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Dynamics of invariant solutions
of the DNA model using Lie
symmetry approach

Akhtar Hussain!, Muhammad Usman?, Ahmed M. Zidan3, Mohammed Sallah*,
Saud Owyed® & Ariana Abdul Rahimzai®™

The utilization of the Lie group method serves to encapsulate a diverse array of wave structures. This
method, established as a robust and reliable mathematical technique, is instrumental in deriving
precise solutions for nonlinear partial differential equations (NPDEs) across a spectrum of domains.

Its applications span various scientific disciplines, including mathematical physics, nonlinear
dynamics, oceanography, engineering sciences, and several others. This research focuses specifically
on the crucial molecule DNA and its interaction with an external microwave field. The Lie group
method is employed to establish a five-dimensional symmetry algebra as the foundational element.
Subsequently, similarity reductions are led by a system of one-dimensional subalgebras. Several
invariant solutions as well as a spectrum of wave solutions is obtained by solving the resulting reduced
ordinary differential equations (ODEs). These solutions govern the longitudinal displacement in DNA,
shedding light on the characteristics of DNA as a significant real-world challenge. The interactions

of DNA with an external microwave field manifest in various forms, including rational, exponential,
trigonometric, hyperbolic, polynomial, and other functions. Mathematica simulations of these
solutions confirm that longitudinal displacements in DNA can be expressed as periodic waves, optical
dark solitons, singular solutions, exponential forms, and rational forms. This study is novel as it marks
the first application of the Lie group method to explore the interaction of DNA molecules.

Keywords Lie group method, Mathematical physics, Microwave field, Ssymmetry algebra, Optical dark
soliton

DNA stands as one of the most intricate and all-encompassing molecules in the realm of life. Numerous models
aiming to describe the general properties of DNA dynamics prove to be intricate due to the multitude of ele-
ments inherent in each instance'.

The inaugural demonstration of resonant microwave absorption in DNA was conducted by Webb and Booth?.
Subsequent investigations into the microwave absorption characteristics of DNA were undertaken by Swicord
and Davis**. Nonetheless, the outcomes reported by Gabriel et al.%, Yakushevich®, Bixon et al.”, Henderson®, and
Bruinsma® have introduced a degree of controversy to these observations. Consequently, diverse methodologies
have been proposed to articulate models of DNA. Yakushevich® extensively delved into the nonlinear properties
inherent in the physics of DNA. Some DNA models have been predicated on linear constructs®'!, whereas oth-
ers have embraced nonlinear frameworks'?**. Muto et al. were pioneers in presenting a nonlinear mathematical
model elucidating the interaction between DNA and an external microwave field"

Uy — 2 ﬁ _ 2 _
tt— 0 Uz + o2 Ugzy — Y (Uy)z = 0, (1)

the notation u(z, t) is employed to characterize longitudinal displacements in DNA'>'*. Deciphering the con-
cealed characteristics of DNA poses a significant real-world challenge. Recently, Kong et al.!, Alka et al.'®, and
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Abdelrahman et al.’ have proposed an innovative physical-mathematical model for double-chain DNA. This
model envisions DNA as comprising two extended, elastic, homogeneous strands connected by an elastic mem-
brane, symbolizing the hydrogen bonds between the base pairs of the two chains.

The Lie group method!”!® stands out as a fundamental and potent tool in addressing various aspects such
as invariant solutions, conservation laws, linearization, reducing the order of nonlinearity in nonlinear prob-
lems, and assessing the stability of a numerical scheme. Pioneered by Sophus Lie and notably advanced by
Ovsiannikov'’, Ibragimov?, Bluman?!, Olver?, and others, this method has found applications in diverse prob-
lem domains. It has been successfully applied to challenges ranging from nonlinear elastic structural element
equations® to the beam equation in the Timoshenko model*, the (3+1)-dimensional generalized nonlinear
evolution equation in shallow water waves?, the Slepyan-Palmov Model in the Slepyan-Palmov Medium?,
and the Thomas equation using symmetry transformations®”. The method has also been extended to discrete
domain equations®.

