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Physics informed contour selection 
for rapid image segmentation
Vikas Dwivedi 1*, Balaji Srinivasan 2,4 & Ganapathy Krishnamurthi 3,4

Effective training of deep image segmentation models is challenging due to the need for abundant, 
high-quality annotations. To facilitate image annotation, we introduce Physics Informed Contour 
Selection (PICS)—an interpretable, physics-informed algorithm for rapid image segmentation without 
relying on labeled data. PICS draws inspiration from physics-informed neural networks (PINNs) and an 
active contour model called snake. It is fast and computationally lightweight because it employs cubic 
splines instead of a deep neural network as a basis function. Its training parameters are physically 
interpretable because they directly represent control knots of the segmentation curve. Traditional 
snakes involve minimization of the edge-based loss functionals by deriving the Euler–Lagrange 
equation followed by its numerical solution. However, PICS directly minimizes the loss functional, 
bypassing the Euler Lagrange equations. It is the first snake variant to minimize a region-based loss 
function instead of traditional edge-based loss functions. PICS uniquely models the three-dimensional 
(3D) segmentation process with an unsteady partial differential equation (PDE), which allows 
accelerated segmentation via transfer learning. To demonstrate its effectiveness, we apply PICS for 3D 
segmentation of the left ventricle on a publicly available cardiac dataset. We also demonstrate PICS’s 
capacity to encode the prior shape information as a loss term by proposing a new convexity-preserving 
loss term for left ventricle. Overall, PICS presents several novelties in network architecture, transfer 
learning, and physics-inspired losses for image segmentation, thereby showing promising outcomes 
and potential for further refinement.

Image segmentation1 involves identifying and delineating specific regions or objects within an image. The 
approaches to image segmentation can be broadly categorized into two extremes: deep learning-based models2 
that rely on substantial labeled training data and, traditional active contour models3 that do not require training 
data, but face challenges related to some theoretical and numerical aspects. Deep learning-based segmentation 
models have been proven to be highly successful4–6 but their effectiveness is constrained by the requirement 
for abundant labeled data, posing limitations in situations where data is scarce or unavailable7–9. To tackle the 
unlabeled data issue, the first question that we ask is whether active contour models can be employed to produce 
high-quality annotations for training deep learning models.

Among all active contour models, snake10 is the most intuitive image segmentation model. It is based on the 
concept of a deformable curve or surface that can be iteratively adjusted to fit the edges or boundaries of an object 
in an image by solving a system of PDEs known as Euler–Lagrange equations. Despite being very intuitive, snake 
models are mathematically complex, and suffer from various issues like sensitivity towards initialization and data 
noise, difficulty in using prior-shape information, etc. In this work, we propose that many of these limitations 
can be addressed by combining traditional snakes with PINNs11,12, a relatively new machine learning approach 
for solving PDEs. A concise review of PINN and snake model is available in the supplementary notes.

This paper develops a new label-free image segmentation algorithm called PICS (Physics Informed Contour 
Selection), which combines snakes and PINNs by introducing several novelties to the original PINN approach. 
To demonstrate the effectiveness of PICS, we take an example from the field of medical image segmentation. We 
apply PICS for 3D segmentation of the left ventricle on a publicly available cardiac dataset13. We also demonstrate 
PICS’s capacity to encode the prior shape information as a loss term by proposing a new convexity-preserving14 
loss term for left ventricle.

The paper is structured as follows: In the “Methods” section, we present the mathematical formulation of 
PICS, highlighting its similarities and differences with PINN, and elucidating how it addresses the challenges 
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associated with the snake model. Subsequently, in the “Results” section, we analyze the performance of PICS 
in 2D and 3D segmentation across diverse test cases. Finally, we delve into the limitations of PICS and provide 
concluding remarks in the “Discussion” section.

