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A mathematical model 
for the transmission of co‑infection 
with COVID‑19 and kidney disease
Md. Abdul Hye 1,3*, Md. Haider Ali Biswas 2*, Mohammed Forhad Uddin 3* & 
Md. M. Rahman 4,5*

The world suffers from the acute respiratory syndrome COVID-19 pandemic, which will be scary if 
other co-existing illnesses exacerbate it. The co-occurrence of the COVID-19 virus with kidney disease 
has not been available in the literature. So, further research needs to be conducted to reveal the 
transmission dynamics of COVID-19 and kidney disease. This study aims to create mathematical 
models to understand how COVID-19 interacts with kidney diseases in specific populations. Therefore, 
the initial step was to formulate a deterministic Susceptible-Infected-Recovered (SIR) mathematical 
model to depict the co-infection dynamics of COVID-19 and kidney disease. A mathematical model 
with seven compartments has been developed using nonlinear ordinary differential equations. 
This model incorporates the invariant region, disease-free and endemic equilibrium, along with 
the positivity solution. The basic reproduction number, calculated via the next-generation matrix, 
allows us to assess the stability of the equilibrium. Sensitivity analysis is also utilised to understand 
the influence of each parameter on disease spread or containment. The results show that a surge in 
COVID-19 infection rates and the existence of kidney disease significantly enhances the co-infection 
risks. Numerical simulations further clarify the potential outcomes of treating COVID-19 alone, kidney 
disease alone, and co-infected cases. The study of the potential model can be utilised to maximise the 
benefits of simulation to minimise the global health complexity of COVID-19 and kidney disease.

Keywords  Co-infection, Kidney disease, COVID-19, Numerical solution, Sensitivity analysis, Parameter 
estimation

The latest coronavirus disease 2019 (COVID-19) is a continuous, highly common infectious caused by the Severe 
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that originated in China in 20191–3 has indeed spread to 
over 300 million people and has occurred about 6 million annual deaths. COVID-19 mainly spreads through the 
inhalation of infectious respiratory droplets. Additionally, it can be spread by coming into contact with possibly 
contaminated body parts or surfaces and then consuming the virus (Kutter et al., 2018; Andersen et al., 2020), 
causing chills, coughing, exhaustion, body pains, headaches, loss of taste or smell, sore throat, and shortness of 
breath are some of the clinical signs of COVID-19. These manifestations can lead to illnesses of varying sever-
ity, potentially resulting in death4. Age and the presence of underlying health vulnerabilities, such as cancer, 
kidney disease, lung ailments, neurological disorders, diabetes, and heart conditions, reduce the body’s ability 
to fight off the COVID-19 virus. These factors increase the risk of hospitalisation and death from COVID-19 as 
well as the vulnerability of clinical signs5–8. In a recent study examining the transmission dynamic of COVID-
19 with dengue co-infection, mathematical modelling was employed to gain insight into the combined effect 
of the two diseases9. Conventional strategies to control COVID-19 focus on minimising contact. This includes 
isolating the sick, using protective measures like gloves and face masks, and practising quarantine.10–12. However, 
various vaccines have recently been formulated and distributed to curb the spread of COVID-19 further. Most 
countries are experiencing the fourth wave of the virus despite persistent efforts to contain it. Challenges such 
as limited vaccine availability, hesitancy towards vaccination, questions about vaccine effectiveness, waning 
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vaccine immunity, non-adherence to public health guidelines, and viral mutations have impeded the success of 
vaccination and other preventive measures.

COVID-19 triggers both lower and upper respiratory tract infections, which can result in pneumonia. 
Additionally, the virus can affect various other tissues and organs, including the kidneys13. As per Hu, et al.14, 
COVID-19 can lead to multi-organ failure, heightening the mortality risk, particularly in patients with chronic 
ailments. A significant number of patients in intensive care units (ICU) are confirmed cases with underlying 
co-morbidities. Many studies have recently been conducted to investigate the impact of COVID-19 on kidney 
disease and patient outcomes14. In a prospective study, Cheng, et al.15 discovered that 2% of confirmed cases 
have chronic kidney disease. Due to their immunosuppression, patients who have had kidney transplants are 
also affected by SARS-CoV-213. One common factor that affects the severity of the disease and the risk of death 
in patients is acute kidney injury (AKI)16.

Saha, et al.17 report that their model exhibits transcritical, backward, and forward bifurcations with hyster-
esis. They validated this model with COVID-19 data from Hong Kong (December 19 2021 to April 3 2022), 
estimated essential parameters, identified sensitive parameters, calculated R(t) for the same period, and analysed 
an optimal control problem with vaccination to determine the best strategies for reducing the disease’s impact 
on the population and minimising associated costs. Biswas, et al.18 analysed the spread of COVID-19 in high-
density India using a compartmental model, focusing on parameter estimation, sensitivity analysis, and effective 
prevention strategies. Asamoah, et al.19 explained a mathematical model for controlling gonorrhea transmission, 
incorporating techniques like education, condom use, vaccination, and treatment, and demonstrated through 
simulations that these measures effectively reduce infection rates. Asamoah, et al.20 focused on mathematical 
models, both integer and fractional order, to effectively analyse the dynamics of Q fever transmission in livestock 
involving ticks, with the Atangana-Baleanu operator showing better performance in capturing susceptibilities 
and reducing infections. Asamoah, et al.21 presented research on the global stability and cost-effectiveness of 
COVID-19 management strategies, particularly considering environmental impacts, and used data from Ghana 
for its analysis. Asamoah, et al.22 conducted an in-depth analysis of optimal control strategies and their cost-
effectiveness in managing COVID-19. Furthermore, Asamoah, et al.23 were involved in a detailed sensitivity 
assessment and economic evaluation of a novel compartmental model for COVID-19, incorporating various 
control interventions.

A vaccination model for COVID-19 includes environmental transmission, focusing on the model’s stabil-
ity based on Pfizer vaccination data in Nigeria and observing the effects of varying fractional-order values on 
model24. The study explores the impact of COVID-19 and dengue vaccinations on Zika transmission through a 
vaccination model, highlighting the positive influence of increased vaccination efforts on Zika dynamics and the 
co-spread of these infections, based on data from Amazonas, Brazil25. The study enhanced preventive measures 
against incident co-infection of SARS-CoV-2 and HBV, which can significantly control their co-circulation, as 
concluded from a co-dynamical model and numerical assessments focusing on various intervention strategies26.