In this context, our motivation is to employ this powerful method to explore the characteristics of displace-
ment in DNA and its interactions with an external microwave field. By applying the Lie group method®** to
the study of DNA molecules, we can leverage the group structure to elucidate a broad class of wave spectrum.
This spectrum provides insights into the nature of DNA displacement, expressing it as periodic waves, optical
dark solitons, singular solutions, exponential forms, and rational forms. These results are groundbreaking and
represent novel contributions not previously documented in the theory of DNA molecules.

The structure of the paper unfolds as follows: In Sect. "Invariant analysis and the optimal subalgebraic sys-
tem", we delve into applying the Lie group method to the DNA Eq. (1) and explore its optimal system. Section
"Invariant solutions via non similar classes" employs the optimal system to derive invariant solutions and reduced
ODEs. The new auxiliary equation method is introduced in Sect. "The new auxiliary equation method", and its
implementation to the DNA Eq. (1) is detailed in Sect. "Implementation of new auxiliary equation method". Sec-
tion "Physical nature of the obtained solutions" provides an overview of the nature of longitudinal displacement
in DNA based on the solutions obtained. The paper concludes in Sect. "Discussion and conclusions", offering a
summary and pointing towards potential future directions.

Invariant analysis and the optimal subalgebraic system
This section is dedicated to the comprehensive analysis of Lie symmetries and the optimal system corresponding
to Eq. (1). We initiate our investigation by considering a one-parameter Lie group of transformations®

Z > z+edi(z,t,u) + O(E?),
f— t+epa(z t,u) + O(?), (2)
i = u+ ez t,u) + O(e?),

where ¢ is the parameter of a Lie group. The transformations mentioned above have an associated infinitesimal
generator

ad i) a
y=¢1(z,t>u)£ +¢2(z,t,u)§+ﬁ(z,t,u)£- (3)

The central aim is to identify the coefficient functions ¢, ¢,, and ¥, while verifying that the operator ) conforms
to the requirements of the Lie symmetry condition

V(A azo = 0, (4)

where Y™/ denotes the fourth prolongation of ) and

2 U3 2
A =uy — o Uy + — gy — y(”z)z~
D{2

Through the resolution of Eq. (4), the infinitesimal terms are determined and can be expressed as,
c
¢1=c, ¢pr=cit+c UV =-2cu— ;105224— cat + cs,

which leads to the five-dimensional Lie algebra of Eq. (1) given by

3 3 ] ] d N
= —, = —, = —, =t—, =t— 22U — —2z)—-
A2 P Y Vs % V4 ™ Vs o T (—2u ” z) ” (5

We can write down the representation of the adjoint action as (Table 1),
2
€
Ad(eXP EYVm) Vi) = Vn — [V Yul + 5[)}"1) [V Vull — - - . (6)
By utilizing the adjoint expression (6), we can create the adjoint representation table, which is provided in Table 2.

Optimal system
Consider an arbitrary element ) of five-dimensional Lie algebra 6° given by,
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V>Vl | D1 RZIIR Vi |Vs
A% 0 0 0 RZIIRY
V> 0 0 0 0 -2,
Vs 0 0 0 0 *‘172 ¥V,
Vs -V |0 0 0 —3)4
Vs -1 2D, “yiyz 3Vs |0
Table 1. Commutator table.
Ad(e®) | 2 Vs Vs Vs
A2 R V> RZ] Yi—eds | Vs — e
RZ) Wi RZ) Vs Va Vs +2e)s
Vs Az RZ) RZ Vs Vs + “yiayz
Vs Vi+edr | I Vs Va Vs + 3e Vs
Vs 2A%) eEY, | Y5+ %(71 +e )Y, | e ¥y Vs
Table 2. Adjoint table.
Y=k + ks + ks +ksds + ks)s. (7)

We will employ the adjoint action provided in Table 2 to simplify the coefficients in (7) as extensively as possible.

