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OPEN A mathematical model

for the transmission of co-infection
with COVID-19 and kidney disease

Md. Abdul Hye'**¢, Md. Haider Ali Biswas?*?, Mohammed Forhad Uddin3~ &
Md. M. Rahman*>**

The world suffers from the acute respiratory syndrome COVID-19 pandemic, which will be scary if
other co-existing ilinesses exacerbate it. The co-occurrence of the COVID-19 virus with kidney disease
has not been available in the literature. So, further research needs to be conducted to reveal the
transmission dynamics of COVID-19 and kidney disease. This study aims to create mathematical
models to understand how COVID-19 interacts with kidney diseases in specific populations. Therefore,
the initial step was to formulate a deterministic Susceptible-Infected-Recovered (SIR) mathematical
model to depict the co-infection dynamics of COVID-19 and kidney disease. A mathematical model
with seven compartments has been developed using nonlinear ordinary differential equations.

This model incorporates the invariant region, disease-free and endemic equilibrium, along with

the positivity solution. The basic reproduction number, calculated via the next-generation matrix,
allows us to assess the stability of the equilibrium. Sensitivity analysis is also utilised to understand
the influence of each parameter on disease spread or containment. The results show that a surge in
COVID-19 infection rates and the existence of kidney disease significantly enhances the co-infection
risks. Numerical simulations further clarify the potential outcomes of treating COVID-19 alone, kidney
disease alone, and co-infected cases. The study of the potential model can be utilised to maximise the
benefits of simulation to minimise the global health complexity of COVID-19 and kidney disease.

Keywords Co-infection, Kidney disease, COVID-19, Numerical solution, Sensitivity analysis, Parameter
estimation

The latest coronavirus disease 2019 (COVID-19) is a continuous, highly common infectious caused by the Severe
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that originated in China in 2019'-* has indeed spread to
over 300 million people and has occurred about 6 million annual deaths. COVID-19 mainly spreads through the
inhalation of infectious respiratory droplets. Additionally, it can be spread by coming into contact with possibly
contaminated body parts or surfaces and then consuming the virus (Kutter et al., 2018; Andersen et al., 2020),
causing chills, coughing, exhaustion, body pains, headaches, loss of taste or smell, sore throat, and shortness of
breath are some of the clinical signs of COVID-19. These manifestations can lead to illnesses of varying sever-
ity, potentially resulting in death?®. Age and the presence of underlying health vulnerabilities, such as cancer,
kidney disease, lung ailments, neurological disorders, diabetes, and heart conditions, reduce the body’s ability
to fight off the COVID-19 virus. These factors increase the risk of hospitalisation and death from COVID-19 as
well as the vulnerability of clinical signs®=. In a recent study examining the transmission dynamic of COVID-
19 with dengue co-infection, mathematical modelling was employed to gain insight into the combined effect
of the two diseases’. Conventional strategies to control COVID-19 focus on minimising contact. This includes
isolating the sick, using protective measures like gloves and face masks, and practising quarantine.'’!2. However,
various vaccines have recently been formulated and distributed to curb the spread of COVID-19 further. Most
countries are experiencing the fourth wave of the virus despite persistent efforts to contain it. Challenges such
as limited vaccine availability, hesitancy towards vaccination, questions about vaccine effectiveness, waning
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vaccine immunity, non-adherence to public health guidelines, and viral mutations have impeded the success of
vaccination and other preventive measures.

COVID-19 triggers both lower and upper respiratory tract infections, which can result in pneumonia.
Additionally, the virus can affect various other tissues and organs, including the kidneys'®. As per Hu, et al."4,
COVID-19 can lead to multi-organ failure, heightening the mortality risk, particularly in patients with chronic
ailments. A significant number of patients in intensive care units (ICU) are confirmed cases with underlying
co-morbidities. Many studies have recently been conducted to investigate the impact of COVID-19 on kidney
disease and patient outcomes'*. In a prospective study, Cheng, et al.'® discovered that 2% of confirmed cases
have chronic kidney disease. Due to their immunosuppression, patients who have had kidney transplants are
also affected by SARS-CoV-2'%. One common factor that affects the severity of the disease and the risk of death
in patients is acute kidney injury (AKI)*.

Saha, et al.”” report that their model exhibits transcritical, backward, and forward bifurcations with hyster-
esis. They validated this model with COVID-19 data from Hong Kong (December 19 2021 to April 3 2022),
estimated essential parameters, identified sensitive parameters, calculated R(t) for the same period, and analysed
an optimal control problem with vaccination to determine the best strategies for reducing the disease’s impact
on the population and minimising associated costs. Biswas, et al.'® analysed the spread of COVID-19 in high-
density India using a compartmental model, focusing on parameter estimation, sensitivity analysis, and effective
prevention strategies. Asamoah, et al.'” explained a mathematical model for controlling gonorrhea transmission,
incorporating techniques like education, condom use, vaccination, and treatment, and demonstrated through
simulations that these measures effectively reduce infection rates. Asamoah, et al.?® focused on mathematical
models, both integer and fractional order, to effectively analyse the dynamics of Q fever transmission in livestock
involving ticks, with the Atangana-Baleanu operator showing better performance in capturing susceptibilities
and reducing infections. Asamoah, et al.?! presented research on the global stability and cost-effectiveness of
COVID-19 management strategies, particularly considering environmental impacts, and used data from Ghana
for its analysis. Asamoah, et al.”? conducted an in-depth analysis of optimal control strategies and their cost-
effectiveness in managing COVID-19. Furthermore, Asamoah, et al.”® were involved in a detailed sensitivity
assessment and economic evaluation of a novel compartmental model for COVID-19, incorporating various
control interventions.