Despite the widespread impact of COVID-19, there’s been limited research on its co-infection with kidney 
disease. Therefore, the co-infection of the COVID-19 virus with kidney disease remains notably unexplored. 
This study delves into the complex interplay between COVID-19 and kidney disease, addressing a significant 
gap in current medical research. The paper is structured as follows: firstly, we present a detailed overview of 
COVID-19’s global impact, its transmission methods, clinical symptoms, and the increased risks associated 
with co-morbidities, specifically kidney disease. Secondly, we introduce a mathematical model elucidating the 
transmission dynamics of COVID-19 when co-infected with kidney disease. The approach involves construct-
ing a Susceptible-Infected-Recovered (SIR) model encapsulated within a seven-compartment framework based 
on nonlinear ordinary differential equations. Thirdly, we analyse the disease’s dynamics, including assessing 
equilibrium states and their stability and conducting a sensitivity analysis to understand the impact of various 
parameters on the disease’s spread or containment. The culmination of our study presents insightful findings 
on the risks and management strategies of these co-infections, thereby contributing significantly to the broader 
understanding and handling of such complex medical scenarios.

Model formulation
We consider a deterministic seven-compartmental human population (Fig. 1). The total population is divided 
into seven sub-classes, which are susceptible population (S), infectious individuals with COVID-19 (Ic) , infected 
by the primary stage of the kidney (Ik), infected by end-stage kidney disease (Ikd) , co-infected with COVID-19 
and primary stage of kidney disease (Ikc),co-infected with COVID-19 and end-stage kidney disease (Ikdc) , individ-
uals who have recovered from COVID-19 (R) . We assume that the rate of increase in the susceptible population 
stems from a recruitment rate represented by � , while there’s a natural mortality rate µ present across all classes. 
In the total susceptible population, individuals can get kidney disease with a contact rate of φ2 from a kidney 
disease only infected or co-infected person with the force of infection of kidney disease, fk = φ2[Ik+θ(Ikd+Ikc+Ikdc)]

N  , 
and join Ik state variable. Similarly, individuals can get COVID-19 with a contact rate of φ1 from a COVID-19-
only infected or co-infected person with the force of infection of COVID-19 fc = φ1[Ic+γ (Ikdc+Ikc)]

N  , and join Ic 
state variable. Kidney disease only infected individuals can also get an additional COVID-19 infection with the 
force of infection fc and join the co-infected compartment (Ikc).The co-infected compartment increases because 
individuals that come from COVID-19 only infected compartment when kidneys infect them with fk the force 
of infection. In this context, θ is the parameter adjusting for the enhanced transmission of kidney disease among 
co-infected individuals and those in the end-stage of the disease, and γ denotes the parameter accounting for the 
amplified transmissibility of COVID-19 in co-infected persons. Parameters σ1,σ2 are represented progression 
rates to fully increased kidney disease by compartments  Ik  and Ikc , respectively. The parameters τ1, τ2 and τ3  
indicate recovery rates from COVID-19 for individuals in compartments (Ic), co-infected with COVID-19 and 
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primary stage of kidney disease (Ikc) , co-infected with COVID-19 and end-stage kidney disease (Ikdc) respectively 
and α1,α2 parameters denote adjustments for the susceptibility of individuals with kidney disease to contracting 
a COVID-19 infection.

Analytical analysis
We studied how COVID-19 and kidney disease impact each other by examining them separately first. After 
understanding each individually, they’re combined to see the overall effect. The goal is to ensure the combined 
results are accurate and logical.

COVID-19-only model: when we exclude kidney disease infections, we can formulate a COVID-19-specific 
sub-model from the full disease model; we get Ik = 0, Ikc = 0, Ikd = 0, Ikdc = 0

Theorem 1  All the populations of the system with positive initial conditions are nonnegative.

Assume S(0) > 0, IC(0) > 0, R(0) > 0 are positive for time t > 0 and for all nonnegative parameters.
From the initial condition, all the state variables are nonnegative at the initial time; then, t > 0

To show the solutions of the model, as it is positive, first, we take dSdt  from equation

(1)

dS

dt
= �−

φ2[Ik + θ(Ikd + Ikc + Ikdc)]

N
S −

φ1[Ic + γ (Ikdc + Ikc)]

N
S − µS

dIk

dt
=

φ2[Ik + θ(Ikd + Ikc + Ikdc)]

N
S − σ1Ik − α1

φ1[Ic + γ (Ikdc + Ikc)]

N
Ik +

φ2[Ik + θ(Ikd + Ikc + Ikdc)]

N
R + τ2Ikc − µIk

dIc

dt
=

φ1[Ic + γ (Ikdc + Ikc)]

N
S −

φ2[Ik + θ(Ikd + Ikc + Ikdc)]

N
Ic − τ1Ic − µIc

dIkc

dt
= α1

φ1[Ic + γ (Ikdc + Ikc)]

N
Ik +

φ2[Ik + θ(Ikd + Ikc + Ikdc)]

N
Ic − σ2Ikc − τ2Ikc − µIkc

dIkd

dt
= σ1Ik + τ3Ikdc − α2

φ1[Ic + γ (Ikdc + Ikc)]

N
Ikd − µIkd

dIkdc

dt
= σ2Ikc + α2

φ1[Ic + γ (Ikdc + Ikc)]

N
Ikd − τ3Ikdc − µIkdc

dR

dt
= τ1Ic −

φ2[Ik + θ(Ikd + Ikc + Ikdc)]

N
R − µR

(2)

dS

dt
= �−

φ1Ic

N
S − µS

dIc

dt
=

φ1Ic

N
S − τ1Ic − µIc

dR

dt
= τ1Ic − µR

0                                                              

∆

Figure 1.   Flow chart for the transmission dynamics of the co-infection of COVID-19 with kidney disease.
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Accordingly, all the variables are nonnegative in [0, t] , so S(0) > 0, similarly we can show IC(0) > 0, R(0) > 0.

Theorem 2  The dynamical system represented by the COVID-19 submodel remains positively invariant within the 
closed invariant set defined by Zc =

{
(S, Ic ,R)ǫR

3+ : N ≤ �
µ

}

An invariant region is identified to demonstrate that the solution remains within certain bounds. This invari-
ant region provides a constraint ensuring that the solution does not exceed these limits; we have

As,t → ∞ , we get 0 ≤ N ≤ �
µ

 , the theory of differential equation27 in the region.
Zc = {(S, Ic ,R)ǫR

3+ : N ≤ �
µ
} , For the autonomous system representing the COVID-19-only model, given 

by (2), any solution that starts in Zc will stay within Zc for all t ≥ 0. Based on Cheng et al., this means that Zc 
acts as a stable and attractive region. Therefore, according to Naicker et al., the dynamics of model (2) are both 
mathematically sound and relevant to epidemiology, and it is appropriate to study its tabiliz within Zc .

Stability analysis of equilibrium states: In the only COVID-19 sub-model, the equilibrium state is reached 
when the following conditions are met

For the isolated COVID-19 model represented by the system (2), the state without any active disease (termed 
the disease-free equilibrium or DFE) is derived by setting each component of the system (2) to zero. At this DFE, 
neither infections nor recoveries are present.