[ |
k57é0 k5:0
— \ ' |
kd#() k3:0 k37é0 k3:0
\ \ \ : \ | '
Case 1 Case 2 ky #0 ki=0 ky #0

Case3 Case4 Cased Case6 Case7 Case8 Case 9 Casel0

Case 1: ks # 0, k3 # 0, then (7) becomes

Y =k + ks + ks + kaVs + ksYs (8)
V' =Ad(e® V)Y = k33 + ka Vs + ks Vs )
V' =Ad(* V)Y =k3Vs + ks Vs (10)
By taking, k3 = 1, we obtain,

A =Y3+c)s5 c#0. (11)

Case 2: ks # 0,k3 = 0, then (7) becomes
Y=k + ks + ks + ks Vs (12)
V' =Ad V)Y = ks + ks Vs (13)
V' =Ad(® Y)Y = ks Vs (14)

So, we obtain,
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Ny =Ds.
Case 3: ks = 0,kq # 0,ks # 0,k; # 0, then (7) becomes
Y=k + kY + ks + ks

V' =Ad(eY5)Y = ki1 + e ks + e ¥k
By taking ki = 1, we get,
Az =1 £V5 £ Vs
Case 4: ks = 0,kyq # 0,k3 # 0,k; = 0, then (7) becomes,
Y =koVs + k3 Vs + kads

V' =Ad(e® V)Y = k35 + ka Vs

V' =Ad(eYs)Y = ks + e ks Yy
By taking k3 = 1, we get,
Ny =Ys £+ Vs
Case 5: ks = 0,ky = 0,k3 # 0,k; # 0, then (7) becomes
Y =kiY1 + ks + k33

V' =Ad V)Y =iV + ks

V' =Ad(e*Y5)Y =k +e k3
By taking, k; = 1, we get,
As =Y £ Vs,
Case 6: ks = 0,kg = 0,k3 # 0,k; = 0, then (7) becomes
YV =kd2 + ks

V' =Ad(Y5)Y = k3)s
So, we get,
Ae = DVs.
Case 7:ks = 0,kyg # 0,k3 = 0,k; # 0, then (7) becomes
Y =k + ks + kads

V' =Ad(e V)Y =k + kaVs

V' =Ad(e°Y5)Y = ki + e ki
By taking k; = 1, we obtain,
A7 =1 £ Vs
Case 8: ks = 0,ky # 0,k3 = 0,k; = 0, then (7) becomes,
Y =ko V2 + ka Vs

V' =Ad(e* V)Y = ks
So, we obtain,
Ag = V.
Case 9:ks = 0,ky = 0,k3 = 0,k; # 0, then (7) becomes,
Y =kiVi + kD>

V' =Ad(e° V)Y = ki
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So, we obtain,

Ay = V1. (39)
Case 10: ks = 0,ky = 0,k3 = 0,k; = 0, then (7) becomes

Y=k (40)
So, we get,

Ayo = V. (41)

Accordingly, the one-dimensional optimal organization for Lie algebra (5) is detailed as

A =YV3+c)s c#0,

Ay =5,

A3 =Y1 £V £V,

Ay =Y+ Vs,

As =Y £ )s, (42)
Ao =D,

A7 =1 £ Vs,

Ag = Vs,

Ao =1,

Ao =D,

where two real parameters, denoted as ¢ and d in the given context, consistently maintain a non-zero status.

Invariant solutions via non similar classes

Within this section, we introduce invariant solutions that are explicitly formulated after subjecting the system to
symmetry reduction under the optimal configuration (42). Employing similarity reductions, the nonlinear Eq.
(1) undergoes simplification, transforming into ordinary differential equations (ODEs) recognized as similarity
reduction equations. These equations possess the capability to produce solutions that exhibit invariance under
group transformations.

Invariant solution by non similar class
Ag = (D).

Taking into account the symmetry generator, Y = 2

E)
ke _dt_du

0 1 0

the characteristic equation is presented as follows:

The use of similarity variables, u = h(c) and 0 = z leads to the Eq. (1) being reduced to an ordinary differential
equation,

—W'QyH +a?) =0. (43)
Ifh" = 0, this gives h(c) = 10 + ¢;. So, the exact solution of (1) becomes
u(z,t) = c1z + ;. (44)

Ifh” # 0,then 2yH + o = 0, which yields k(o) = ¢; — %O’. Thus, the invariant solution for the DNA Eq. (1)
is written as,

2

o
u(z,t) =c¢ — —z. (45)
2y

Invariant solution by non similar class
A = (V3).