A vaccination model for COVID-19 includes environmental transmission, focusing on the model’s stabil-
ity based on Pfizer vaccination data in Nigeria and observing the effects of varying fractional-order values on
model**. The study explores the impact of COVID-19 and dengue vaccinations on Zika transmission through a
vaccination model, highlighting the positive influence of increased vaccination efforts on Zika dynamics and the
co-spread of these infections, based on data from Amazonas, Brazil®®. The study enhanced preventive measures
against incident co-infection of SARS-CoV-2 and HBV, which can significantly control their co-circulation, as
concluded from a co-dynamical model and numerical assessments focusing on various intervention strategies?.

Despite the widespread impact of COVID-19, there’s been limited research on its co-infection with kidney
disease. Therefore, the co-infection of the COVID-19 virus with kidney disease remains notably unexplored.
This study delves into the complex interplay between COVID-19 and kidney disease, addressing a significant
gap in current medical research. The paper is structured as follows: firstly, we present a detailed overview of
COVID-19’s global impact, its transmission methods, clinical symptoms, and the increased risks associated
with co-morbidities, specifically kidney disease. Secondly, we introduce a mathematical model elucidating the
transmission dynamics of COVID-19 when co-infected with kidney disease. The approach involves construct-
ing a Susceptible-Infected-Recovered (SIR) model encapsulated within a seven-compartment framework based
on nonlinear ordinary differential equations. Thirdly, we analyse the disease’s dynamics, including assessing
equilibrium states and their stability and conducting a sensitivity analysis to understand the impact of various
parameters on the disease’s spread or containment. The culmination of our study presents insightful findings
on the risks and management strategies of these co-infections, thereby contributing significantly to the broader
understanding and handling of such complex medical scenarios.

Model formulation

We consider a deterministic seven-compartmental human population (Fig. 1). The total population is divided
into seven sub-classes, which are susceptible population (S), infectious individuals with COVID-19 (I,.), infected
by the primary stage of the kidney (Ix), infected by end-stage kidney disease (I4), co-infected with COVID-19
and primary stage of kidney disease (I ),co-infected with COVID-19 and end-stage kidney disease (Ix.), individ-
uals who have recovered from COVID-19 (R). We assume that the rate of increase in the susceptible population
stems from a recruitment rate represented by A, while there’s a natural mortality rate ;u present across all classes.
In the total susceptible population, individuals can get kidney disease with a contact rate of ¢, from a kidney

disease only infected or co-infected person with the force of infection of kidney disease, fx = w

and join I state variable. Similarly, individuals can get COVID-19 with a contact rate of ¢; from a COVID 19—

only infected or co-infected person with the force of infection of COVID-19 f. = M and join I,

state variable. Kidney disease only infected individuals can also get an additional COVID- 19 1nfect10n with the
force of infection f. and join the co-infected compartment (I, ). The co-infected compartment increases because
individuals that come from COVID-19 only infected compartment when kidneys infect them with f; the force
of infection. In this context, 0 is the parameter adjusting for the enhanced transmission of kidney disease among
co-infected individuals and those in the end-stage of the disease, and y denotes the parameter accounting for the
amplified transmissibility of COVID-19 in co-infected persons. Parameters 01,0 are represented progression
rates to fully increased kidney disease by compartments Iy and Iy, respectively. The parameters 71, 72 and 73
indicate recovery rates from COVID-19 for individuals in compartments (1) co-infected with COVID-19 and
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Figure 1. Flow chart for the transmission dynamics of the co-infection of COVID-19 with kidney disease.

primary stage of kidney disease (I, ), co-infected with COVID-19 and end-stage kidney disease (Ix4.) respectively
and a,a; parameters denote adjustments for the susceptibility of individuals with kidney disease to contracting
a COVID-19 infection.
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Analytical analysis
We studied how COVID-19 and kidney disease impact each other by examining them separately first. After
understanding each individually, they’re combined to see the overall effect. The goal is to ensure the combined
results are accurate and logical.

COVID-19-only model: when we exclude kidney disease infections, we can formulate a COVID-19-specific
sub-model from the full disease model; we get Iy = 0, = 0,Ixg = 0, I3 = 0

ds A

ZoA-TESs—us

dt NoTH

dr, I

dtf = ¢;\Ifs -l — ul. )
dR I R

Lol

di 114 — 0

Theorem 1 All the populations of the system with positive initial conditions are nonnegative.

Assume S(0) > 0,Ic(0) > 0,R(0) > 0are positive for time t > 0 and for all nonnegative parameters.
From the initial condition, all the state variables are nonnegative at the initial time; then, t > 0

To show the solutions of the model, as it is positive, first, we take % from equation
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Accordingly, all the variables are nonnegative in [0, t], so S(0) > 0, similarly we can show I¢(0) > 0,R(0) > 0.

Theorem 2 The dynamical system represented by the COVID-19 submodel remains positively invariant within the
closed invariant set defined by Z, = {(S, I,ReR*+:N< & }

w
An invariant region is identified to demonstrate that the solution remains within certain bounds. This invari-
ant region provides a constraint ensuring that the solution does not exceed these limits; we have

N=S+Ic+R

dN _ds  dic  dR
dt ~ dt = dt dt
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n

Ast — oo,weget0 < N < %, the theory of differential equation® in the region.