Methods
PICS aims to achieve segmentation for a given 2D or 3D image. In scenarios where experts possess information 
about the shape of the target object, PICS leverages this information to enhance its performance. The flowchart 
of the PICS algorithm is depicted in Fig. 1. In this section, we will go into details of its individual components, 
i.e., (a) PICS hypothesis, (b) the loss function and optimization,(c) the prior shape-based loss term, and (d) the 
operation performance index (OPI)–a metric to monitor the optimization performance of PICS.

PICS hypothesis
We approximate the target solution, i.e., object boundary with a parametric spline. The expression of parametric 
spline �ψ is given by

where the local cubic spline �ψi(si < s < si+1) is given by
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Figure 1.   The algorithm takes as input an image (INPUT-1) and, optionally, prior shape knowledge (INPUT-
2) of the target in certain cases. The user initiates the snake by hovering over the image and clicking on it once. 
The initial weights of the snake denote the control knots of the cubic spline, functioning as PICS’s hypothesis. 
Subsequently, we compute losses based on the internal and external energy of the snake model, and optionally, a 
prior-shape-based loss. The total loss is minimized through gradient descent, leading to updates in the values of 
spline control knots.
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In the given equation, s is a parameter that varies from 0 to 1. [ui , vi]′ denotes the spatial coordinates of the local 
spline ψi . For given [ui , vi]′ , the coefficients of local splines, denoted by [ai , bi , . . . , hi]′ , are computed by satisfying 
the conditions of continuity, smoothness, and periodicity. Mathematically, 

1.	 Continuity: �ψk−1(sk) = �ψk(sk) =

{
u(sk)

v(sk)

}

2.	 Smoothness: dds �ψk−1(sk) =
d
ds
�ψk(sk) and d

2

ds2
�ψk−1(sk) =

d2

ds2
�ψk(sk)

3.	 Periodicity: dds �ψn(sn) =
d
ds
�ψ1(s1) and d

2

ds2
�ψn(sn) =

d2

ds2
�ψ1(s1)

Remarks
Conceptually, PICS architecture can be viewed as a special case of Distributed PINNs12, where localized shallow 
PINNs are employed. In the later sections, we will note that 3D segmentation is also inspired by time-marching 
Distributed PINNs. However, there are distinctions between PINN and PICS which are outlined as follows:

•	 Architecture: PINNs use a deep neural network with a large number of parameters to approximate the 
solution, whereas PICS employs cubic splines that can efficiently approximate any closed contour with only 
a few control knots. It is already reported by Dwivedi and Srinivasan15 that the use of simplified architectures 
improves the speed of PINN.

•	 Mathematical nature: PINN’s hypothesis is nonlinear. In contrast, the hypothesis in PICS is linear.
•	 Interpretation of weights: Unlike in PINN, the spline coefficients are not directly considered trainable weights 

in PICS. In PICS, the weights are the sampling points or the control knots themselves, i.e., [ui , vi]′ . There are 
two main reasons for preferring control knots over spline coefficients: 

1.	 Opting to directly choose spline coefficients results in a large number of weights, making it impossible 
for us to visualize and physically interpret loss gradients in a 2D plane. Conversely, if we designate the 
control knots as weights, any number of weights can be represented in a 2D plane, and the loss gradient 
then physically signifies the force acting on the control knots.

2.	 Weight decay is often used for good generalization during the training of deep neural networks. 
However, weight decay is purely a data-driven technique. In contrast, PICS weights are subject to 
physical constraints such as continuity, smoothness, and periodicity. Consequently, any erratic 
oscillation in one weight is counteracted by the collective influence of all the others.

Loss function and optimization
PICS combines snake’s internal energy terms10 with a Chan–Vese loss16,17 term for external energy. Chan–Vese 
loss functional is less sensitive to noisy pixel-level annotations, which is beneficial when dealing with imperfect 
or noisy ground truth data. The formula for the loss function is given by

where

In the above expressions, I denotes the image, (ũ, ṽ) denotes spline knots, and N denotes the number of spline 
control knots. χ denotes a characteristic function or mask that is generated by repeated geometric queries, that 
is, given a single polygon through spline knots and a sequence of query points (grid points), find if the query 
point lies inside or outside the polygon using point in polygon algorithms18. µin,µout denote the average pixel 
value of the image within and outside the spline contour. Nx ,Ny denote number of pixels in x and y direction 
respectively. With respect to Fig. 1, the external energy term of the loss is Jext = µJcv , and the internal energy term 
is Jint = αJψs + βJψss . The hyperparameter γ aims to make the pixel intensities inside the contour more uniform.