Taking into account the symmetry generator ) = %, the characteristic equation is presented as follows
dz _dt du
1 0 0
The use of similarity variables u = h(o) and o = t leads to the Eq. (1) being reduced to an ordinary differential
equation
W' =0, (46)
this gives,
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h(o) = c10 + 3. (47)

Thus, the invariant solution for the DNA Eq. (1) is written as

u(z,t) = at + . (48)
Invariant solution by non similar class
A7 = (V1 + V). ) )
Taking into account the symmetry generator V) + V4 = % + t%, the characteristic equation is presented
as follows
dz _dt du
0 1 t

The use of similarity variables u = % + h(0) and 0 = z leads to the Eq. (1) being reduced to an ordinary dif-
ferential equation

—2yHH — oW +1=0. (49)
This gives,
—60? 4 +4 43
ho) = a”yo + ((4c; +40)y +a”) Yo (50)
122
Thus, the invariant solution for the DNA Eq. (1) is written as
(612 + 1252))/2 — 6a2yz + ((4c1 +42)y + 054)%
12y2
Invariant solution by non similar class
A7 = (V1 — Va). . .
Taking into account the symmetry generator J; — V4 = % - t%, the characteristic equation is presented
as follows
dz _dt du
0 1 -t
The use of similarity variables u = —% + h(0) and 0 = z leads to the Eq. (1) being reduced to an ordinary
differential equation
2yHH + o +1=0, (52)
this gives,
—6a’yo + ((—4c; — 40)y + a4)%
h(o) = 5 + ¢ (53)
12y
Thus, the invariant solution for the DNA Eq. (1) is written as
(=612 4+ 12¢2)y? — 6a2yz + ((—4c; — 42)y + oe4)%
u(z,t) = : (54)
12y2
Invariant solution by non similar class
Ay = (Vs + Va). . .
Taking into account the symmetry generator )3 + Vs = % + t%, the characteristic equation is presented
as follows
dz _dt du
10 ¢

The use of similarity variables u = zt + h(o) and o = ¢ leads to the Eq. (1) being reduced to an ordinary dif-
ferential equation

K =0, (55)
this gives,
h(o) = c10 + c,. (56)

Thus, the invariant solution for the DNA Eq. (1) is written as
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u(z, t) = (c1 + 2)t + cy. (57)

Invariant solution by non similar class

Ay = (V3 — V).
Taking into account the symmetry generator J3 — YV, = % — t%, the characteristic equation is presented
as follows
dz _dt du
10 —t

The use of similarity variables u = —zt + h(o) and 0 = t leads to the Eq. (1) being reduced to an ordinary dif-
ferential equation

W =0, (58)
this gives,
h(o) = c10 +ca. (59)
Thus, the invariant solution for the DNA Eq. (1) is written as
u(z,t) = (c; — 2)t + c3. (60)

Invariant solution by non similar class
Ay = (Vs). ,

Taking into account the symmetry generator Vs = tz% + (—2u— 0‘72) %, the characteristic equation is pre-
sented as follows

dz _dt du
0t (—au— %y
(—2u " z)
2,42
The use of similarity variables u = %ﬁyh(“) and o = z leads to the Eq. (1) being reduced to an ordinary

differential equation
(=202 H + 603)h" + 6a*h = 0. (61)

We propose solving the aforementioned ODE numerically.

Invariant solution by non similar class
As = (D1 + Vs).

Taking into account the symmetry generator V; 4+ )3 = % + %, the characteristic equation is presented
as follows

dz _dt  du

1 1 0

The use of similarity variables u = h(c) and o = t — z leads to the Eq. (1) being reduced to an ordinary dif-
ferential equation

—a?(@? = 2yH — D' + 9:h" = 0. (62)

Invariant solution by non similar class
Az = {1+ V5 + Va).

Taking into account the symmetry generator Yy + Vs + V4 = % + % + t;—u, the characteristic equation is
presented as follows

The use of similarity variables u = — % + zt + h(o) and 0 = —z + t leads to the Eq. (1) being reduced to an
ordinary differential equation

(iv) 2 o’ N o? /
B3h'") — 2a ((ya—i-?—yh—i)h —ya—7+yh>=O. (63)
We propose solving the aforementioned ODE numerically.