Ze = {(S,I.,R)eR*+ : N < %}, For the autonomous system representing the COVID-19-only model, given
by (2), any solution that starts in Z. will stay within Z for all ¢ > 0. Based on Cheng et al., this means that Z,
acts as a stable and attractive region. Therefore, according to Naicker et al., the dynamics of model (2) are both
mathematically sound and relevant to epidemiology, and it is appropriate to study its tabiliz within Z,.

Stability analysis of equilibrium states: In the only COVID-19 sub-model, the equilibrium state is reached
when the following conditions are met

ds_dle _dR _
dt — dt  dt

For the isolated COVID-19 model represented by the system (2), the state without any active disease (termed
the disease-free equilibrium or DFE) is derived by setting each component of the system (2) to zero. At this DFE,
neither infections nor recoveries are present.

Therefore, for the stand-alone COVID-19 model (2), the DFE is described Q. = (S, I¢,R) = (l%, 0,0)

The sub-model’s basic reproduction number is the average number of secondary infections caused by a
single COVID-19-infected person in a totally susceptible population. The system (2) calculates it using the
next-generation matrix.

o1

CEYD 3)

RDC

The basic reproduction number, R, represents the average number of people one infected individual is
expected to infect over their entire infectious period within a completely susceptible population.

Theorem 3 For the kidney disease sub-model, the point of equilibrium without the disease is represented as 2,
remains stable as long as the basic reproduction number R, is less than 1.
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The Jacobian matrix is tabiliz to ascertain the equilibrium points’ local stability. For sub-model (2), the Jaco-

oh 0h A
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bian matrix is formulated as ] = %—/2 gTZ %
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i e
J= 13] C—T1— N0 0
0 ©um—pn
The Jacobian matrix for the sub-model, when evaluated at the disease-free equilibrium point €2, is expressed
as
1A
_ 2180
JQoo)=10 —(r14+um) 0
0 71—n
In this context, one of the eigenvalues for 2. is . = —u. The other eigenvalues can be conveniently derived

from the associated submatrix.

J _(—(TH—H) 0 >
1= 71 -

To confirm the local stability of the disease-free equilibrium point, two conditions need to be met:
(i) The trace of J; should be less than zero. (ii) The determinant of J; should be greater than zero.
The trace is Trc (J;) = — (71 + 214), which is less than zero.

det(J1) = (71 + w)u > 0

As a result, the COVID-19 sub-model’s disease-free equilibrium point is asymptotically stable.
Theorem 5. The COVID-19 submodel has an isolated endemic equilibrium point if Ry, > 1.
The endemic equilibrium point of the COVID-19 sub-model is the solution of the system of equation in (4).
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The conclusion drawn is that the infection force f*will be positive at the endemic equilibrium point . only
when R, > 1. With this, we have effectively demonstrated the related theorem.

Theorem 5 Analysis of the Global Stability Analysis for the Endemic Equilibrium Point.

The endemic equilibrium point 2. undergoes a global stability analysis using the Lyapunov function method.
To facilitate this analysis, we establish the

L= %((S—S*)—i— (I = I*) + (R—R*))? (6)

The Lyapunov function L consistently maintains a positive value and only becomes zero at the endemic
equilibrium point and differentiating with respect to time ¢

W
dt (S S)"‘(Ic Ic)+(R R)}(dt+dt+dt

={S+I+R) — (S*+ I+ R*) }(A — uN)

N—-A
2%@_#1\;)

__(A—uNy?
M
dL <0
dt —
For R,¢ > 1, the endemic equilibrium point exists, leading to “% is less than zero. It seems that the function

L appears as a clear-cut Lyapunov function, suggesting that the endemic equilibrium point reaches asymptotic
and global stability. From a biological perspective, this signifies that COVID-19 has remained prevalent in the
community over a prolonged duration.

Analysing the sensitivity-only COVID-19 model

We conducted a sensitivity analysis of parameters within the COVID-19 sub-model. The behavior of the model
in response to modest changes in a parameter’s value is known as the parameter’s sensitivity and is tabilize by
the symbol ¢;. It can be expressed as

o1
Roye = ————
(t1+ 1)
S, — Roc ¢ 1 1 i
T 8%, Ree (4 p) 9
L #0e 1T H (t14+1)
_ORe p _ Y
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Table 1 displays the data for the sensitivity indices related to the sole COVID-19 sub-model. This sub-model
analysis reveals that the COVID-19 contact rate is ¢y, play a significant role in intensifying the virus’s spread.
This trend results from an upsurge in secondary infections when these parameters increase, as highlighted by
(Martcheva 2015). Conversely, parameters such as tj and u have a diminishing effect, meaning an uptick in their
values could reduce the infection rate. A visual depiction of the sensitivity indices for R, is showcased in Fig. 2.

Parameter Description of the parameter Measures of sensitivity
T COVID-19 single-infection recovery rate —0.99112

b1 Contact rate of Covid-19 +1

“w Human natural death rate —0.08

Table 1. Values indicated in Table 3 were used to compute the sensitivity indices for the only COVID-19 sub-

model.
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Figure 2. The graphical depiction of the sensitivity indices concerning the primary reproduction number (R,)
parameters are shown in the COVID-19 sub-model.

