
frames per second (FPS), parameters (Params), and billions of floating-point operations per second (GFLOPs). 
The calculation procedures for these metrics are shown in Eqs. (15)–(18).

Experimental results and analysis
The comparative experimental analysis of backbone network improvement
Within Table 2, we conducted a series of integration experiments including the integration of several networks 
such as InceptionNeXtBlock45, FasterNext46, ShuffleNetV2Block47, BiFormerBlock48, CB2D49, ELANB50, and 
ConXBv251. The FocalNext network exhibits superior precision and recall compared to the other networks. This 
illustrates that the FocalNext network can enhance detection precision, while simultaneously minimizing both 
false positives and false negatives. The FocalNext network exhibits the highest mAP50 and mAP50-95, suggest-
ing superior performance across different IOU thresholds and with a 50% overlap. It possesses the ability to 

(15)precision =
TP

TP + FP

(16)recall =
TP

TP + FN

(17)F1 =2×
precison× recall

precision+ recall

(18)mAP =
1

n

n
∑

i−1

∫ 1

0
P(R)dR

Table 1.   The experimental environment settings.

Schedule Capacity

Parameters configuration Windows 10

CPU Intel (R) Core (TM) i7-8700 CPU @ 3.20 GHz 3.19 GHz

GPU RTX 2060 (8GB)*1

RAM 16.0 GB

Deployment environment Python 3.8.10

Deep learning framework PyTorch 1.11.0

Accelerated computing architecture CUDA 11.3

Table 2.   The experimental results of backbone network improvement.

Model Precision (%) Recall (%) mAP50 (%) mAP50-95 (%) FPS (%) Params (MB) GFLOPs(G)

YOLOv5n 91.8 90.9 95.3 66.8 80.90 6.72 4.1

InceptionNeXtBlock 89.9 89.8 94.2 63.2 75.68 6.71 4.6

FasterNext 90.7 91.5 94.8 64.7 77.21 6.09 3.8

ShuffleNetV2Block 79.0 75.6 82.5 45.2 81.77 3.09 1.5

BiFormerBlock 90.5 91.4 95.1 67.4 61.73 8.05 7.5

CB2D 91.8 90.3 95.5 67.6 63.16 7.07 4.3

ELANB 88.9 88.1 93.6 61.9 76.36 5.29 3.1

ConXBv2 90.1 90.7 94.8 64.8 73.58 6.80 4.2

FocalNext 92.5 92.5 95.8 67.8 77.94 6.64 4.2
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precisely detect fire targets while retaining stability in different situations, which is essential for applications that 
demand accurate target recognition. The FPS is also relatively high, exhibiting an effective equilibrium between 
performance and speed. The Parameters and GFLOPs of the FocalNext network are within a modest range, 
and it performs well in terms of parameter efficiency and computational burden compared to other networks.

The comparative experimental analysis of neck network improvement
The experimental results shown in Table 3 demonstrate that utilizing the QAHARep-FPN provides substantial 
benefits in comparison to other combinations of modules or baseline models. QAHARep-FPN achieves superior 
precision, recall, and mAP50 while still maintaining the computational economy. This illustrates that the 
QAHARep-FPN framework can attain higher precision in detection. It efficiently minimizes both false positives 
and false negatives. It exhibits high performance over multiple IoU thresholds and 50% overlap, and it can 
effectively maintain stability in diverse settings. While the FPS of the QAHARep-FPN network is slightly lower 
compared to other networks, the disparity is not substantial. It remains feasible to attain an effective equilibrium 
between performance and inference speed. The QAHARep-FPN network demonstrates superior performance 
in terms of Params and GFLOPs compared to other networks.

The comparative experimental analysis of head network improvement
The experimental results presented in Table 4 demonstrate the distinct advantages of NADH in enhancing the 
performance of the YOLOv5n head network, surpassing other head networks. The NADH achieves a precision 
of 93.8% and a recall of 92.9%, which is significantly better than other head networks. This demonstrates that 
NADH can attain remarkably high levels of detection accuracy while simultaneously maintaining exceptional 
recall. The mAP50 and mAP50-95 for NADH are remarkably high, with respectively of 96.2% and 70.6%. This 
demonstrates that NADH exhibits exceptional performance across various IoU levels.