Therefore, for the stand-alone COVID-19 model (2), the DFE is described �c = (S, IC ,R) = (�
µ
, 0, 0)

The sub-model’s basic reproduction number is the average number of secondary infections caused by a 
single COVID-19-infected person in a totally susceptible population. The system (2) calculates it using the 
next-generation matrix.

The basic reproduction number, R0c , represents the average number of people one infected individual is 
expected to infect over their entire infectious period within a completely susceptible population.

Theorem 3  For the kidney disease sub-model, the point of equilibrium without the disease is represented as �0c , 
remains stable as long as the basic reproduction number Roc is less than 1.

dS

dt
= �−

φ1Ic

N
S− µS

ds

dt
= �−

(
φ1Ic

N
+ µ

)
s

S(t) = S(0)exp



−

t�

0

�
φ1Ic

N
+ µ

�
du



+

t�

0

�exp(

x�

0

�
φ1Ic

N
+ µ

�
du)dx × exp



−

t�

0

�
φ1Ic

N
+ µ

�
du



 > 0

N = S + IC + R

dN

dt
=

dS

dt
+

dIC

dt
+

dR

dt

dN

dt
= �−

φ1Ic

N
S − µS +

φ1Ic

N
S − τ1Ic − µIc + τ1Ic − µR

dN

dt
= �− (S + Ic + R)µ

dN

dt
= �− Nµ

N(t) = N(0)e−µt +
�

µ
(1− e−µt)

dS

dt
=

dIc

dt
=

dR

dt
= 0

(3)Roc =
φ1

(τ1 + µ)
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The Jacobian matrix is tabiliz to ascertain the equilibrium points’ local stability. For sub-model (2), the Jaco-

bian matrix is formulated as J =




∂f1
∂S

∂f1
∂IC

∂f1
R

∂f2
∂S

∂f2
∂IC

∂f2
R

∂f3
∂S

∂f3
∂IC

∂f3
R




The Jacobian matrix for the sub-model, when evaluated at the disease-free equilibrium point �0c , is expressed 
as

In this context, one of the eigenvalues for �0c is � = −µ . The other eigenvalues can be conveniently derived 
from the associated submatrix.

To confirm the local stability of the disease-free equilibrium point, two conditions need to be met:
(i) The trace of J1 should be less than zero. (ii) The determinant of J1 should be greater than zero.
The trace is Trc (J1) = −(τ1 + 2µ), which is less than zero.

As a result, the COVID-19 sub-model’s disease-free equilibrium point is asymptotically stable.
Theorem 5. The COVID-19 submodel has an isolated endemic equilibrium point if R0c > 1.
The endemic equilibrium point of the COVID-19 sub-model is the solution of the system of equation in (4).

To solve this system of equations,
we express it in terms of

Now,

So, using (4)

J =




−∅1Ic

N − µ∅1S
N 0

∅1Ic
N − τ1 − µ 0

0 τ1 − µ





J(�0c) =




−µ ∅1�

µN 0

0 − (τ1 + µ) 0

0 τ1 − µ





J1 =

(
−(τ1 + µ) 0

τ1 −µ

)

det(J1) = (τ1 + µ)µ > 0

�− (fc + µ)S = 0

fcS − (τ1 + µ)Ic = 0

τ1Ic − µR = 0

(4)f ∗c =
φ1I

∗
c

N

(5)S∗ =
�

f ∗c + µ
, I∗c =

f ∗c S

(τ1 + µ)
,R∗ =

τ1Ic∗

µ
,

I∗c =
f ∗c S

(τ1 + µ)

I∗c =
�f ∗c

(τ1 + µ)(f ∗c + µ)

f ∗c =
φ1I

∗
c

N

f ∗c =
φ1µ

(τ1 + µ)
− µ

f ∗c = µ(
φ1

(τ1 + µ)
− 1)

f ∗c = µ(R0c − 1)
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The conclusion drawn is that the infection force f ∗c  will be positive at the endemic equilibrium point �0c only 
when Roc > 1 . With this, we have effectively demonstrated the related theorem.

Theorem 5  Analysis of the Global Stability Analysis for the Endemic Equilibrium Point.

The endemic equilibrium point �c undergoes a global stability analysis using the Lyapunov function method. 
To facilitate this analysis, we establish the

The Lyapunov function L consistently maintains a positive value and only becomes zero at the endemic 
equilibrium point and differentiating with respect to time t

For Roc > 1 , the endemic equilibrium point exists, leading to dLdt  is less than zero. It seems that the function 
L appears as a clear-cut Lyapunov function, suggesting that the endemic equilibrium point reaches asymptotic 
and global stability. From a biological perspective, this signifies that COVID-19 has remained prevalent in the 
community over a prolonged duration.

Analysing the sensitivity‑only COVID‑19 model
We conducted a sensitivity analysis of parameters within the COVID-19 sub-model. The behavior of the model 
in response to modest changes in a parameter’s value is known as the parameter’s sensitivity and is tabilize by 
the symbol φ1 . It can be expressed as

Table 1 displays the data for the sensitivity indices related to the sole COVID-19 sub-model. This sub-model 
analysis reveals that the COVID-19 contact rate is φ1 , play a significant role in intensifying the virus’s spread. 
This trend results from an upsurge in secondary infections when these parameters increase, as highlighted by 
(Martcheva 2015). Conversely, parameters such as τ1 and  µ have a diminishing effect, meaning an uptick in their 
values could reduce the infection rate. A visual depiction of the sensitivity indices for Roc  is showcased in Fig. 2.

(6)L =
1

2
((S − S∗)+

(
Ic − I∗c

)
+

(
R − R∗

)
)
2

dL

dt
=

{(
S− S∗

)
+

(
Ic − I∗c

)
+

(
R− R∗

)}(dS

dt
+

dIc

dt
+

dR

dt

)

=
{
(S+ Ic + R)−

(
S∗ + I∗c + R∗

)}
(�− µN)

=
(µN −�)

µ
(�− µN)

= −
(�− µN)2

µ

dL

dt
≤ 0

Roc =
φ1

(τ1 + µ)

Sφ1 =
∂R0c

∂∅1

φ1

R0c
=

1

(τ1 + µ)

φ1
φ1

(τ1+µ)

= +1

Sµ =
∂R0c

∂µ

µ

R0c
= −

φ1

(τ1 + µ)2
µ
φ1

(τ1+µ)

= −
µ

(µ+ τ1)

Sτ1 =
∂R0c

∂τ1

τ1

R0c
= −

φ1

(τ1 + µ)2
τ1
φ1

(τ1+µ)

= −
τ1

(τ1 + µ)

Table 1.   Values indicated in Table 3 were used to compute the sensitivity indices for the only COVID-19 sub-
model.