Kidney disease-only model
Kidney disease-only sub-model from the co-infection model, we get I, = 0, I, = 0,Ixgc = 0,R =10
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Theorem 6 All the populations of the system with positive initial conditions are nonnegative.

Assume S(0) > 0,1 (0) > 0,I(0) > 0are positive for time t > 0 and all nonnegative parameters.
From the initial condition, all the state variables are nonnegative at the initial time; then, t > 0.

To show the solutions of the model, as it is positive, first, we take % from equation

dB APl s

dt N

S _ (o

a_A (N -‘r—M)S

S(t) = S(0) exp (—}{%—i—u}du) +,;Aexp(7{% —HL}du)dx X exp (—}{%—i—u}du) >0
0 N 0 0 N 0 N

(8)
Hence S(0) > 0, similarly we can prove I} (0) > 0,1(0) > 0.

Theorem 7 The dynamical system (7) is positively invariant in the closed invariant set.

A
Zi = {(S. I Ikg)eR*+ : N < —}
y2

To obtain an invariant region that shows that the solution is bounded, we have
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Ast — oo, weget0 < N < %, the theory of differential equation® in the region.
Zr = {(S, I, Irg)eR*+ : N < %} For the autonomous system representing the Kidney disease-only model,
given by (7), any solution that starts in Z; will stay within Z for allt > 0

Kidney disease sub-model with disease-free equilibrium (DFE)
By equating Eq. (10) to zero if = ”Zt" = M =0

The disease-free equilibrium (DFE) of the COVID-19-only model system (7) is obtained by setting each of
the systems of model system (10) to zero. Also, at the DFE, there are no infections. Thus, the DFE of the COVID-

is oi — — (A
19-only model (10) is given by Qox = (S, I, Ikq) = (u ,0,0)

Basic reproduction number Ry
Employing the next-generation matrix method outlined in (Yang 2014), we derive the related next-generation
matrix as

o 0
v=| otk
—o1lx + kg

G2 +01)
_{ 2 kN kd S}

Consequently, the terms for new infections, F and the subsequent transfer components, V are provided as
follows:

b2 P28
r= (3]

V= [(01+H) 0}

—01r M
1
So, Ve —— ® 0
(01—|—[L);L o1 (o1 + )

The next-generation matrix FV ~'s leading eigenvalue, which is also known as the spectral radius, represents
the fundamental reproductive number and is defined as:

$2(u +001)
Rop = ——+— 9
(o1 +
R, represents the anticipated count of secondary infections produced by a single infected person throughout
their entire infectious phase within a wholly susceptible community.

Theorem 8 The DFE is locally asymptotically stable if Rox < 1and unstable if Rox > 1

We use the Jacobian matrix to ascertain the local stability of equilibrium points. For sub-model (7), the
Jacobian matrix is given as

9f 9h Of
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At the disease-free equilibrium point g, the Jacobian matrix of the sub-model is given

DrA Dr0A

;li_ N o
J(01) = | 07 — (01 + W),
0o1 — 1

For J(Q0k) the eigenvalues is A = —y, and the other eigenvalues can be swiftly obtained using the submatrix

J = (¢2 — (o1 + 1) ¢29)
o1 K
We must show that J3s trace is negative, and its determinant is positive to determine the local stability of the
disease-free equilibrium point.
Trc (J2) = ¢2 — (t2 + 2u), which is less than zero. if ¢2 < (12 + 2u)
det(J2) = —¢a(u + 001) + u( + o1)
This value is greater than zero if% < 1thatisdet(J;) > 0 if Rox < land det(J) < 0 if Rog > 1
For the kidney disease sub-model, the disease-free equilibrium point is stable when R,; < 1and unstable

when Ry > 1.
Theorem 9 Only when Ry, > 1does the endemic equilibrium point exist?

By resolving the above system of equations, we were also able to determine the endemic (disease present) equilibrium
point of the renal disease sub-model.:

A—filS—nuS=0
fS—o1lx — ul =0
orly — ulgg =0

Here f; = ¢2Uk}‘591kd]
Solving the equation
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o o[l + 0] dafiS* ( 1, bon )
k N N \u+or  pu+on)
0
fro B2 {1 ﬂ} .
(1 +01) j
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Hence the endemic equilibrium point exists when Ryx > 1

Global stability of DFE

Theorem 10 The disease-free equilibrium point of the Kidney disease-sub model (7) is globally asymptotically sta-

ble. If Rpi < 1
Proof Considering the Lyapunov function

T = uly + ¢201ka (10)

Differentiating with respect to time
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<0, for Rypy <1
since all the model parameters are positive, so that ‘{% < 0for Ryx < 1, with ‘3—{ = 0 when Iy = I;y = 0. Using
(x> Ira) = (0,0) into the Kidney disease only sub- model (7) represents that S — % ast — oo. Hence T is a
Lyapunov function on Qo and the largest compact invariant set in {(S, I, Ixz) € Q2 : % = 0} is Q. So every
solution of (7), with an initial condition in £ approaches €2k, ast — oo whenever Ry < 1.

Theorem 11 In the kidney disease-only model, the equilibrium point indicating the existence of the disease is glob-
ally stable when Ry > L.