The comparative experimental analysis of loss function improvement
The experimental data presented in Table 5 demonstrate that Focal-SIoU outperforms other loss functions 
to a significant degree. It exhibits high levels of precision and recall, achieving 92.7% and 91.3%, respectively. 
These results demonstrate that the Focal-SIoU method can achieve accurate object detection with an elevated 
recall. The Focal-SIoU achieves high mAP50 and mAP50-95 of 95.7% and 68.6% respectively. These results 
demonstrate that the Focal-SIoU is stable over various IoU overlaps. The Focal-SIoU has a high FPS of 82.29. 
This demonstrates that Focal-SIoU exhibits a comparatively rapid processing rate in challenges involving high-
accuracy object detection. The parameters and GFLOPs are comparable to other loss functions, with both being 
6.72 MB and 4.1 G.

The ablation experiment
The data shown in Table 6 demonstrates that each improvement has a substantial impact on enhancing the 
performance of the YOLOv5n fire detection model. Overall, smoke detection is markedly superior to fire detec-
tion. The differences could be attributed to the differing visual attributes of smoke targets in comparison to fire 
targets, making smoke targets more discernible. Moreover, smoke features are simple, whereas fire features are 
comparatively intricate, posing a greater challenge for the model to comprehend fire in contrast to smoke features. 

Table 3.   The experimental results of neck network improvement.

Model Precision Recall mAP50 mAP50-95 FPS Params (MB) GFLOPs(G)

Conv+ nn.Upsample+ C3(YOLOv5n) 91.8 90.9 95.3 66.8 80.90 6.72 4.1

AsymptoticFPN 91.0 90.2 94.6 64.1 51.63 5.04 3.4

Conv+ Transpose + QARepNeXt 93.4 90.6 95.8 69.9 50.60 8.64 5.6

SimConv+ Transpose + QARepNeXt 92.8 91.5 95.8 69.7 54.38 8.64 5.6

GhostConv+ Transpose + QARepNeXt 92.6 91.0 95.6 69.6 49.04 8.64 5.6

SimConv + QARepVGGB+ Transpose+ QARepNeXt 91.6 92.0 95.8 68.5 65.05 8.66 5.6

GhostConv + QARepVGGB+ Transpose + QARepNeXt 92.4 92.0 95.8 69.9 57.09 8.63 5.6

Table 4.   The experimental results of head network improvement.

Model Precision (%) Recall (%) mAP50 (%) mAP50-95 (%) FPS (%) Params (MB) GFLOPs(G)

YOLOv5n 91.8 90.9 95.3 66.8 80.90 6.72 4.1

YOLOX_DH 93.3 92.7 96.2 71.6 39.91 34.20 44.2

YOLOv6_DH 93.0 90.1 95.5 68.0 68.32 7.25 4.6

YOLOCS_ADH 92.6 92.2 95.9 70.3 43.54 22.78 20.3

YOLOFM_NADH 93.8 92.9 96.2 70.6 65.20 13.87 9.3
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While there are differences, the accurate detection of either smoke or fires in the fire detection can significantly 
mitigate the risk of fire.

In Fig. 9, it can be observed that as the number of training rounds reaches 200, the model converges gradually 
without any signs of overfitting during the training process. The training and verification losses of YOLOFM are 
lower than those of YOLOv5n, and the downward trend is more pronounced, suggesting a superior capacity to fit 
the data. As illustrated in Fig. 10, the YOLOFM exhibits greater accuracy in detecting fire and smoke, bettering 
the YOLOv5n model by a substantial margin. While the FPS of YOLOFM experienced a slight decrease (Table 6), 
it is apparent that the YOLOFM has achieved notable advancements in improving performance metrics, including 
precision, recall, mAP50, and mAP50-95. In the context of fire detection tasks, there is a need to balance 
performance and speed. Generally, greater precision and recall are considered more crucial. When considering 
the collective impact, the substantial enhancement in overall performance outweighs the minor decrease in FPS, 
thereby offering a more dependable and precise solution for fire detection assignments. The experimental data 
from the ablation study offer essential evidence for improving fire detection models, illustrating the effectiveness 
of these improvements in improving fire detection performance.