While doing the weight update by gradient descent, the derivative of loss with respect to weights is 
compulsory. For example, The expression for weight update using gradient descent is given by

where w denotes weight or spline control knots, � is the learning rate and ∂J
∂w is the loss gradient.
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Remarks

•	 The loss gradient cannot be calculated directly or even by automatic differentiation19 because there is no 
explicit differentiable function that maps control knots with mask. Therefore to calculate derivatives, we 
use central difference scheme. This is the advantage of minimizing the energy functional instead of using 
PINN-like PDE residual, as it relaxes the differentiability requirements. For faster convergence and adaptive 
learning rate, we have used Adam20 optimizer for our numerical experiments.

•	 In most deep neural networks, the weights are typically initialized randomly and do not have any physical 
significance. However, PICS is formulated in such a way that trainable weights are represented by the control 
knots of cubic splines. It gives it a clear physical meaning to weights that simplifies scaling and normalization 
steps. Similarly, the loss gradient in PICS can be physically interpreted as the force on the control knots 
pushing them towards the direction of gradient descent.

Prior shape‑based loss term
In cases where domain experts possess information about the shape of the target object, PICS can leverage this 
valuable information. This is accomplished by introducing prior-shape based loss terms, allowing the algorithm 
to incorporate and benefit from the expert-provided shape information. This paper will use PICS to generate 
annotations for the left ventricle in the cardiac MRI scan images.

•	 Domain knowledge: A representative cardiac MRI scan shown in the left-hand side of Fig. 2 is composed 
of three main parts: left ventricle, right ventricle, and myocardium. In clinical applications of cardiac left 
ventricle (LV) segmentation, it is desirable to include the cavity, trabeculae, and papillary muscles, which 
collectively form a convex shape, as shown by the right-hand side of Fig. 2 where some reference annotations 
for left ventricle are depicted.

•	 Why left ventricle?: Trabeculae and papillary muscles have similar intensities to the myocardium, which can 
cause segmentation algorithms to incorrectly classify them as myocardium. The problem here is to find a 
way to accommodate medical domain knowledge with a purely data or image-driven algorithm.

•	 Proposed loss term: To address this challenge, Shi and Li14 developed a method that preserves the convexity 
of the left ventricle by controlling the curvature in the level set framework. Similarly, in PICS, we propose a 
new loss term that preserves convexity in the snake framework. This loss term is expressed as follows: 

 where κ denotes the curvature of contour, N denotes number of spline control knots and σ is a 
hyperparameter. This penalty term ensures that the shape of the predicted boundary remains convex-shaped. 
Please note that such an information about the shape of the object is not always available. In those cases, as 
Fig. 1 shows, PICS works with just Jint and Jext.

Operation performance index (OPI)
The region-based loss function is comprised of both shape regularization and external energy (or mean square 
error) terms. During optimization, our aim is to reduce the total loss. However, if the relative strengths of the 
shape regularization and MSE terms need to be appropriately balanced, the solution may get stuck in a local 
minimum.

(8)Jshape = σ
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Figure 2.   Description of the cardiac dataset and sample annotations for the left ventricle.
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To prevent this issue, we introduce a new performance evaluation metric known as the Operation Performance 
Index (OPI). A value of one for OPI indicates that PICS is moving in the right direction, while a value below a 
predetermined threshold (e.g., 0.8) indicates that parameter adjustments are necessary. However, what constitutes 
the “right direction”? In the best-case scenario, both external and internal energies should drop as optimization 
proceeds. However, if that is not possible, the external energy should always drop whether shape regularization 
loss drops or not. This idea is mathematically contained in the following formula for OPI:

where

k , w, sign, and 〈〉 represent iteration number, iteration window size, signum function, and dot product, 
respectively. △J represents vector of difference in J. The exponential smoothing term ensures that the recent 
values are given more weightage.