The new auxiliary equation method
Consider a general nonlinear partial differential equation (PDE) represented as
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Q(u, tz, g, Uz, -+ ) = 0, (64)

where Q is a polynomial function of u and their derivatives with respect to two independent variables z and t.
The procedure has a few phases, which are listed below;
Step: 1 Suppose a new dependent and an independent variable as

u(z,t) = h(o), o =1z—ct, (65)

where o is a new independent variable, with ¢ representing a real parameter for Eq. (64). By substituting Eq. (65)
into Eq. (64), we obtain the following ODE;

PhW,H,.) =0. (66)
Step: 2 Consider a solution for Eq. (66) in the following form
k .
h(o) = bi©", (67)
i=0
which satisfies the auxiliary equation
1
W(o) = — {1 + 0" + 13607}, 0 >0, © £1, (68)

~ In@®)

where bls are constants which will be computed later.

Step: 3 To determine the value of k in Eq. (67), we employ the balancing procedure, where we compare the
highest-order nonlinear term with the highest-order derivative.

Step: 4 By substituting Eqs. (67) and (68) into Eq. (66) and collecting the coefficients of various powers of
@M (i = 0,1,2,-- ), we form a system of equations. Setting all coefficients equal to zero yields a system that
can be solved using Maple software to obtain the solution.

Step: 5 The nature of solutions for Eq. (68) can be determined as;

Case:1 When 1912 — 3 < 0andvs # 0

_ —(? — 00 — (% — 90
o) _ o N U] — ?203) tan(\/ 0y — 3)0)) (69)

U3 U3 2
— \/ — (@ = 9203) \/—(@F — 0203)
@@ :—1;91 + 119 cot ( 12 0). (70)
3 3

Case:2 When 1912 + 993 > 0and 93 # 0

_ 92 — 9,0 92 — 90
o) _ 01 N \/ (Of — D203) tanh(\/( i— % 3)0>’ 71)

3 D3 2
_ 92 — 9,0 /(9% — 9,0
@h(a):%_ (119 203) coth( (12 2 3)0)' (72)
3 3

Case:3 When 1912 + %3 > 0and 93 # Oand 93 # —1,

(192 + 7}2) (1}2 + 1}2)
ohor 01 VLT (7\/12 g), (73)
U3 3 2
\/(192 +93) \/(1924—792)
@h) :? + 7119 27 coth (712 2 O‘). (74)
3 3

Case: 4 When 92 + 9,93 < 0,93 # 0and 93 # —

\/—(1724-192) \/—OF +93)
M) :ﬁ + ! 2 tan < ! 2 a>, (75)

3 U3 2
/= (02 + 92 \/— (% + 972
oho) 1 @i+ 2)C0t @1+ 2)0 . (76)
%3 03 2

Case: 5When9? — 93 < 0and 93 # —
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[ 92 2 [ 92 2
e =_01 + —0r -0 tan ( —io 15‘2)0)’ (77)

3 V3 2
_ \/— (% — 02 \/ (02— 92

@h(ﬂ) zﬁ + ( ! 2) cot ( ! 2)0 X (78)
3 U3 2

Case: 6 When 92 — 92 > 0and 93 # —

2 92 2 92
oo _—01 VO (MU) (79)

U3 V3 2
_ 92 — 92 92 — 92

@h(o') :ﬁ + ( 1 2) coth ( 1 2)0- . (80)
U3 ¥3 2

Case: 7 When 9,93 > 0,93 # 0and =0

- — D
ohe) _ | %2 tan (ivza) (1)
3

-0 =
") = [Z22 coth [ X225 ). (82)
93 2
Case: 8 When ¥, = 0and ¥ = —1;
ohtor _—(F %) £ \/2(1 + €2020) (83)
- 2020 _ 1 ’
Case: 9 When 1912 = 13
-9 (o +2)
h(o) _ 2\V1
o) = TR . (84)
Case: 10 When = k, %, = 2kandd3 =0
QMo — o _ 1. (85)
Case: 11 When ) = k, 93 = 2kandd, =0
e(T
") — e (86)
Case: 12 When 29 = % + 3
1
14 19265(192*03)0
h(o) _ .
= 93¢ (2= &7
Case: 13 When =211 = ¥, + 93
Q") — Uy + ﬂze%(ﬁrm)a (88)
- 05 + 1936%(172*173)0
Case: 14 Whent, =0
b 61910
h 1
" = ———. (89)
14 Sieho
Case: 15Whent, =1 =93 #0
— (%0 +2)
QM) = (90)
2
Case: 16 Whent, = 93,91 =0
o + ¢
@h(G) = tan (%) . (91)
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Case: 17 When 93 = 0
o) _ gno _ Y2
2t

Step: 6 Replacing all the values of (%) from step: 5 into Eq. (67), we get the results for Eq. (64).

