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Dynamics of invariant solutions 
of the DNA model using Lie 
symmetry approach
Akhtar Hussain 1, Muhammad Usman 2, Ahmed M. Zidan 3, Mohammed Sallah 4, 
Saud Owyed 5 & Ariana Abdul Rahimzai 6*

The utilization of the Lie group method serves to encapsulate a diverse array of wave structures. This 
method, established as a robust and reliable mathematical technique, is instrumental in deriving 
precise solutions for nonlinear partial differential equations (NPDEs) across a spectrum of domains. 
Its applications span various scientific disciplines, including mathematical physics, nonlinear 
dynamics, oceanography, engineering sciences, and several others. This research focuses specifically 
on the crucial molecule DNA and its interaction with an external microwave field. The Lie group 
method is employed to establish a five-dimensional symmetry algebra as the foundational element. 
Subsequently, similarity reductions are led by a system of one-dimensional subalgebras. Several 
invariant solutions as well as a spectrum of wave solutions is obtained by solving the resulting reduced 
ordinary differential equations (ODEs). These solutions govern the longitudinal displacement in DNA, 
shedding light on the characteristics of DNA as a significant real-world challenge. The interactions 
of DNA with an external microwave field manifest in various forms, including rational, exponential, 
trigonometric, hyperbolic, polynomial, and other functions. Mathematica simulations of these 
solutions confirm that longitudinal displacements in DNA can be expressed as periodic waves, optical 
dark solitons, singular solutions, exponential forms, and rational forms. This study is novel as it marks 
the first application of the Lie group method to explore the interaction of DNA molecules.

Keywords  Lie group method, Mathematical physics, Microwave field, Symmetry algebra, Optical dark 
soliton

DNA stands as one of the most intricate and all-encompassing molecules in the realm of life. Numerous models 
aiming to describe the general properties of DNA dynamics prove to be intricate due to the multitude of ele-
ments inherent in each instance1.

The inaugural demonstration of resonant microwave absorption in DNA was conducted by Webb and Booth2. 
Subsequent investigations into the microwave absorption characteristics of DNA were undertaken by Swicord 
and Davis3,4. Nonetheless, the outcomes reported by Gabriel et al.5, Yakushevich6, Bixon et al.7, Henderson8, and 
Bruinsma9 have introduced a degree of controversy to these observations. Consequently, diverse methodologies 
have been proposed to articulate models of DNA. Yakushevich6 extensively delved into the nonlinear properties 
inherent in the physics of DNA. Some DNA models have been predicated on linear constructs5–11, whereas oth-
ers have embraced nonlinear frameworks12–14. Muto et al. were pioneers in presenting a nonlinear mathematical 
model elucidating the interaction between DNA and an external microwave field15

the notation u(z, t) is employed to characterize longitudinal displacements in DNA12,13. Deciphering the con-
cealed characteristics of DNA poses a significant real-world challenge. Recently, Kong et al.1, Alka et al.15, and 

(1)utt − α2uzz +
ϑ3

α2
uzztt − γ (u2z)z = 0,
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Abdelrahman et al.16 have proposed an innovative physical-mathematical model for double-chain DNA. This 
model envisions DNA as comprising two extended, elastic, homogeneous strands connected by an elastic mem-
brane, symbolizing the hydrogen bonds between the base pairs of the two chains.

The Lie group method17,18 stands out as a fundamental and potent tool in addressing various aspects such 
as invariant solutions, conservation laws, linearization, reducing the order of nonlinearity in nonlinear prob-
lems, and assessing the stability of a numerical scheme. Pioneered by Sophus Lie and notably advanced by 
Ovsiannikov19, Ibragimov20, Bluman21, Olver22, and others, this method has found applications in diverse prob-
lem domains. It has been successfully applied to challenges ranging from nonlinear elastic structural element 
equations23 to the beam equation in the Timoshenko model24, the (3+1)-dimensional generalized nonlinear 
evolution equation in shallow water waves25, the Slepyan-Palmov Model in the Slepyan-Palmov Medium26, 
and the Thomas equation using symmetry transformations27. The method has also been extended to discrete 
domain equations28.