OPI can also be used for hyperparameter tuning. For instance, the values of the hyperparameters α and β can 
be determined through trial and error. But, the third parameter, µ , which is initially set to 1e3, can be adjusted 
using OPI. When OPI falls below the threshold, the update rule for µ is given by

However, we do not continue adjusting µ indefinitely. We stop adjusting µ once the order of Jext becomes more 
than 1e4 times that of Jint to prevent the snake from becoming too loose.

When examining the total loss history alone, it is difficult to determine whether the optimization is 
progressing correctly. However, looking at the OPI trend, we can check if its value is very low or wildly fluctuating 
between 0 and 1. Based on this information, the hyperparameters may be adjusted. We will cover the application 
of this idea in the next section.

Rapid 3D segmentation with transfer learning
If F represents a nonlinear transformation that takes image I(x, y) and initial weights �w as input and gives weight 
update as output. We can model the 3D segmentation process as follows:

where the weights are initialized by a single mouse click of the user, i.e.,

It is mathematically equivalent to solving an unsteady PDE given by

This PDE approach is inspired by Distributed PINNs12, and the effect of transfer learning is “spatially-aware 
initialization” from second slice onwards.

Remarks
This section described the PICS methodology and provided a comparative analysis with PINN. Before proceeding 
to the next section, it’s important to emphasize how this methodology effectively addresses certain limitations 
inherent in traditional snakes.

•	 Sensitivity to initialization: One of the primary challenges with snakes is their sensitivity to initialization. If 
the contour is initialized far from the actual boundaries, it might not converge due to the presence of local 
minima. In the case of PICS, a domain expert clicks on the image, ensuring that the initial snake is within 
the image and not too distant from the true boundary.

•	 Sensitivity to noise: Chan–Vese loss functional is less sensitive to noisy pixel-level annotations, which is 
beneficial when dealing with imperfect or noisy ground truth data.

•	 Complicated mathematical formulation: PICS directly works with loss functionals, eliminating the necessity 
of deriving Euler–Lagrange equations. The optimization process involves straightforward gradient descent, 
facilitating the minimization of all types of loss functionals.

•	 Difficult to incorporate shape-priors: PICS can easily incorporate shape priors as loss terms.

(9)OPIk = 1−
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Results
In this section, we demonstrate the effectiveness of PICS in 2D and 3D segmentation with and without prior 
shape information. In all the cases, Adam optimizer20 is used. All the experiments are conducted in Matlab 
R2022b environment running in a 12th Gen Intel(R) Core(TM) i7-12700H, 2.30 GHz CPU and 16GB RAM 
Asus laptop.

Test cases
For testing PICS, we have considered the following cases:

•	 2D test cases : (TC-1) 2D segmentation of CT scan of enlarged ventricles of hydrocephalus patient (Case 
courtesy of Paul Simkin, Radiopaedia.org, rID: 30453). The source of data is: https://​radio​paedia.​org/​cases/​
obstr​uctive-​hydro​cepha​lus, (TC-2A, TC-2B) 2D segmentation (without and with shape prior loss) of MRI 
scan with indistinct left ventricle from ACDC dataset13.

•	 OPI test cases: (TC-3A, TC-3B, TC-3C, TC-4) 2D segmentation without and with adaptive hyperparameters 
of synthetic image of a cavity21–23. This is a standard test case where traditional snake models have been 
observed to be unsuccessful in navigating through concavities, (TC-4) 2D segmentation of Texas state from 
the map of the United States of America (USA).

•	 3D test cases: (TC-5) 3D segmentation of MRI scans of cardiac data of 100 patients from the ACDC dataset13 
in the ED, i.e., End-Diastolic phase. Source:https://​www.​creat​is.​insa-​lyon.​fr/​Chall​enge/​acdc/​index.​html

Evaluation metrics

•	 Qualitative evaluation: Except for the ACDC dataset images, the objects in both 2D and OPI test cases are 
simple and can be assessed visually without the need of any expert labels.