Implementation of new auxiliary equation method
In this context, we analyze the traveling wave profiles for Eq. (1) using Eq. (62) and employing the new auxiliary
equation method. The solution can be expressed as

h(o) = by + b;©") 1 @), (93)

Inserting Eq. (93) and its derivatives into Eq. (62), and subsequently equating the coefficients of @), we form
a system of algebraic equations. The solution to the resulting equations is provided below

6T (2 — 1 a’(@® -1
by =by, b1 = 1(7)2, by=0, 3= (7)2 (94)
y(4F1F3—F2) 4F1F3—F2
Now by utilizing Eq. (94) into Eq. (93), we get
6@ —1)
h(o) = by + ——— - @), 95
y (4Tl —T7) )
The traveling wave patterns for Eq. (1) based on the obtained result are
6 (a? — 1
u(z, t) = by + 1€ ) @), (96)

y(@r s —T%)

By inserting the solutions specified by Eq. (68) into Eq. (95), the solutions retrieved are;
Class:1 When 1912 — %3 < 0and 3 # 0

_ -2
6T (a2 — 1 — —(OF — 9203) \/ (O — 92093)
uy(z,t) =by + 1(067)2 A ! tan ( ! a) , (97)
y@nls =TIy | 93 V3 2
_ . 5 -2
6T(@?—1) |—-» —(07 — 9203) \ =0 — 0203)
uy(z, t) =by + 1(017)2 4 ! cot < ! 0) . (98)
y@rhls =T3) | 93 93 2

Class:2 When 97 + 9,93 > 0Oand 93 # 0

- 42

6Mi@>—1) |—v (F — 0203) (¥ — 1293)
T B I
]/(4F1F3 — Fz) 193 193 2
_ S 5 -2
6l (e —1 - O — av3) \/ (O] — D20s)
uq(z,t) =bg + L)z 1 ! coth < ! a) . (100)
y@rhl's =T3) | U3 U3 2

Class:3 When 97 + 9,93 > 0and 93 # 0 and 95 # —

— -2
2 _ A/ (O 4 02 A/ (O + 02
of'1 (o D ﬁ—k i 2)tanh< i 2)0) (101)

us(z,t) =bo +

y(4rTs —T7) | 93 3 2
[ 2 2 2 2 12
6l (@? —1 % @1 +93) \/ (O +17)
ue(z,t) =bg + 1@ )2 - + ! 2 coth ( ! 2 a> . (102)
y@rIr's =T3) |93 U3 2

Class: 4 When 92 + 9,193 < 0,93 # 0and 93 # —,

2
M@ -1 |9 ~-0F+99) \/ @+ 93
uy(z,t) =bg + 1@ )2 1y ! 2 tan < ! 2 o> , (103)
y@rirs —T%) | U3 U3 2
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Class:

Class:

Class:

Class:

Class:

Class:

Class:

Class:

Class:

Class:

6 —1) |0 -0+

ug(z,t) =bg + ————=- | — + cot <

y@rrs —T3) | 03 U3 2

5When9? — 92 < 0and s # —

2
\J— @ +92) >
o .

2
6M@:—1) |-, . \/ —@0F —939) . (\/—(15‘12 - 93) )
o 5

ug(z,t) =bg + ——— | ——
Y@ —T3) | 93 03 2
/92 92 [ e2 92 2
6I'i(@®>—1) |- -7 —93) -7 —93)
uro(z,t) =bg + ————— - | — + cot ol .
y@rir's =Ty | 93 3 2

6 When 92 — 92 > 0and 95 # —1

ur(z, t) =bg +

y@rrs —T3) | 03 03 2

u12(z,t) =bg + 5

Y@ —T3) | s 3
7 When 9,93 > 0,93 2 Oandh =0

u13(z, t) =bg —

6ri@®—1 o, («/—192193 )
— " tanh —_—0 |,
y@rT; —T3) 0s 2

ui4(z, t) =bg —

6l —1) 5 (V=203
coth® | ————0 ).

y(@&T T3 —T2) 03 2
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nehe 1’ 117
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60 (a? — 1) ( s 02 )2
zZt)=by+ ———- " - — ], 120
o T S 20, (120

where in all above caseso =t — z.