Parameter Description of the parameter Measures of sensitivity

τ1 COVID-19 single-infection recovery rate −0.99112

φ1 Contact rate of Covid-19  + 1

µ Human natural death rate −0.08
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Kidney disease‑only model
Kidney disease-only sub-model from the co-infection model, we get Ic = 0, Ikc = 0, Ikdc = 0,R = 0

Theorem 6  All the populations of the system with positive initial conditions are nonnegative.

Assume S(0) > 0, Ik(0) > 0, Ik(0) > 0 are positive for time t > 0 and all nonnegative parameters.
From the initial condition, all the state variables are nonnegative at the initial time; then, t > 0.
To show the solutions of the model, as it is positive, first, we take dSdt  from equation

Hence S(0) > 0 , similarly we can prove Ik(0) > 0, Ik(0) > 0.

Theorem 7  The dynamical system (7) is positively invariant in the closed invariant set.

To obtain an invariant region that shows that the solution is bounded, we have

(7)

dS

dt
= �− fkS − µS

dIk

dt
= fkS − σ1Ik − µIk

dIkd

dt
= σ1Ik − µIkd

(8)

dS

dt
= �−

φ2Ik

N
S− µS

dS

dt
= �−

(
φ2Ik

N
+ µ

)
S

S(t) = S(0) exp

(
−

t
∫
0

{
φ2Ik

N
+ µ

}
du

)
+

t
∫
0
� exp(

x
∫
0

{
φ2Ik

N
+ µ

}
du)dx × exp

(
−

t
∫
0

{
φ2Ik

N
+ µ

}
du

)
> 0

Zk = {(S, Ik , Ikd)ǫR
3+ : N ≤

�

µ
}

Figure 2.   The graphical depiction of the sensitivity indices concerning the primary reproduction number (Roc) 
parameters are shown in the COVID-19 sub-model.
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As,t → ∞ , we get 0 ≤ N ≤ �
µ

 , the theory of differential equation27 in the region.
Zk = {(S, Ik , Ikd)ǫR

3+ : N ≤ �
µ
} For the autonomous system representing the Kidney disease-only model, 

given by (7), any solution that starts in Zk will stay within Zk for all t ≥ 0

Kidney disease sub‑model with disease‑free equilibrium (DFE)
By equating Eq. (10) to zero dSdt = dIk

dt = dIkd
dt = 0

The disease-free equilibrium (DFE) of the COVID-19-only model system (7) is obtained by setting each of 
the systems of model system (10) to zero. Also, at the DFE, there are no infections. Thus, the DFE of the COVID-
19-only model (10) is given by �0k = (S, Ik , Ikd) = (�

µ
, 0, 0)

Basic reproduction number R0k
Employing the next-generation matrix method outlined in (Yang 2014), we derive the related next-generation 
matrix as

Consequently, the terms for new infections, F and the subsequent transfer components, V are provided as 
follows:

The next-generation matrix FV−1 ’s leading eigenvalue, which is also known as the spectral radius, represents 
the fundamental reproductive number and is defined as:

Rok represents the anticipated count of secondary infections produced by a single infected person throughout 
their entire infectious phase within a wholly susceptible community.

Theorem 8  The DFE is locally asymptotically stable if ROk < 1 and unstable if ROk > 1

We use the Jacobian matrix to ascertain the local stability of equilibrium points. For sub-model (7), the 
Jacobian matrix is given as

N = S + Ik + Ikd

dN

dt
=

dS

dt
+

dIk

dt
+

dIkd

dt
dN

dt
= �− fkS − µS + fkS − σ1Ik − µIk + σ1Ik − µIkd

dN

dt
= �− (S + Ik + Ikd)µ

dN

dt
= �− Nµ

N(t) = N(0)e−µt +
�

µ

(
1− e−µt

)

F =

[
φ2(Ik+θIkd)

N S
0

]

V =

[
(σ1 + µ)Ik

−σ1Ik + µIkd

]

F =

[
φ2 φ2θ

0 0

]

V =

[
(σ1 + µ) 0
−σ1 µ

]

So, V−1 =
1

(σ1 + µ)µ

[
µ 0
σ1 (σ1 + µ)

]

(9)Rok =
φ2(µ+ θσ1)

(σ1 + µ)µ

J =




∂f1
∂S

∂f1
∂Ik

∂f1
Ikd

∂f2
∂S

∂f2
∂Ik

∂f2
Ikd

∂f3
∂S

∂f3
∂Ik

∂f3
Ikd




J =




−∅2(Ik+θIkd)

N − µ− ∅2S
N − ∅2θS

N
∅2(Ik+θIkd)

N
∅2S
N −σ1 − µ ∅2θS

N
0 σ1 − µ




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At the disease-free equilibrium point �0k , the Jacobian matrix of the sub-model is given

For J(�0k)  the eigenvalues is λ =  − μ, and the other eigenvalues can be swiftly obtained using the submatrix

We must show that J ′2s trace is negative, and its determinant is positive to determine the local stability of the 
disease-free equilibrium point.

Trc (J2) = φ2 − (τ2 + 2µ), which is less than zero. if φ2 < (τ2 + 2µ)
det (J2) = −φ2(µ+ θσ1)+ µ(µ+ σ1)

This value is greater than zero if φ2(θσ 1+µ)
µ(µ+σ1)

< 1 that is det(J2) > 0  if R0k < 1 and det(J2) < 0  if R0k > 1
For the kidney disease sub-model, the disease-free equilibrium point is stable when   Rok < 1 and unstable 

when Rok > 1.

Theorem 9  Only when  Rok > 1 does the endemic equilibrium point exist?

By resolving the above system of equations, we were also able to determine the endemic (disease present) equilibrium 
point of the renal disease sub-model:

Here fk = φ2[Ik+θIkd]
N

Solving the equation
S∗ = �

f ∗k +µ
 , I∗k =

f ∗k S
∗

µ+σ1
, I∗kd =

σ1f
∗
k S

∗

µ(µ+σ1)
 applying this value we get,

Hence the endemic equilibrium point exists when Rok > 1

Global stability of DFE

Theorem 10  The disease-free equilibrium point of the Kidney disease-sub model (7) is globally asymptotically sta‑
ble. If Rok < 1
Proof Considering the Lyapunov function

Differentiating with respect to time

J(�0k) =




−µ− ∅2�

Nµ
− ∅2θ�

Nµ

0∅2�
Nµ

− (σ1 + µ)∅2θ�
Nµ

0σ1 − µ





J2 =

(
φ2 − (σ1 + µ) φ2θ

σ1 −µ

)

�− fkS − µS = 0

fkS − σ1Ik − µIk = 0

σ1Ik − µIkd = 0

f ∗k =
φ2
[
I∗k + θI∗kd

]