In this context, our motivation is to employ this powerful method to explore the characteristics of displace-
ment in DNA and its interactions with an external microwave field. By applying the Lie group method29–38 to 
the study of DNA molecules, we can leverage the group structure to elucidate a broad class of wave spectrum. 
This spectrum provides insights into the nature of DNA displacement, expressing it as periodic waves, optical 
dark solitons, singular solutions, exponential forms, and rational forms. These results are groundbreaking and 
represent novel contributions not previously documented in the theory of DNA molecules.

The structure of the paper unfolds as follows: In Sect. "Invariant analysis and the optimal subalgebraic sys-
tem", we delve into applying the Lie group method to the DNA Eq. (1) and explore its optimal system. Section 
"Invariant solutions via non similar classes" employs the optimal system to derive invariant solutions and reduced 
ODEs. The new auxiliary equation method is introduced in Sect. "The new auxiliary equation method", and its 
implementation to the DNA Eq. (1) is detailed in Sect. "Implementation of new auxiliary equation method". Sec-
tion "Physical nature of the obtained solutions" provides an overview of the nature of longitudinal displacement 
in DNA based on the solutions obtained. The paper concludes in Sect. "Discussion and conclusions", offering a 
summary and pointing towards potential future directions.

Invariant analysis and the optimal subalgebraic system
This section is dedicated to the comprehensive analysis of Lie symmetries and the optimal system corresponding 
to Eq. (1). We initiate our investigation by considering a one-parameter Lie group of transformations22

where ε is the parameter of a Lie group. The transformations mentioned above have an associated infinitesimal 
generator

The central aim is to identify the coefficient functions φ1,φ2 , and ϑ , while verifying that the operator Y conforms 
to the requirements of the Lie symmetry condition

where Y [4] denotes the fourth prolongation of Y and

Through the resolution of Eq. (4), the infinitesimal terms are determined and can be expressed as,

which leads to the five-dimensional Lie algebra of Eq. (1) given by

We can write down the representation of the adjoint action as (Table 1),

By utilizing the adjoint expression (6), we can create the adjoint representation table, which is provided in Table 2.

Optimal system
Consider an arbitrary element Y of five-dimensional Lie algebra θ5 given by,

(2)

z̃ → z + εφ1(z, t, u)+ O(ε2),

t̃ → t + εφ2(z, t, u)+ O(ε2),

ũ → u+ εϑ(z, t, u)+ O(ε2),

(3)Y = φ1(z, t, u)
∂

∂z
+ φ2(z, t, u)

∂

∂t
+ ϑ(z, t, u)

∂

∂u
·

(4)Y
[4](�)|�=0 = 0,

� = utt − α2uzz +
ϑ3

α2
uzztt − γ (u2z)z .

φ1 = c3, φ2 = c1t + c2, ϑ = −2c1u−
c1

b
α2z + c4t + c5,

(5)Y1 =
∂

∂t
, Y2 =

∂

∂u
, Y3 =

∂

∂z
, Y4 = t

∂

∂u
, Y5 = t

∂

∂t
+ (−2u−

α2

γ
z)

∂

∂u
·

(6)Ad(exp (εYm).Yn) = Yn − ε[Ym,Yn] +
ε2

2!
[Ym, [Ym,Yn]] − · · · .
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We will employ the adjoint action provided in Table 2 to simplify the coefficients in (7) as extensively as possible.

Case 1 : k5  = 0, k3  = 0 , then (7) becomes

By taking, k3 = 1 , we obtain,

Case 2 : k5  = 0, k3 = 0 , then (7) becomes

So, we obtain,

(7)Y = k1Y1 + k2Y2 + k3Y3 + k4Y4 + k5Y5.

(8)Y =k1Y1 + k2Y2 + k3Y3 + k4Y4 + k5Y5

(9)Y
′ =Ad(eεY1)Y = k3Y3 + k4Y4 + k5Y5

(10)Y
′′ =Ad(eεY4)Y

′ = k3Y3 + k5Y5

(11)�1 = Y3 + cY5, c �= 0.

(12)Y =k1Y1 + k2Y2 + k4Y4 + k5Y5

(13)Y
′ =Ad(eεY1)Y = k4Y4 + k5Y5

(14)Y
′′ =Ad(eεY4)Y

′ = k5Y5

Table 1.   Commutator table.

[Ym,Yn] Y1 Y2 Y3 Y4 Y5

Y1 0 0 0 Y2 Y1

Y2 0 0 0 0 −2Y2

Y3 0 0 0 0 − α2

γ
Y2

Y4 −Y2 0 0 0 −3Y4

Y5 −Y1 2Y2
α2

γ
Y2

3Y4 0

Table 2.   Adjoint table.