•	 Quantitative evaluation: The last test, which uses the ACDC dataset, requires expert interpretation and 
therefore is evaluated by comparing the results with annotations provided by medical professionals. The Dice 
score is used as the evaluation metric to compare the results. The formula for dice score is 

 where A and B are the two sets being compared. The Dice value ranges from 0 to 1, where 0 indicates no 
common elements between the sets and 1 indicates identical sets.

Hyperparameter selection
The loss function in PICS comprises internal and external energy terms. The hyperparameters govern the relative 
significance of these terms, and their absolute values do not hold any particular significance. Consequently, there 
is no unique search space for hyperparameters. In this paper, the process of hyperparameter selection has not 
been automated and is definitely a topic of future work. Nevertheless, the adopted trial-and-error approach is 
as follows:

•	 Begin by focusing on internal energy terms. Choose some values for (α,β) such that the orders of magnitude 
of αψ2

s  and βψ2
ss are comparable for simple shapes like circle and rectangle. For this, typically the order of 

magnitude of β is one or two less than order of magnitude of α . For example if α = 0.1 , then β = 0.01 or 0.001.
•	 Moving on to the external energy term, the value of µ is fine-tuned to ensure that the order of magnitude of 

the Chan–Vese loss is not lower than that of the internal energy term. In any case, the decrease in internal 
energy should not be favored over the increase in external energy. OPI-based hyperparameter tuning 
essentially accomplishes this. The coefficient of the image gradient, denoted as γ , is typically set to zero but 
may be adjusted only in special cases when the object boundary is significantly blurred.

•	 Lastly, when there is prior shape information available for the Left Ventricle, the value of σ needs to be set. In 
typical scenarios, its value is kept low. However, for the indistinct muscles category, where domain expertise 
should take precedence over data, the value of σ is increased by a factor of 10. This adjustment ensures that 
prior shape-based loss dominates over the Chan–Vese loss terms.

Control knots initialization
The initial state of the snake is set as a circle, typically with a relatively small radius compared to the object 
intended for segmentation. The user determines the circle’s center position by hovering over the image and 
clicking the mouse. The control points are evenly spaced along the circle’s circumference.

Performance
2D cases (TC‑1, TC‑2)
The PICS settings for all the 2D cases are summarized in Table 1. The main findings from the 2D cases are as 
follows:

•	 TC-1: In the first case, we consider a CT scan of the enlarged ventricles of a hydrocephalus patient. Figure 3 
shows the segmentation results. The CT scan shows two enlarged ventricles. The left-hand side of Fig. 3 shows 

Dice(A,B) = 2
|A ∩ B|

|A| + |B|

https://radiopaedia.org/cases/obstructive-hydrocephalus
https://radiopaedia.org/cases/obstructive-hydrocephalus
https://www.creatis.insa-lyon.fr/Challenge/acdc/index.html
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the contours initialized by the PICS user, and the right-hand side figure shows the optimized weights. By 
visual inspection, we can conclude that the results are satisfactory and PICS shows good performance when 
dealing with images that contain a single target object or when the number of target objects is known.

•	 TC-2A,TC-2B: In the second case, Figs. 4 and 5 demonstrate the effect of integrating a convexity-preserving 
loss term in the segmentation of the left ventricle. As depicted in Fig. 4, a purely data-driven segmentation 
algorithm fails in cases where trabeculae and papillary muscles have comparable intensities to the myocar-
dium. However, by incorporating prior shape information that preserves convexity, PICS is able to accurately 
segment the left ventricle even in the presence of confusing muscles, as shown in Fig. 5. The inclusion of the 
shape loss term results in an increase of the Dice score from 0.68 without the shape loss term to 0.92 with 
it. We also show the segmentation output with traditional Chan–Vese (https://​scikit-​image.​org/​docs/​stable/​

Figure 3.   Segmentation of enlarged ventricles of a hydrocephalus patient. Left: Initial weights, Right: 
Optimized weights.