N
=

φ2f
∗
k S

∗

N

(
1

µ+ σ1
+

θσ1

µ(µ+ σ1)

)

f ∗k =
µφ2

(µ+ σ1)

[
1+

θσ1

µ

]
− µ

f ∗k = µ
φ2(µ+ θσ1)

µ(µ+ σ1)
− µ

f ∗k = µ(R0k − 1)

(10)T = µIk + φ2θIkd
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since all the model parameters are positive, so that dTdt ≤ 0 for Rok ≤ 1 , with dTdt = 0 when Ik = Ikd = 0 . Using  
(Ik , Ikd) = (0, 0) into the Kidney disease only sub- model (7) represents that S → �

µ
 as t → ∞ . Hence T is a 

Lyapunov function on �0k and the largest compact invariant set in {(S, Ik , Ikd) ∈ �k :
dT
dt = 0} is �0k . So every 

solution of (7), with an initial condition in �k approaches �0k , as t → ∞ whenever Rok ≤ 1.

Theorem 11  In the kidney disease-only model, the equilibrium point indicating the existence of the disease is glob‑
ally stable when R0k > 1.

Denote the endemic equilibrium is denoted by Ek = (S∗, I∗k , I
∗
kd ), At the steady state, the force of infection  

fk is represented as:

In the sub-model (7), we obtain by setting the right-hand sides equal to zero

Using (10),

The linear Eq. (12) has a unique positive solution given by

This has biological significance when Rok > 1 . It is mentioned that Rok < 1 implies that 
φ2(θσ1 + µ)− µ(µ+ σ1) < 0. When this occurs, the force of infection fk is negative, suggesting that the dis-
ease’s equilibrium point shifts to global stability.

Analysis of sensitivity for the kidney disease model
Equation (7) specifies the renal sub-model and the examination of sensitivity for its basic reproduction number 
uses Yang’s (2014) tabilize forward sensitivity index for that basic reproduction number.

dT

dt
= µ

dIk

dt
+ φ2θ

dIkd

dt

= µφ2

(
Ik + θIkd

N

)
S − µ(σ1 + µ)Ik + φ2θσ1Ik − φ2θµIkd

dT

dt
≤ µφ2(Ik + θIkd)− µ(σ1 + µ)Ik + φ2θσ1Ik − φ2θµIkd

≤ µφ2Ik − µ(σ1 + µ)Ik + φ2θσ1Ik

≤ φ2(θσ1 + µ)Ik − µ(σ1 + µ)Ik

≤ Rokµ(σ1 + µ)Ik−µ(σ1 + µ)Ik

≤ (Rok − 1)µ(σ1 + µ)Ik

≤ 0, for Rok ≤ 1

(11)f ∗k =
φ2(I

∗
k + θI∗kd)

S∗ + I∗k + I∗kd

S∗ =
�

(f ∗k + µ)

I∗k =
�f ∗k(

f ∗k + µ
)
µ

I∗kd =
�σ1f

∗
k(

f ∗k + µ
)
µ

(12)(µ+ σ1)f
∗
k + µ(µ+ σ1)− φ2(θσ 1 + µ) = 0

f ∗k =
φ2(θσ 1 + µ)− µ(µ+ σ1)

(µ+ σ1)

(µ+ σ1)f
∗
k = µ(µ+ σ1)(Rok − 1)

f ∗k = µ(Rok − 1)

Rok =
φ2(µ+ θσ1)

µ(µ+ σ1)



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5680  | https://doi.org/10.1038/s41598-024-56399-2

www.nature.com/scientificreports/

Based on the sensitivity indices presented in Table 2, several observations can be made regarding the factors 
influencing the spread of kidney disease: 1. The contact rate specific to kidney disease is represented by φ2 exhibit 
a pronounced positive correlation with the disease’s propagation. This implies that as these rates increase, the 
disease spreads more aggressively. 2. The parameter adjusting for the enhanced transmission of kidney disease 
among co-infected individuals and those in the end-stage of the disease, denoted as θ , and Progression rates σ1 
also positively influences the spread of the disease. This suggests a higher transfer rate among the co-infected 
exacerbates the spread of the disease. 3. Conversely, certain parameters, namely μ, mitigate the spread of kidney 
disease. Specifically, elevating the values of this parameter leads to a reduction in the number of individuals 
afflicted with kidney disease.

COVID‑19 and kidney disease full model
By analyzing the equations’ right-hand sides, we could derive the equilibrium locations for the entire model (1).

where the forces of infection fk  and fc  are identical to those in Eqs. (5) and (10). The whole model’s disease-free 
equilibrium point (�0ck) is then calculated as

We have now calculated the basic reproduction number R0  of the complete model using the next-generation 
matrix. Using the notation of the diseased states (Ic , Ik , Ikd , Ikc , Ikdc) , Given the vector differential equations form 
dX
dt = F(x)− V(x) , where V(x) = V−(x)− V+(x).F(x)  is the rate at which new infections arise in compart-
ments, V+(x) is the rate at which people are transferred into the compartment, and V−(x) is the rate at which 
people are transferred out of the compartments Ik , Ic , Ikc , Ikd , Ikdc

At,E0

Sφ2 =
∂R0k

∂∅2

φ2

R0c
=

(µ+ θσ1)

µ(µ+ σ1)

φ2
φ2(µ+θσ1)
µ(µ+σ1)

= +1

Sσ1 =
∂R0k

∂σ1

σ1

R0k
=

φ2(θ − 1)

(σ1 + µ)2
σ1

φ2(µ+θσ1)
µ(µ+σ1)

=
σ1µ(θ − 1)

(σ1 + µ)(µ+ θσ1)

Sθ =
∂R0k

∂θ

θ

R0k
=

φ2σ 1

µ(µ+ σ1)

θ

φ2(µ+θσ1)
µ(µ+σ1)

=
θσ1

(µ+ θσ1)

Sµ =
∂R0k

∂µ

µ

R0k
= −

φ2

(
µ2 + 2µσ1 + θσ 2

1

)

µ2(µ+ σ1)
2

µ

φ2(µ+θσ1)
µ(µ+σ1)

= −

(
µ2 + 2µσ1 + θσ 2

1

)

(µ+ θσ1)

(13)

�− fkS − fcS − µS = 0

fkS − σ1Ik − α1fcIk + fkR + τ2Ikc − µIk = 0

φR + fcS − fkIc − τ1Ic − µIc = 0

α1fcIk + fkIc − σ2Ikc − τ2Ikc − µIkc = 0

σ1Ik + τ3Ikdc − α2fcIkd − µIkd = 0

σ2Ikc + α2fcIkd − τ3Ikdc − µIkdc = 0

τ1Ic − fkR − φR − µR = 0

(14)�0ck = (
�

µ
, 0, 0, 0, 0, 0, 0)

F(x) =




fkS + fkR
fcS
fkIc
0
0


andV(x) =




(σ 1 + α1fc + µ)Ik − τ2Ikc
(fk + τ1 + µ)Ic

(σ2 + τ2 + µ)Ikc−α1fcIk�
α2fc + µ

�
Ikd − σ1Ik − τ3Ikdc

(τ3 + µ)Ikdc − σ2Ikc − α2fcIkd




Table 2.   Sensitivity indices for the kidney disease-only sub-model.