The SOTA comparison experiment
To fully illustrate the originality and effectiveness of the upgraded YOLOFM network,we compared the trained 
results using the FM-VOC Dataset18644 with other state-of-the-art target recognition techniques, including 
Fast R-CNN6, EfficientDet7, SSD9, RetinaNet10, CenterNet11, YOLO series, and EfficientNet-YOLOv312. To ensure 
fairness, all networks go through the same fine-tuning process during the experiment. The following settings were 
used: image dimensions of 640x640, 200 epochs, batch size of 16, SGD optimizer, patience value of 100, mosaic 
factor of 1.0, and learning rate of 0.01. To minimize the impact of software and hardware on model inference 
time, the experiments are conducted in a controlled experimental setup as shown in Table 1. Table 7 shows that 
YOLOFM performs well across all parameters, notably in precision, recall, and mAP50. While some algorithms 
may have slightly better FPS performance in specific conditions, YOLOFM is still an outstanding fire detection 

Table 5.   The experimental results of loss function improvement.

Model Precision (%) Recall (%) mAP50 (%) mAP50-95 (%) FPS (%) Params (MB) GFLOPs (G)

CIoU 91.8 90.9 95.3 66.8 80.90 6.72 4.1

XIoU 91.7 90.7 95.1 66.8 84.84 6.72 4.1

WIoU 92.1 90.5 95.7 66.8 85.92 6.72 4.1

SIoU 91.5 90.5 95.6 67.0 81.38 6.72 4.1

EIoU 91.2 90.6 95.1 65.8 77.59 6.72 4.1

GIoU 90.7 91.1 95.1 66.7 83.27 6.72 4.1

α-IoU 90.2 87.1 93.4 65.1 81.38 6.72 4.1

EfficiCIoU-Loss 90.3 88.2 91.7 66.4 81.02 6.72 4.1

Focal-EIoU 90.5 91.5 94.8 65.9 84.27 6.72 4.1

Focal-GIoU 92.0 92.4 95.6 68.2 82.12 6.72 4.1

Focal-DIoU 91.7 91.6 95.4 67.2 81.84 6.72 4.1

Focal-SIoU 92.7 91.3 95.7 68.6 82.29 6.72 4.1

Table 6.   The ablation experiments.

Model Num Class Precision Recall mAP50 mAP50-95 FPS Params (MB) GFLOPs(G)

YOLOv5n N1

All 91.8 90.9 95.3 66.8

80.90 6.72 4.1Fire 89.3 89.6 94.2 62.0

Smoke 94.2 92.1 96.4 71.5

FocalNext N2

All 92.5 92.5 95.8 67.8

77.94 6.64 4.2Fire 90.5 93.9 95.1 64.5

Smoke 94.5 91.1 96.5 71.1

FocalNext+QAHARep-FPN N3

All 93.3 93.3 96.8 72.3

67.98 8.55 5.7Fire 91.6 92.6 95.6 66.3

Smoke 94.9 94.0 98.0 78.3

FocalNext+QAHARep -FPN 
+NADH N4

All 94.2 94.2 97.2 73.6

66.58 13.87 6.0Fire 92.5 93.4 96.0 67.9

Smoke 95.9 94.9 98.3 79.4

FocalNext+QAHARep 
-FPN+NADH+Focal-SIoU N5

All 94.9 94.8 97.5 74.7

66.58 13.87 6.4Fire 93.5 94.2 96.3 68.8

Smoke 96.2 95.4 98.7 80.5
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algorithm that can properly identify fires. Furthermore, its model parameters and computational complexity 
are quite low, making it suitable for environments with limited resources. This provides a more dependable and 
accurate solution for fire detection in equipment with limited resources.