Denote the endemic equilibrium is denoted by Ex = (§*,1 If, 1 Ifd), At the steady state, the force of infection
fx is represented as:

. 62 +0I)

Je = S+ I + I (1)
In the sub-model (7), we obtain by setting the right-hand sides equal to zero
k — A
e+
* Afk>‘<
Ik = *7
(" + )
I* B AJlfk*
kd (fk* + M)IL
Using (10),
(1 +o0)fy +u(p+01) — 2001 + 1) =0 (12)

The linear Eq. (12) has a unique positive solution given by

fr= $2(001 + 1) — p(p +o1)
¢ (1 + o)

(u+o)ff = +0) Rk — 1)

fk* = u(Rok — 1)

This has biological significance when Ry > 1. It is mentioned that R, < 1 implies that
¢2(001 + ) — (e + o1) < 0. When this occurs, the force of infection fj is negative, suggesting that the dis-
ease’s equilibrium point shifts to global stability.

Analysis of sensitivity for the kidney disease model
Equation (7) specifies the renal sub-model and the examination of sensitivity for its basic reproduction number
uses Yang’s (2014) tabilize forward sensitivity index for that basic reproduction number.

$2(p +001)
Rok =
u(p +o1)
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Parameter | Description Sensitivity indices
o1 Progression rates to fully increased kidney disease by Compartments I +0.036

b2 Contact rate of kidney disease +1

m Natural death rate —0.151

The parameter adjusting for the enhanced transmission of kidney disease among co-infected individu-
0 als and those in the end-stage +0.9974
of the disease

Table 2. Sensitivity indices for the kidney disease-only sub-model.

_ORok 42 (u+bo) ¢

0 = = hautooy — 11
862 ROC H(M+Gl) m
_ORyk o1 (@ —-1) o1  ou@-1
o Ror 2 $r(utbo)
do1 Rox (o1 + ) ;ZL(TWT; (o1 + ) (e +0o1)
aRok 0 ¢201 0 90’1
e = = =
¢2(u+601)
a6 Rok M(/’L +Ul) W (,LL + 6o1)
s — ORox o _4)2 (uz + 2uo + 9012) " _ (Mz + 2uoy + 9012)
"o R pAp+oy)?  Glitbo) (1 +601)

n(ptor)

Based on the sensitivity indices presented in Table 2, several observations can be made regarding the factors
influencing the spread of kidney disease: 1. The contact rate specific to kidney disease is represented by ¢, exhibit
a pronounced positive correlation with the disease’s propagation. This implies that as these rates increase, the
disease spreads more aggressively. 2. The parameter adjusting for the enhanced transmission of kidney disease
among co-infected individuals and those in the end-stage of the disease, denoted as 6, and Progression rates o1
also positively influences the spread of the disease. This suggests a higher transfer rate among the co-infected
exacerbates the spread of the disease. 3. Conversely, certain parameters, namely 1, mitigate the spread of kidney
disease. Specifically, elevating the values of this parameter leads to a reduction in the number of individuals
afflicted with kidney disease.

COVID-19 and kidney disease full model
By analyzing the equations’ right-hand sides, we could derive the equilibrium locations for the entire model (1).
A—fiS—£S—npuS=0
fieS — o1l — arfely + kR + talke — I = 0
GR+£.S — fide — 1l — ple = 0
arfelx + fide — o2y — Talye — plge = 0 (13)
o1lg + w3lkde — @aofelkd — plga = 0
02lke + crfelka — T3lkde — plkac = 0
tl. — fiR— ¢R— uR =0

where the forces of infection f; and f; are identical to those in Eqgs. (5) and (10). The whole model’s disease-free
equilibrium point (2¢.) is then calculated as

A
Qock = (;,0,0,0,0,0,0) (14)

We have now calculated the basic reproduction number Ry of the complete model using the next-generation

matrix. Using the notation of the diseased states (I, I, Ixd, Ikc> Ikdc)» Given the vector differential equations form
‘% = F(x) — V(x), where V(x) = V™ (x) — VT (x).F(x) is the rate at which new infections arise in compart-
ments, V¥ (x) is the rate at which people are transferred into the compartment, and V= (x) is the rate at which

people are transferred out of the compartments Iy, I, Ixc, Ixg> Ixdc

fiS+1fiR (o1 +oife + Wk — Talke
feS (fx + 71 + W,
F(x) = fi 1, andV (x) = (02 + 12 + W —arfely
0 (aafe + 1) Ixa — 01Tk — T31kge
0 (t3 + Wige — 02k — a2fcla

At Ey
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$ 0 0060
0 ¢ 70y
F = 0 00O0O0
0 0000O
0 00O0O
(e +w) O ) 0 0
0 T1+u 0 0 0
V= 0 0 (o+m+w 0 0
—01 0 0 Mmoo -1
0 0 -0 0 (z3+n1)
1
@m0 T 0 0
1 0 EEm (1) 0 0
Ve = 0 0 atarn 00
__o 1 _
w0 (37 m 1T3
2
0 0 - (o2+12+p) (T3+1) 0 T3+
hlo+w 6 9A 0A
wulo+w) (02+12+41) woou
0 1 y A 0 ya&
Fyl = u(rit+p) 7 ploa+ta+u) "
- 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

To determine the basic reproduction number R of the system, the eigenvalues can be employed, specifi-

cally by examining the spectral radius of the matrix FV ~!. The eigenvalues can be determined by assessing the
equation:

det [FVv™' —JI] =0

@2 (001 +1) ) 0
S ~4 0 o 90

¢ Y
0 L. — ] 0 y

-1 , (T1+p) (o2+12+1)
|FV—" — Al = 0 0 -2 0 0|=0

0 0 0 —70
0 0 0 0 —4

: _ @+ 45 _ _ ¢ _ — 0 ). —

Here eigenvalues are 4; = /i(all_m) J A = r1-¢ ),13 =0,24=0,A5=0
Thus, it can be concluded that the COVID-19 and kidney disease co-infection model has a reproduction

number given by Rx = {Roc, Rokl;

$2(001+1)

where Rox = CaET)

and ROC = %

Stability of Qqck for the full co-infection model

Theorem 12 When Ry > 1, model (1) has (g ) that is locally asymptotically stable.