Parameter Description Sensitivity indices

σ1 Progression rates to fully increased kidney disease by Compartments  Ik +0.036

φ2 Contact rate of kidney disease  + 1

µ Natural death rate −0.151

θ
The parameter adjusting for the enhanced transmission of kidney disease among co-infected individu-
als and those in the end-stage
of the disease

+0.9974
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To determine the basic reproduction number Rck of the system, the eigenvalues can be employed, specifi-
cally by examining the spectral radius of the matrix FV−1. The eigenvalues can be determined by assessing the 
equation:

Here eigenvalues are �1 = φ2(θσ1+µ)
µ(σ 1+µ)

, �2 =
φ1

(τ1+µ)
, �3 = 0, �4 = 0, �5 = 0

Thus, it can be concluded that the COVID-19 and kidney disease co-infection model has a reproduction 
number given by Rck = {Roc ,Rok};

where R0k = φ2(θσ1+µ)
µ(σ 1+µ)

 and R0c = φ1
(τ1+µ)

Stability of �0ck for the full co‑infection model

Theorem 12  When Rck > 1 , model (1) has (�0ck) that is locally asymptotically stable.
The eigenvalues of each equilibrium were used to examine its local stability (Fudolig and Howard, 2020). The 
eigenvalues are found in the Jacobian matrix, which each equilibrium has replaced. The model (1)’s Jacobian 
matrix can be described as

F =




φ2 0 θ θ θ

0 φ1 γ 0 γ

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




V =




(σ 1 + µ) 0 −τ2 0 0
0 τ1 + µ 0 0 0
0 0 (σ2 + τ2 + µ) 0 0

−σ1 0 0 µ −τ3
0 0 −σ2 0 (τ3 + µ)




V−1 =




1
(σ 1+µ)

0 −τ2 0 0

0 1
τ1+µ

0 0 0

0 0 1
σ2+τ2+µ

0 0

− σ1
(σ 1+µ)

0 0 1
µ

−τ3

0 0 − σ2
(σ2+τ2+µ)(τ 3+µ)

0 1
τ3+µ




FV−1 =




φ2(θσ1+µ)
µ(σ 1+µ)

0 θ
(σ2+τ2+µ)

θ�
µ

θ�
µ

0 φ1�
µ(τ1+µ)

γ �
µ(σ2+τ2+µ)

0 γ �
µ

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




det
[
FV−1 − �I

]
= 0

|FV−1 − �I| =

∣∣∣∣∣∣∣∣∣∣

φ2(θσ1+µ)
µ(σ1+µ)

− � 0 θ
(σ2+τ2+µ)

θ θ

0 φ1
(τ1+µ)

− �
γ

(σ2+τ2+µ)
0 γ

0 0 −� 0 0
0 0 0 −� 0
0 0 0 0 −�

∣∣∣∣∣∣∣∣∣∣

= 0

�− fkS − fcS − µS = 0

fkS − σ1Ik − α1fcIk + fkR + τ2Ikc − µIk = 0

fcS − fkIc − τ1Ic − µIc = 0

α1fcIk + fkIc − σ2Ikc − τ2Ikc − µIkc = 0

σ1Ik + τ3Ikdc − α2fcIkd − µIkd = 0

σ2Ikc + α2fcIkd − τ3Ikdc − µIkdc = 0
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At the disease-free equilibrium, we obtained the following characteristic polynomial:

We get �1 = −µ, �2 = −µ, �3 = −µ, �4 = −(σ2 + τ2 + µ)

And �5 = −φ2 + σ1 + µ < 0 and �6 = −φ1 + τ1 + µ < 0
φ2 < σ1 + µ , φ1 < τ1 + µ

µ
(θσ1+µ

φ2(θσ1+µ)
µ(σ1+µ)

< 1 and φ1
τ1+µ

< 1
µ

(θσ1+µ)
R0k < 1 and φ1

(τ 1+µ)
< 1

So, Rok < 1 and Roc < 1
So, the co-infection full model (1), �0ck reaches local asymptotic stability as a disease-free equilibrium point.

Global stability analysis of co‑infection full model
From the full model dXdt = F(X,Z) , dZdt = T(X,Z),T(X, 0) = 0,

Here X = (S,R) and Z = (Ik , Ic , Ikc , Ikd , Ikdc) . In this case, representation X, which belongs to R2  signifies the 
compartments of healthy individuals, while Z , a part of R5 , stands for the infected population compartments. 
The disease-free equilibrium state is denoted by U0 = (X0, 0) , where X0 = (�

µ
, 0)

The following assumptions (H1) and (H2) ensure that �0ck for Rck  is globally asymptotically stable. (H1) For 
dX
dt = F(X, 0), the equilibrium point U0 is globally stable;

(H2)G(X,Z) = AZ−T(X,Z), Ĝ(X,Z) ≥ 0 for (X,Z) ∈ � , The feasible area of the constructed model is 
denoted by � , and A = DZT(U0, 0) is a Metzler matrix. From our co-infection mathematical model Eq. (1), we 

have dXdt = F(X,Z) =

[
�− fkS − fcS − µS
τ1Ic − fkR − µR

]

So, T(X, 0) =
[
�− µS

0

]
 and

Thus,−α1fcIk − fkIc < 0 and −α2fcIkd < 0 . From this, condition H2 is not met. Consequently,U0 and subse-
quently, the disease-free equilibrium point �ck , cannot achieve global asymptotic stability.

Parameter estimation
We have derived the values of the model parameters using authentic data from Bangladesh, encompassing both 
kidney disease and cumulative COVID-19 infected cases. The COVID-19 dataset, from the initial reporting 
date of March 8, 2020, to September 8, 2020, was collated daily and sourced from28. Concurrently, the data for 
Kidney disease from 2020 to 2023 was compiled every month and can be accessed29. To calibrate the model and 
deduce the parameter values from the data, we employed a hybrid approach combining least squares and Bayes-
ian methods. Additionally, a nonlinear curve-fitting technique was employed, using MATLAB’s ‘fminsearch’ 
function Certain parameters were inferred from existing literature. For instance, based on Worldometer’s data, 
Bangladesh’s average life expectancy in 2020 was 72.72 years (macrotrends,2024), and we considered a subset 
population of 16,580,000. This led to the calculation of the natural mortality rate per month as the inverse of life 
expectancy, resulting in a value of µ = 1

72.72×365 = 0.000038 . Furthermore, the recruitment rate was approxi-
mated by manipulating the ratio of ∇

µ
 to yield the initial population, resulting in ∇ = 630 individuals per day. 