Conclusion
Insufficient feature extraction, excessive network processing complexity, limited deployment on resource-con-
strained devices, and missed, false, and low accuracy in current fire detection algorithms are discussed in this 
paper. Optimizing the YOLOv5n algorithm yields the YOLOFM, which is a high-precision, hardware-aware, 
and quantization-aware fire detection algorithm. The optimization plan includes backbone network rebuilding, 
neck structure augmentation, asymmetric compression decoupled head introduction, and loss function substitu-
tion. These improvements maximize algorithm efficiency and detection performance. However, the complexity 

Figure 9.   The loss, precision, recall, mAP50, and mAP50-95 training process comparison curves of YOLOv5 
and YOLOFM.

Figure 10.   The comparison of real instance detection results between YOLOv5n and YOLOFM.
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of flame features may affect the algorithm’s flame detection performance, resulting in lower performance than 
smoke detection. This requires attention later.

Data availability
Data are available on https://​drive.​google.​com/​drive/​folde​rs/​1BvLK​j9jCl​qHfMb​m0o-​x6jJJ​ojrfs​5tyt?​usp=​shari​ng.
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Table 7.   The SOTA comparison experiment.

Model Class Precision (%) Recall (%) mAP50 (%) F1 (%) FPS (%) Params (MB) GFLOPs (G)

SSD9

All 86.5 81.9 87.1 84.0

63.70 90.58 60.91Fire 82.9 75.5 83.1 79.0

Smoke 90.1 88.2 91.1 89.0

CenterNet11

All 96.7 68.7 89.1 80.0

57.98 124.81 69.94Fire 96.4 67.5 87.9 79.0

Smoke 96.9 69.8 90.3 81.0

EfficientDet7

All 93.0 88.0 92.9 91.0

47.95 14.78 4.63Fire 92.2 89.8 92.9 91.0

Smoke 93.8 86.2 92.9 90.0

Fast R-CNN6

All 63.8 92.0 89.9 75.0

43.51 136.71 369.74Fire 64.6 90.5 88.7 75.0

Smoke 62.9 93.4 91.1 75.0

RetinaNet10

All 93.4 90.8 94.5 92.0

43.44 36.35 145.65Fire 90.8 88.0 92.2 89.0

Smoke 96.0 93.5 96.7 95.0

YOLOv313

All 89.5 76.6 86.6 83.0

88.86 61.53 65.60Fire 86.8 69.0 82.3 77.0

Smoke 92.1 84.1 90.8 88.0

EfficientNet- YOLOv312

All 88.9 69.5 84.0 78.0

50.87 7.22 4.04Fire 86.1 59.7 78.1 70.0

Smoke 91.7 79.2 89.8 85.0

YOLOv452

All 92.1 77.5 91.0 84.0

40.96 54.18 59.77Fire 89.9 70.6 87.8 79.0

Smoke 94.3 84.4 94.1 89.0

YOLOv4-Tiny14

All 90.0 77.9 89.4 84.0

234.70 22.44 6.82Fire 88.7 73.0 86.9 80.0

Smoke 91.3 82.7 91.8 87.0

YOLOX (n)21

All 86.3 72.1 83.6 78.0

78.41 34.10 55.67Fire 84.0 63.6 78.6 72.0

Smoke 88.6 80.6 88.5 84.0

YOLOv717

All 97.1 94.2 97.3 96.0

70.80 37.20 105.13Fire 95.8 93.6 96.4 95.0

Smoke 98.3 94.7 98.1 96.0

YOLOv7-Tiny18

All 94.8 75.5 93.2 84.0

107.10 6.02 13.19Fire 92.0 75.3 90.9 83.0

Smoke 97.5 75.7 95.4 85.0

YOLOv819

All 93.8 94.0 96.8 94.0

71.20 6.91 4.40Fire 92.0 93.0 95.7 94.0

Smoke 95.5 94.9 97.9 94.0

YOLOv5n10

All 91.8 90.9 95.3 91.0

80.90 6.72 4.10Fire 89.3 89.6 94.2 91.0

Smoke 94.2 92.1 96.4 91.0

YOLOFM

All 94.9 94.8 97.5 94.0

66.58 13.87 6.40Fire 93.5 94.2 96.3 94.0

Smoke 96.2 95.4 98.7 94.0

https://drive.google.com/drive/folders/1BvLKj9jClqHfMbm0o-x6jJJojrfs5tyt?usp=sharing
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