The eigenvalues of each equilibrium were used to examine its local stability (Fudolig and Howard, 2020). The
eigenvalues are found in the Jacobian matrix, which each equilibrium has replaced. The model (1)’s Jacobian
matrix can be described as

A—fiS—£S—uS=0
fiS —o1ly —onfely + kR + ol — ulxy =0
feS—fle—nl,—ul. =0
aifedk + fille — 020k — T2lke — ke = 0
o1y + ta3lkde — Qaofclka — plgg = 0

ool + eofcIig — t3lkge — dkgc =0
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il —fiR — uR =0

—u —¢2 —¢; —(¢20 + ¢17) —20 — (20 +r1y) O
0 ¢ —(o1+ 1) 0 $20 + 7, $20 $20 0
0 0 61— (11 + ) dr1y 0 0 0
J= 0 0 0 —(oy+1+un) 0 0 0
0 o] 0 0 - 73 0
0 0 0 ) 0 —(t5+ ) 0
0 0 7 0 0 0 -

At the disease-free equilibrium, we obtained the following characteristic polynomial:

QW) =+l +wds+ (s +0or+ 2+ w)is — g2+ o1+ ) —d1 + 11 + (A7 + 13+ 1)
(15)

Wegetid = —p, 2o = =, A3 = =, Ay = —(02 + 12 + 1)

Andls =—¢y+o1+u<0andlg=—¢1+11+1u <0

<o+, <T1+n1

“_ $a0oi+p) [}
Oor1+pn plor+u) < la;:d T1+p

N 1
@ Rok < Land s < 1
So,Rox < land Ry < 1

So, the co-infection full model (1), o reaches local asymptotic stability as a disease-free equilibrium point.

<1

Global stability analysis of co-infection full model
From the full model‘% =F(X,Z2), % =TX,Z2), T(X,0) =0,

Here X = (S, R)and Z = (I, I, Ixe, Ixd» Ixdc)- In this case, representation X, which belongs to R? signifies the
compartments of healthy individuals, while Z, a part of R, stands for the infected population compartments.
The disease-free equilibrium state is denoted by Uy = (X, 0), where Xy = (%, 0)

The following assumptions (H;) and (H3) ensure that Qo for Ry is globally asymptotically stable. (H;) For
‘fi—}f = F(X, 0), the equilibrium point Uy is globally stable;

(H)G(X,Z) = AZ-T(X,Z),G(X,Z) > 0 for (X, Z) € €, The feasible area of the constructed model is
denoted by 2, and A = Dz T'(Uy, 0) is a Metzler matrix. From our co-infection mathematical model Eq. (1), we

have%f =FX,Z)= {A—ka—ch—MS}

ul. — fiR — uR
S0, T(X,0) = {A _()Ms}and
fiS — o1l — aifel + fikR + talke — i
az fcs _fklc — 1l — pl;
i TX,2) = | ofcde + file — 020k — T2lke — plkc

o1lx + ta3lkae — aafelia — plia
02Ike + Qofclyg — T3lkae — itlgac

T(X,2) = AZ — T(X, Z)

Tl(X’Z) —fkS — fkR + a1 feIi
N (X, Z) —feS + file
So, TX,2) = | [3(X,2) | = —aifedy — file
T4(X, 2) afclia
[ —oiofclkd
Ts5(X,2)

Thus,—o1f Iy — fxlo < 0and —aafcIkg < 0. From this, condition H; is not met. Consequently,Uj and subse-
quently, the disease-free equilibrium point €2, cannot achieve global asymptotic stability.

Parameter estimation

We have derived the values of the model parameters using authentic data from Bangladesh, encompassing both
kidney disease and cumulative COVID-19 infected cases. The COVID-19 dataset, from the initial reporting
date of March 8, 2020, to September 8, 2020, was collated daily and sourced from?®. Concurrently, the data for
Kidney disease from 2020 to 2023 was compiled every month and can be accessed®. To calibrate the model and
deduce the parameter values from the data, we employed a hybrid approach combining least squares and Bayes-
ian methods. Additionally, a nonlinear curve-fitting technique was employed, using MATLAB’s ‘fminsearch’
function Certain parameters were inferred from existing literature. For instance, based on Worldometer’s data,
Bangladesh’s average life expectancy in 2020 was 72.72 years (macrotrends,2024), and we considered a subset
population of 16,580,000. This led to the calculation of the natural mortality rate per month as the inverse of life
expectancy, resulting in a value of p = Wlx_%ﬁ‘s = 0.000038. Furthermore, the recruitment rate was approxi-
mated by manipulating the ratio of % to yield the initial population, resulting in V = 630 individuals per day.