Figure 4.   Low Dice score: Segmentation of the left ventricle without convexity preserving shape prior.

Figure 5.   High Dice score: Effect of inclusion of convexity preserving shape prior in segmentation of the left 
ventricle.

https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_chan_vese.html
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auto_​examp​les/​segme​ntati​on/​plot_​chan_​vese.​html) and snake (https://​scikit-​image.​org/​docs/​stable/​auto_​
examp​les/​edges/​plot_​active_​conto​urs.​html) models in Fig. 6. In the level set formulation, the Chan–Vese 
model does not distinguish between the bright intensities of the left and right ventricle. On the other hand, 
the traditional snake model, even when initialized very close to the true mask, adheres to locations with sharp 
pixel gradients.

OPI cases (TC‑3A, 3B, 3C and TC‑4)

•	 TC-3A and TC-3B: cavity case without adaptive hyperparameters. Figure 7 displays two instances of 
bad minima. The first example shows a shrunken snake due to a high value of the bending coefficient. In 
contrast, the second shows the snake getting trapped in a local minimum because the increase in loss value 
caused by extension is greater than the drop in loss value due to the Chan–Vese loss. The loss history and 
OPI trend for each case are shown in Figs. 8 and 9 respectively. When examining the total loss history alone, 
it is difficult to determine whether the optimization is progressing correctly. However, looking at the OPI 
trend, we can see that its value is very low (zero) for the first case and fluctuates wildly between 0 and 1 for the 
second. Therefore, we can rely on the OPI to determine that PICS is stuck in a local minimum and requires 
adjustments to its hyperparameters to overcome this issue.

•	 TC-3C: cavity case with adaptive hyperparameters. Figure 10 demonstrates that PICS is capable of 
accurately capturing concave regions. Figures 11 and 12 provide additional information on this particular 
case, including the OPI score, loss history, and adaptive tuning of hyperparameters. These figures show that 
hyperparameters are adjusted as needed and a high value of OPI ensures that optimization is progressing 
in correct direction. No adjustments like gradient vector field21 or balloon forces24 are required in PICS 
framework.

•	 TC-4: USA map with adaptive hyperparameters. In the Figs. 13 and 14, we segment Texas state borders from 
the USA map. These figures show that hyperparameters are adjusted as needed. It should be noted that the 
PICS should be initialized near New Mexico region to provide large number of control knots for capturing 
sharp boundaries.

Figure 6.   Segmentation with the traditional Chan–Vese and snake models.Chan–Vese model does not 
distinguish between the bright intensities of the left and right ventricle. Snake model sticks to the region with 
sharp gradients.

Table 1.   Experiment settings for 2D and OPI test cases. Columns 2 to 6 have values of loss coefficients. Nw in 
column 7 denotes number of PICS weights. Last column has convergence times. TC-4 takes longer time than 
others because TC-4 image is of size 256× 256 , and all others are 128× 128.

Test case α β µ γ σ Nw Time (s)

TC-1 1e−1 1e−3 1e4 0 0 44 20

TC-2A 1e−1 1e−2 5e4 0 0 46 30

TC-2B 5e−1 1e−3 5e4 0 5e8 46 81

TC-3A 5 1e−1 1e2 0 0 46 40

TC-3B 5e−1 1e−2 1e2 0 0 46 76

TC-3C 5e−1 1e−2 1e3 0 0 70 332

TC-4 8e−1 1e−3 1e3 0 0 46 175

https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_chan_vese.html
https://scikit-image.org/docs/stable/auto_examples/edges/plot_active_contours.html
https://scikit-image.org/docs/stable/auto_examples/edges/plot_active_contours.html
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3D case (TC‑5)

•	 3D PICS procedure: Figure 15 demonstrates the 3D segmentation process of the left ventricle in the PICS 
framework. The initialization process begins with a single click within the left ventricle on the first MRI 
image. Subsequently, the optimal PIC weights obtained from the previous image are transferred as the initial 
condition for the next image. The transfer learning accelerates the convergence of the PIC to its optimal value. 
This iterative process is continued for all the remaining images.