Due to limited data on co-infections, we estimated certain co-infection related parameters, while others were 

τ1Ic − fkR − µR = 0

J =




−µ −φ2 −φ1 −(φ2θ + φ1γ ) −φ2θ −(φ2θ + φ1γ ) 0
0 φ2 − (σ1 + µ) 0 φ2θ + τ 2 φ2θ φ2θ 0
0 0 φ1 − (τ1 + µ) φ1γ 0 0 0
0 0 0 −(σ2 + τ2 + µ) 0 0 0
0 σ1 0 0 −µ τ3 0
0 0 0 σ2 0 −(τ 3 + µ) 0
0 0 τ1 0 0 0 −µ




(15)
Q0(�) = (�1 + µ)(�2 + µ)(�3 + µ)(�4 + σ2 + τ2 + µ)(�5 − φ2 + σ1 + µ)(�6 − φ1 + τ1 + µ)(�7 + τ3 + µ)

dZ

dt
= T(X,Z) =




fkS − σ1Ik − α1fcIk + fkR + τ2Ikc − µIk
fcS − fkIc − τ1Ic − µIc

α1fcIk + fkIc − σ2Ikc − τ2Ikc − µIkc
σ1Ik + τ3Ikdc − α2fcIkd − µIkd
σ2Ikc + α2fcIkd − τ3Ikdc − µIkdc




T̂(X,Z) = AZ − T(X,Z)

So, T̂(X,Z) =




T̂1(X,Z)

T̂2(X,Z)

T̂3(X,Z)

T̂4(X,Z)
�T5(X,Z)



=




−fkS − fkR + α1fcIk
−fcS + fkIc

−α1fcIk − fkIc
α2fcIkd
−α2fcIkd



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deduced from actual data. During the estimation process, the initial conditions of the state variables were set 
as delineated in Table 3.

Figure 3 illustrates the model’s fit for both cumulative COVID-19 infections and cumulative kidney infections. 
In Fig. 3a, the model’s output for COVID-19 infections is compared to the actual observed data of COVID-19 
cases. Similarly, Fig. 3b demonstrates the alignment between the model’s simulation and the observed data for 
kidney disease infections. In both instances, solid lines represent the model’s simulated output, and dotted lines 
correspond to the actual observed data for the two diseases from Bangladesh. The comparison reveals a strong 
congruence between the model simulations and the actual data.

Numerical simulations
To explore the co-infection dynamics between COVID-19 and Kidney disease in scenarios without treatment, 
we carried out numerical simulations using the combined COVID-19 and Kidney disease model. The majority of 
theoretical results from this investigation are illustrated through these simulations. For our computational study, 
we employed the ode45 function. Ode45, incorporated into MATLAB, is a non-stiff one-step solver based on the 
Runge–Kutta (4, 5) method. It stands out for its speed, accuracy, and stability. While it is superior to the Euler 
method in terms of efficiency, its true strength lies in its simplicity and stability, especially when juxtaposed with 
multi-step strategies. Despite consuming more computational time than other equivalent accuracy multi-step 
methods, the straightforward nature and user-friendliness of ode45 compensate for its computational demands. 
Parameters driving our simulations can be found in Table 3, along with the initial conditions set for the experi-
ment S = 50000, Ic = 500, Ik = 300, Ikd = 200, Ikdc = 100,R = 30.

Figure 4 showcases a series of time-dependent plots that illustrate the dynamics of the co-infection as it 
evolves over time. These plots have been constructed by numerically solving the co-infection model repre-
sented by Eq. (1). The solutions have been derived using the specific parameter values enumerated in Table 3. 
The progression depicted in each plot provides insights into the tabiliz of the diseases in the system and their 
interactions over the duration captured.

Table 3.   Description of variables and parameters in the model equation.

Parameter Description Value Reference

� Recruitment rate of the human population 630 Calculated

φ1 Contact rate of Covid-19 0.1175 Fitted

φ2 Contact rate of kidney disease 0.3425 Fitted

θ
The parameter adjusting for the enhanced transmission of kidney disease among co-infected individuals and 
those in the end-stage of the disease 1.1 8

γ Parameter accounting for the amplified transmissibility of COVID-19 in co-infected persons 1.0 Estimated

σ1 Progression rates to fully increased kidney disease by compartments  Ik 0.15 Fitted

σ2 Progression rates to fully increased kidney disease by compartment Ikc 0.15 Fitted

α1,α2
Parameters denote adjustments for the susceptibility of individuals with kidney disease to contracting COVID-
19 infection 1.3 12

τ1 COVID-19 single-infection recovery rate 0.067 Estimated

τ2 COVID-19 recovery rate in the compartment Ikc 0.067 Estimated

τ3 Recovery rate among co-infected in compartment Ikdc for COVID-19 0.067 Estimated

µ Human natural death rate 0.000038 Calculated

(a) (b)

Figure 3.   Model fitting with reported COVID-19 and kidney disease data.
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Figures 5, 6 and 7 illustrate the stability characteristics solutions when subject to many initial circumstances. 
Specifically, Fig. 5 focuses on the initial conditions for the susceptible compartment within the COVID-19 
sub-model. In contrast, Fig. 6 pertains to the infected compartment of the same sub-model. Lastly, Fig. 7 delves 
into the dynamics of those co-infected with COVID-19 and the primary stage of kidney disease. These figures 
provide valuable insights into how the system responds to changes in initial states, shedding light on the disease 
dynamics and potential interactions between the two health conditions.

Figures 8 and 9 elucidate the influence of rates φ1 and φ2 on co-infected individuals within the Ikc class. Nota-
bly, as these rates escalate, initially there’s a consequent increase in the count of individuals in the co-infected 
population, later after reaching a peak the count of individuals gradually declines. These rates, presumably, 
describe how quickly individuals leave or transition out of this co-infected population. The main observation 
drawn from Fig. 8 is that, as the φ1 increases, the rate of increase in the number of co-infected individuals also 
increases sharply and reaches a peak at almost the same time, declining gradually as the infected individuals 
recover or die. In context, the effect of φ2 on the number of infected individuals is very sensitive. As is noted in 
Fig. 9, for the largest value of φ2 the number of infected individuals quickly arrives at the peak. As φ2 decreases, 
it takes a relatively greater time for the number of co-infected individuals to reach at peak.

Figure 4.   Solution of the comprehensive co-infection model using parameter values in Table 3.