Due to limited data on co-infections, we estimated certain co-infection related parameters, while others were
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Parameter Description Value Reference
A Recruitment rate of the human population 630 Calculated
[ Contact rate of Covid-19 0.1175 Fitted
b2 Contact rate of kidney disease 0.3425 Fitted
0 The parameter adjusting for the enhanced transmission of kidney disease among co-infected individuals and 11 8

those in the end-stage of the disease
y Parameter accounting for the amplified transmissibility of COVID-19 in co-infected persons 1.0 Estimated
o1 Progression rates to fully increased kidney disease by compartments Iy 0.15 Fitted
02 Progression rates to fully increased kidney disease by compartment Iy, 0.15 Fitted
o Parameters denote adjustments for the susceptibility of individuals with kidney disease to contracting COVID- 13 1

19 infection
7 COVID-19 single-infection recovery rate 0.067 Estimated
53 COVID-19 recovery rate in the compartment I 0.067 Estimated
73 Recovery rate among co-infected in compartment I for COVID-19 0.067 Estimated
i Human natural death rate 0.000038 Calculated

Table 3. Description of variables and parameters in the model equation.
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(a)

Figure 3. Model fitting with reported COVID-19 and kidney disease data.

(b)

30

deduced from actual data. During the estimation process, the initial conditions of the state variables were set

as delineated in Table 3.

Figure 3 illustrates the model’ fit for both cumulative COVID-19 infections and cumulative kidney infections.
In Fig. 3a, the model’s output for COVID-19 infections is compared to the actual observed data of COVID-19
cases. Similarly, Fig. 3b demonstrates the alignment between the model’s simulation and the observed data for
kidney disease infections. In both instances, solid lines represent the model’s simulated output, and dotted lines
correspond to the actual observed data for the two diseases from Bangladesh. The comparison reveals a strong

congruence between the model simulations and the actual data.

Numerical simulations

To explore the co-infection dynamics between COVID-19 and Kidney disease in scenarios without treatment,
we carried out numerical simulations using the combined COVID-19 and Kidney disease model. The majority of
theoretical results from this investigation are illustrated through these simulations. For our computational study,
we employed the ode45 function. Ode45, incorporated into MATLAB, is a non-stiff one-step solver based on the
Runge-Kautta (4, 5) method. It stands out for its speed, accuracy, and stability. While it is superior to the Euler
method in terms of efficiency, its true strength lies in its simplicity and stability, especially when juxtaposed with
multi-step strategies. Despite consuming more computational time than other equivalent accuracy multi-step
methods, the straightforward nature and user-friendliness of ode45 compensate for its computational demands.
Parameters driving our simulations can be found in Table 3, along with the initial conditions set for the experi-

ment § = 50000, I. = 500, I = 300, Iz = 200, Irzc = 100, R = 30.

Figure 4 showcases a series of time-dependent plots that illustrate the dynamics of the co-infection as it
evolves over time. These plots have been constructed by numerically solving the co-infection model repre-
sented by Eq. (1). The solutions have been derived using the specific parameter values enumerated in Table 3.
The progression depicted in each plot provides insights into the tabiliz of the diseases in the system and their

interactions over the duration captured.
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Figure 4. Solution of the comprehensive co-infection model using parameter values in Table 3.
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Figure 5. Graphical representation of the stability at the disease-free equilibrium point when Ry < 1and
Ry > L

Figures 5, 6 and 7 illustrate the stability characteristics solutions when subject to many initial circumstances.
Specifically, Fig. 5 focuses on the initial conditions for the susceptible compartment within the COVID-19
sub-model. In contrast, Fig. 6 pertains to the infected compartment of the same sub-model. Lastly, Fig. 7 delves
into the dynamics of those co-infected with COVID-19 and the primary stage of kidney disease. These figures
provide valuable insights into how the system responds to changes in initial states, shedding light on the disease
dynamics and potential interactions between the two health conditions.

Figures 8 and 9 elucidate the influence of rates ¢; and ¢, on co-infected individuals within the Iy, class. Nota-
bly, as these rates escalate, initially there’s a consequent increase in the count of individuals in the co-infected
population, later after reaching a peak the count of individuals gradually declines. These rates, presumably,
describe how quickly individuals leave or transition out of this co-infected population. The main observation
drawn from Fig. 8 is that, as the ¢; increases, the rate of increase in the number of co-infected individuals also
increases sharply and reaches a peak at almost the same time, declining gradually as the infected individuals
recover or die. In context, the effect of ¢, on the number of infected individuals is very sensitive. As is noted in
Fig. 9, for the largest value of ¢, the number of infected individuals quickly arrives at the peak. As ¢, decreases,
it takes a relatively greater time for the number of co-infected individuals to reach at peak.
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Figure 6. Graphical representation of the stability at the disease-free equilibrium point when Ry, < 1and
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Figure 7. Graphical representation of the stability at the disease-free equilibrium point when Ry < 1and
Ry > L

Figures 10 and 11 offer detailed visual representations of how the rates ¢; and ¢, affect the co-infected indi-
viduals within the COVID-19 and end stage of kidney disease (Ij.) class. These rates signify how individuals
transition out of the co-infected state.