•	 Speed up: Figure 16 illustrates an example of the speed-up in convergence due to this transfer learning 
process. Usually, the initial segmentation is finished in less than 30 s, while all the remaining segmentations 
also typically conclude within 30 s. Therefore, the full 3D segmentation takes about a minute to complete.

•	 Hyperparameters selection: The images in the ACDC dataset contain normal cases, indistinct muscle cases 
and cases with very thin myocardium (see Fig. 17). PICS uses different hyperparameter settings for different 
image categories in the ACDC dataset. For the normal case, the hyperparameters roughly have values of ( α,β
,µ,γ,σ)=(1e−1,1e−2,1e4,1e−5,1e7). For the indistinct muscles category, the value of σ is increased by a factor 
of 10 while keeping all other hyperparameters fixed. Similarly, for the last class with very thin myocardium, 
the value of γ  is increased by a factor of 100-200 while keeping all other hyperparameters fixed. These 
hyperparameter settings are based on the observations from the ACDC dataset and have been found to 
provide good performance in their respective image categories.

•	 Performance on ACDC dataset: Figure 18 shows the performance of PICS on all the hundred patients’ data, 
with an average dice score of 0.933. The number of trainable parameters for all the cases is the same, which 
is 20 parameters.

•	 Comparison with winners of ACDC challenge: The best dice score(https://​www.​creat​is.​insa-​lyon.​fr/​Chall​enge/​
acdc/​resul​ts.​html) is 0.96 while ours is a close 0.93. The first two winners of the challenge directly used the 

Figure 7.   Two examples of bad minima due to loss function. In both the cases, the order of magnitude of drop 
in internal energy is higher (or comparable) than that of drop in external energy.

https://www.creatis.insa-lyon.fr/Challenge/acdc/results.html
https://www.creatis.insa-lyon.fr/Challenge/acdc/results.html
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popular U-net6 architecture with dice loss or cross entropy as loss function. The third winner used M-Net25 
architecture whose main difference with U-net resides in the feature maps of the decoding layers which are 
concatenated with those of the previous layer. The corresponding network was trained with a weighted cross-
entropy loss.

Figure 8.   OPI trend (low value throughout) for LHS case of Fig. 7. The snake shrinks at all the steps and will 
ultimately shrink to a point. Dotted red line denotes the threshold.

Figure 9.   OPI trend (oscillating between 0 and 1) for RHS case of Fig.7. The snake gets stuck in a local 
minimum after about 100 iterations. Dotted red line denotes the threshold.
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	   To summarize, PICS operates without the need for labels and utilizes only 20 parameters, in contrast to 
architectures like U-net that rely on millions of parameters, necessitating a substantial amount of high-quality 
data for effective training. It’s important to note that PICS doesn’t directly generate true masks; however, it 
can be utilized by experts to quickly produce initial masks. For example, in left ventricle segmentation, an 
expert can click once on the left ventricle, and PICS will provide a high-quality initial mask. The expert can 
then refine the positions of control knots (weights) and redraw a spline through them, reducing the labeling 
effort. Therefore, PICS demonstrates promise within the scope of our ongoing study, serving as an initial 
proof of concept.

Discussion
In this paper, we introduced PICS—an interpretable, physics-informed algorithm for rapid image segmentation 
in the absence of labeled data. PICS is a novel algorithm that combines the traditional active contour model 
called snake with the physics-informed neural networks (PINNs). PICS inherits the unique qualities of its par-
ent algorithms (snakes and PINNs), making it intuitive, mesh-free, and respecting the inherent physics of the 

Figure 10.   Performance of PICS with adaptive hyperparameters on a u-shaped cavity.

Figure 11.   OPI trend of PICS with adaptive hyperparameters for cavity test case. Dotted red line denotes the 
threshold.
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Figure 12.   PICS hyperparameters tuning for cavity test case.