Figure 5.   Graphical representation of the stability at the disease-free equilibrium point when Rck < 1 and 
Rck > 1.
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Figures 10 and 11 offer detailed visual representations of how the rates φ1 and φ2 affect the co-infected indi-
viduals within the COVID-19 and end stage of kidney disease  (Ikdc) class. These rates signify how individuals 
transition out of the co-infected state.

As φ1 increases, the co-infected individuals also increase for a certain period (around 130 days) and then 
decrease slowly. On the contrary, the dynamics of co-infected individuals in the end-stage kidney disease show 
some variation. For example, the largest value of φ2 there is an increasing trend in the number of co-infected 
individuals, so for moderate value of φ2 . But for the lowest value of φ2 the trend of co-infected individuals shows 
up and down tabiliz. Interestingly, contrary to initial assumptions, the figures indicate that a rise in either φ1 ​ or 
φ2 corresponds to an uptick in the number of co-infected individuals within the Ikdc class.

In Fig. 12, we illustrate the influence of transfer rates to the co-infected class, stemming from each actively 
infected individual of the respective diseases. Specifically, this figure delves into the effects of contact rates about 
co-infected compartments of both COVID-19 and end-stage kidney disease ( Ikdc ) as described in our system (1). 
The interactive effect of φ1  and φ2 depicts that the co-infected population rises to a peak at a particular time point 
and then decreases regardless of the different parameter combinations. However, the curves do not intersect for 
different levels of either φ1 or φ2 the trend of co-infected populations is similar for Ikdc group.

Figure 13 showcases the proliferation of co-infected as the effective contact rates vary. In contrast, the dynam-
ics of individuals solely infected with COVID-19, to differing contact rates, are depicted in both Figs. 12 and 13. 
A notable observation is that the population in the state Ic diminishes while in Ikdc grows as transmission coef-
ficients escalate. Crucially, these numerical observations echo our analytical insights drawn from the sensitivity 
analysis within the sub-models.

Figure 6.   Graphical representation of the stability at the disease-free equilibrium point when R0c < 1 and 
R0c > 1.

Figure 7.   Graphical representation of the stability at the disease-free equilibrium point when Rck < 1 and 
Rck > 1.
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Figure 14 shows an inverse relationship between the susceptible and COVID-19-infected populations. As 
the number of susceptible individuals rises, the number of those infected with COVID-19 decreases. This phase 
plane suggests that new infections decline as more individuals become less vulnerable or exposed to the virus 
(perhaps due to factors like vaccination, prior infection, or preventive measures).

In Fig. 15, the graph reveals that as the number of infected solely with only COVID-19 grows, there is a cor-
responding increase in the population co-infected with both COVID-19 and the primary stage of kidney disease. 
Simultaneously, we observe a decline in the susceptible population. Intriguingly, when there’s a surge in the 
susceptible population, neither the co-infected nor the solely COVID-19-infected group shows a proportional 
rise. Instead, their numbers stabilise or remain consistent; they plateau or stay steady.

In Fig. 16, the scatter plot shows a positive correlation between the number of kidney disease individuals and 
the number of COVID-19-infected people. Also, our analytical analysis shows that people with kidney disease 
are more likely to get COVID-19.

Figure 17 demonstrates a positive correlation between the two variables, suggesting that those infected with 
COVID-19 have a higher risk of being co-infected with COVID-19 and kidney disease. COVID-19 can damage 
the kidneys, leading to acute kidney injury and a sudden loss of kidney function. Acute kidney injury can be 
fatal and is more likely to occur in people with kidney disease.

Figure 8.   Behavior of Ikc for the different values of φ1 and other values of the parameter in Table 3.

Figure 9.   Behavior of Ikc for the different values of φ2 and other parameter values in Table 3.
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Figure 10.   Behavior of Ikdc for the different values of φ1 and other parameter values in Table 3.

Figure 11.   Effect of Contact rate of kidney disease interventions on co-infected populations.

Figure 12.   Impact of the contact rates φ1 and φ2 on the transmission dynamics of the co-infected ones ( Ikdc)



19

Vol.:(0123456789)

Scientific Reports |         (2024) 14:5680  | https://doi.org/10.1038/s41598-024-56399-2

www.nature.com/scientificreports/

Conclusion
We developed a mathematical model to study the spread of co-infection between kidney disease and COVID-
19. This model ensures solutions are positive and limited within a biologically meaningful range. We identified 
equilibrium points for the diseases separately and analysed their stability based on their basic reproduction 
numbers. We also examined the co-infection reproduction number and its sensitivity analysis, revealing that a 
rise in infection rates from either disease increases the co-infection risk. The key findings of the new develop-
ment model are listed below;

•	 Our analysis found that if the infection rate for either COVID-19 or kidney disease increases, the risk of 
people getting both diseases increases significantly. This means that controlling the spread of each disease is 
crucial to reducing the overall risk of co-infections.

•	 Changing how easily each disease is transmitted (known as transmission coefficients) affects the diseases 
differently depending on their stage. For example, a transmission change might significantly impact someone 
who’s just contracted the disease more than someone living with it for a while.

•	 We looked at how changes in the contact rate for COVID-19 (φ1) and the contact rate for kidney disease (φ2) 
affect the diseases. We found that these changes have different impacts depending on whether the kidney 
disease is in its early stage (primary) or late stage (end-stage). This means how each disease spreads and affects 
people can vary significantly based on the disease’s progression.

Figure 13.   Impacts of the contact rates φ1 and β2 on the dynamics of infected COVID-19 (Ic) transmission.

Figure 14.   Phase plane illustrating the dynamical interplay between susceptible population individuals S and 
infected COVID-19 individuals Ic .
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Figure 15.   Phase portrait illustrating the dynamic interactions among the compartments S, Ic and Ikc.

Figure 16.   Phase portrait illustrating the dynamic interactions among the compartments Ik and Ic.

Figure 17.   Phase plot illustrating the dynamic interactions among the compartments Ic and Ikdc.
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•	 We identified specific points, called equilibrium points, for each disease. These points help us understand 
how likely the disease will remain in the population over time. If the number we calculate for these points is 
more than one, it suggests that the disease will continue to exist within the population. This is a key indicator 
for public health strategies, highlighting the need for ongoing disease management and control measures.

The observations drawn from the model are consistent with analytical conclusions from the sensitivity analy-
sis, especially emphasising the critical role of reducing the susceptible population—potentially through measures 
like vaccination or natural immunity—to decrease new infections. The findings highlight the complex interplay of 
disease transmission and co-infections, presenting areas of concern and possible intervention points for effective 
disease control. The present results and models also maximise the benefits of simulation modelling to minimise 
the global health complexity of COVID-19 and kidney disease. The more effective strategies for reducing the 
impact of COVID-19 and kidney disease through optimal control methods are used in our forthcoming studies.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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