Physical nature of the obtained solutions

In this section, we delve into the solitonic characteristics of the obtained solutions. Mathematica simulations
are employed to identify some recognized structures for the DNA Eq. (1). Figure 1 illustrates the nature of the
invariant solution. The periodic solution u is depicted in Fig. 2. The dynamics of the optical dark soliton solutions
uy3 are explored and presented in Fig. 3. The singular solution u14 is also showcased in Fig. 4. The exponential
and rational nature of the obtained solutions is illustrated in Figs. 5 and 6, respectively.

(a) 3D plot (b) 2D plot

Figure 1. Polynomial nature of displacement in DNA using the invariant solution (51) with
cg=c¢=1a=1,y =1landatt=1,2,3.

T Pt
T s P
R : FE

iyt ! o

= fiigl : :

40-’-11l 1
PRt +

20[¢ R4 3
A

oled/

-10 -5 0 5

(a) 3D plot (b) 2D plot

Figure 2. Periodic nature of displacement in DNA using u with
Hh==1,0,=2,bp=1, T =T, =T3=1, a =y = land at t=0,1,2.
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-1

u13

-2

-3

(a) 3D plot

(b) 2D plot

Figure 3. Optical dark soliton nature of displacement in DNA using u3 with
=0 th=1%h=1Lb=1,T"1=INh=I33=1,a=2, Yy = 1and at t=0.1,0.2,0.3.

(a) 3D plot

Figure 4. Singular nature of displacement in DNA using 14 with

(b) 2D plot

=0, %=10=1b=1T=I=I3=1,«a=2, y =1andatt=0.2,0.4,0.6.
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Figure 5. Exponential nature of displacement in DNA using u;7 with
k=1, 01=1,10,=2,93=0,bp=1, 1 =0, =T3=1, «a =2, y = land at t=0,1,2.

Discussion and conclusions

We have successfully applied the Lie group method to characterize the properties of DNA molecules, specifi-

cally addressing the nonlinear dynamics described by Eq. (1). The

symmetry algebra for this DNA equation was

obtained, and the resulting invariant solutions have been documented. To the best of our knowledge, this study
marks the first application of the Lie group method to the dynamics of DNA. The variable u(z, t) in our model
represents the difference in longitudinal displacements between the bottom and top strands'~*. We have uncov-
ered several intriguing solutions to the nonlinear dynamics of DNA, considering a model consisting of two long
elastic homogeneous strands connected by an elastic membrane. This investigation focuses on the longitudinal
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Figure 6. Rational nature of displacement in DNA using u;g with
k=1, 1=1,0,=2,193=0, bo =1, =h=I=La=2y= 1and at t=0,1,2.

motions®. Therefore, the invariant solutions and the solutions u; through u,4 are interpreted as new positions of
longitudinal displacements of the strands. Additionally, corresponding simulations are presented in Figs. 1, 2,
3,4, 5 and 6. Our study contributes novel positions not previously documented in Refs."!2-15,

The interplay of both invariant and waveform solutions governed the longitudinal displacement in DNA,
providing insights into the unique characteristics of DNA as a significant real-world challenge. The interactions
between DNA and an external microwave field were expressed through various mathematical forms, encompass-
ing rational, exponential, trigonometric, hyperbolic, polynomial, and other functions. Mathematica simulations
corroborate these diverse solutions, showcasing longitudinal displacements in DNA as periodic waves, optical
dark solitons, singular solutions, exponential forms, and rational forms. This groundbreaking study represents
the inaugural application of the Lie group method to explore the interaction of DNA molecules. The findings
present novel contributions that have not been reported in the existing literature. The success of this study inspires
us to continue utilizing the Lie group method in our future research endeavors.

Data availability
All data generated or analyzed during this study are included in this published article.
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