Figure 13.   Segmentation of Texas state from the USA map. Left: Initial weights, Right: Optimized weights.

Figure 14.   PICS hyperparameters tuning for the USA map case.
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traditional energy-based loss functions. The use of cubic splines over deep neural network as basis function and 
the treatment of spline control knots as design variables further increase its interpretability. We demonstrate that 
PICS is the first work to minimize the Chan–Vese loss in the snake framework and allows for easy integration of 
domain expertise via prior shape-based loss terms. PICS uniquely connects 3D segmentation with the solution 
of an unsteady PDE. By using this connection, as demonstrated by the outcomes on the ACDC dataset, PICS 
effectively utilizes transfer learning, leading to rapid and efficient segmentation.

However, PICS also faces challenges in inverse parameter estimation and topology changes during 3D 
segmentation which are given below: 

1.	 Inverse parameter estimation. It may be argued that because PINNs have been successful in both forward 
and inverse problems and PICS is derived from PINN, it should be possible to estimate hyperparameters 
by minimizing a loss function with hyperparameters treated as trainable weights. However, Zapf et al.26 
explain that this may not be effective. Even when the predicted segmentation is correct, all three terms of 
the PICS loss function, including shape regularization, region-based loss, and shape-based loss, may not be 
equal to zero. Depending on the image complexity, the ratio of region-based loss to other losses may be the 
most trustworthy at times, while the ratio of shape-based loss to others may be most trustworthy at other 
times. Therefore, in this work, hyperparameters were chosen through trial and error. For simpler images, 
like those in Fig. 10, we can select the ratio of region-based loss to other losses as the most trustworthy and 
automate the hyperparameter selection process. Readers would appreciate that the proposed OPI effectively 
implements the suggestion by Zapf et al.26.

Figure 16.   Faster convergence due to transfer learning.

Figure 17.   Hyperparameter selection for three distinct classes.
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Figure 18.   Performance of PICS in annotating the whole dataset consisting of 100 patients. Average dice score 
= 0.933.

Figure 19.   An example of topology change: 3D segmentation of enlarged ventricles of a hydrocephalus patient.
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2.	 Topology change. The PICS framework for 3D segmentation has a limitation regarding images that change 
topology during segmentation. In such cases, multiple initializations are required, but the number of 
initializations needed is fixed based on the topology of the first image. This limitation is demonstrated in 
Fig. 19, where the 3D segmentation of CT scans of a hydrocephalus patient starts with one object in the first 
image but breaks into two parts in the fourth image, causing PICS to struggle with the increased number of 
parts. This issue may affect the accuracy and efficiency of the segmentation in cases where topology changes 
occur frequently.

3.	 Less number of heart section images. If there are only a few slices available for a specific cardiac cycle phase, 
such as end-diastole (ED), it could result in a significant change in the size of the left ventricle across adjacent 
slices, which can affect the accuracy of segmentation. Hence, having a larger number of slices available for 
a given phase is better for accurate segmentation of the left ventricle.

4.	 Highly heterogeneous objects: Chan–Vese loss focuses on homogeneity/uniformity within the contoured 
region due to which PICS may encounter challenges when dealing with highly heterogeneous objects, like 
tumor.

Overall, PICS shows great potential as a scientific machine learning approach, both for direct image segmentation 
and for aiding domain experts in generating data labels to train deep neural networks in the future.

Data availability
The details of the data used is as follows: (1) CT scan of enlarged ventricles of hydrocephalus patient (Case 
courtesy of Paul Simkin, Radiopaedia.org, rID: 30453). The source of data is: https://​radio​paedia.​org/​cases/​obstr​
uctive-​hydro​cepha​lus. (2) MRI scans of cardiac data of 100 patients from the ACDC dataset13 in the ED, i.e., 
End-Diastolic phase. Source:https://​www.​creat​is.​insa-​lyon.​fr/​Chall​enge/​acdc/​index.​html.
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