As ¢ increases, the co-infected individuals also increase for a certain period (around 130 days) and then
decrease slowly. On the contrary, the dynamics of co-infected individuals in the end-stage kidney disease show
some variation. For example, the largest value of ¢, there is an increasing trend in the number of co-infected
individuals, so for moderate value of ¢b,. But for the lowest value of ¢, the trend of co-infected individuals shows
up and down tabiliz. Interestingly, contrary to initial assumptions, the figures indicate that a rise in either ¢; or
¢2 corresponds to an uptick in the number of co-infected individuals within the 4. class.

In Fig. 12, we illustrate the influence of transfer rates to the co-infected class, stemming from each actively
infected individual of the respective diseases. Specifically, this figure delves into the effects of contact rates about
co-infected compartments of both COVID-19 and end-stage kidney disease (Ix4.) as described in our system (1).
The interactive effect of ¢; and ¢, depicts that the co-infected population rises to a peak at a particular time point
and then decreases regardless of the different parameter combinations. However, the curves do not intersect for
different levels of either ¢; or ¢, the trend of co-infected populations is similar for Ix;. group.

Figure 13 showcases the proliferation of co-infected as the effective contact rates vary. In contrast, the dynam-
ics of individuals solely infected with COVID-19, to differing contact rates, are depicted in both Figs. 12 and 13.
A notable observation is that the population in the state I diminishes while in It grows as transmission coef-
ficients escalate. Crucially, these numerical observations echo our analytical insights drawn from the sensitivity
analysis within the sub-models.
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Figure 8. Behavior of I, for the different values of ¢ and other values of the parameter in Table 3.
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Figure 9. Behavior of I, for the different values of ¢, and other parameter values in Table 3.

Figure 14 shows an inverse relationship between the susceptible and COVID-19-infected populations. As
the number of susceptible individuals rises, the number of those infected with COVID-19 decreases. This phase
plane suggests that new infections decline as more individuals become less vulnerable or exposed to the virus
(perhaps due to factors like vaccination, prior infection, or preventive measures).

In Fig. 15, the graph reveals that as the number of infected solely with only COVID-19 grows, there is a cor-
responding increase in the population co-infected with both COVID-19 and the primary stage of kidney disease.
Simultaneously, we observe a decline in the susceptible population. Intriguingly, when there’s a surge in the
susceptible population, neither the co-infected nor the solely COVID-19-infected group shows a proportional
rise. Instead, their numbers stabilise or remain consistent; they plateau or stay steady.

In Fig. 16, the scatter plot shows a positive correlation between the number of kidney disease individuals and
the number of COVID-19-infected people. Also, our analytical analysis shows that people with kidney disease
are more likely to get COVID-19.

Figure 17 demonstrates a positive correlation between the two variables, suggesting that those infected with
COVID-19 have a higher risk of being co-infected with COVID-19 and kidney disease. COVID-19 can damage
the kidneys, leading to acute kidney injury and a sudden loss of kidney function. Acute kidney injury can be
fatal and is more likely to occur in people with kidney disease.
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Figure 11. Effect of Contact rate of kidney disease interventions on co-infected populations.
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Figure 12. Impact of the contact rates ¢ and ¢, on the transmission dynamics of the co-infected ones (Ix4.)
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Figure 13. Impacts of the contact rates ¢; and f, on the dynamics of infected COVID-19 (I;) transmission.
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Figure 14. Phase plane illustrating the dynamical interplay between susceptible population individuals S and
infected COVID-19 individuals I..

Conclusion

We developed a mathematical model to study the spread of co-infection between kidney disease and COVID-
19. This model ensures solutions are positive and limited within a biologically meaningful range. We identified
equilibrium points for the diseases separately and analysed their stability based on their basic reproduction
numbers. We also examined the co-infection reproduction number and its sensitivity analysis, revealing that a
rise in infection rates from either disease increases the co-infection risk. The key findings of the new develop-
ment model are listed below;

® Our analysis found that if the infection rate for either COVID-19 or kidney disease increases, the risk of
people getting both diseases increases significantly. This means that controlling the spread of each disease is
crucial to reducing the overall risk of co-infections.

e Changing how easily each disease is transmitted (known as transmission coefficients) affects the diseases
differently depending on their stage. For example, a transmission change might significantly impact someone
who’s just contracted the disease more than someone living with it for a while.

®  Welooked at how changes in the contact rate for COVID-19 (¢;) and the contact rate for kidney disease (¢2)
affect the diseases. We found that these changes have different impacts depending on whether the kidney
disease is in its early stage (primary) or late stage (end-stage). This means how each disease spreads and affects
people can vary significantly based on the disease’s progression.
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® We identified specific points, called equilibrium points, for each disease. These points help us understand
how likely the disease will remain in the population over time. If the number we calculate for these points is
more than one, it suggests that the disease will continue to exist within the population. This is a key indicator
for public health strategies, highlighting the need for ongoing disease management and control measures.

The observations drawn from the model are consistent with analytical conclusions from the sensitivity analy-
sis, especially emphasising the critical role of reducing the susceptible population—potentially through measures
like vaccination or natural immunity—to decrease new infections. The findings highlight the complex interplay of
disease transmission and co-infections, presenting areas of concern and possible intervention points for effective
disease control. The present results and models also maximise the benefits of simulation modelling to minimise
the global health complexity of COVID-19 and kidney disease. The more effective strategies for reducing the
impact of COVID-19 and kidney disease through optimal control methods are used in our forthcoming studies.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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