Ad(eε) Y1 Y2 Y3 Y4 Y5

Y1 Y1 Y2 Y3 Y4 − εY2 Y5 − εY1

Y2 Y1 Y2 Y3 Y4 Y5 + 2εY2

Y3 Y1 Y2 Y3 Y4 Y5 + α2

γ
εY2

Y4 Y1 + εY2 Y2 Y3 Y4 Y5 + 3εY4

Y5 eεY1 e−2εY2 Y3 + α2

2γ
(−1+ e−2ε)Y2 e−3εY4 Y5
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Case 3 : k5 = 0, k4 �= 0, k3 �= 0, k1 �= 0 , then (7) becomes

By taking k1 = 1 , we get,

Case 4 : k5 = 0, k4 �= 0, k3 �= 0, k1 = 0 , then (7) becomes,

By taking k3 = 1 , we get,

Case 5 : k5 = 0, k4 = 0, k3 �= 0, k1 �= 0 , then (7) becomes

By taking, k1 = 1 , we get,

Case 6 : k5 = 0, k4 = 0, k3 �= 0, k1 = 0 , then (7) becomes

So, we get,

Case 7 : k5 = 0, k4 �= 0, k3 = 0, k1 �= 0 , then (7) becomes

By taking k1 = 1 , we obtain,

Case 8 : k5 = 0, k4 �= 0, k3 = 0, k1 = 0 , then (7) becomes,

So, we obtain,

Case 9 : k5 = 0, k4 = 0, k3 = 0, k1 �= 0 , then (7) becomes,

(15)�2 = Y5.

(16)Y =k1Y1 + k2Y2 + k3Y3 + k4Y4

(17)Y
′ =Ad(eεY5)Y = k1Y1 + e−εk2Y2 + e−4εk3Y3

(18)�3 = Y1 ± Y3 ± Y4.

(19)Y =k2Y2 + k3Y3 + k4Y4

(20)Y
′ =Ad(eεY1)Y = k3Y3 + k4Y4

(21)Y
′′ =Ad(eεY5)Y

′ = k3Y3 + e−3εk4Y4

(22)�4 = Y3 ± Y4.

(23)Y =k1Y1 + k2Y2 + k3Y3

(24)Y
′ =Ad(eεY4)Y = k1Y1 + k3Y3

(25)Y
′′ =Ad(eεY5)Y

′ = k1Y1 + e−εk3Y3

(26)�5 = Y1 ± Y3.

(27)Y =k2Y2 + k3Y3

(28)Y
′ =Ad(eεY5)Y = k3Y3

(29)�6 = Y3.

(30)Y =k1Y1 + k2Y2 + k4Y4

(31)Y
′ =Ad(eεY1)Y = k1Y1 + k4Y4

(32)Y
′′ =Ad(eεY5)Y

′ = k1Y1 + e−4εk4Y4

(33)�7 = Y1 ± Y4.

(34)Y =k2Y2 + k4Y4

(35)Y
′ =Ad(eεY1)Y = k4Y4

(36)�8 = Y4.

(37)Y =k1Y1 + k2Y2

(38)Y
′ =Ad(eεY4)Y = k1Y1
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So, we obtain,

Case 10 : k5 = 0, k4 = 0, k3 = 0, k1 = 0 , then (7) becomes

So, we get,

Accordingly, the one-dimensional optimal organization for Lie algebra (5) is detailed as

where two real parameters, denoted as c and d in the given context, consistently maintain a non-zero status.

Invariant solutions via non similar classes
Within this section, we introduce invariant solutions that are explicitly formulated after subjecting the system to 
symmetry reduction under the optimal configuration (42). Employing similarity reductions, the nonlinear Eq. 
(1) undergoes simplification, transforming into ordinary differential equations (ODEs) recognized as similarity 
reduction equations. These equations possess the capability to produce solutions that exhibit invariance under 
group transformations.

Invariant solution by non similar class
 �9 = �Y1�.

Taking into account the symmetry generator, Y1 = ∂
∂t

 , the characteristic equation is presented as follows:

The use of similarity variables, u = h(σ ) and σ = z leads to the Eq. (1) being reduced to an ordinary differential 
equation,

If h′′ = 0 , this gives h(σ ) = c1σ + c2. So, the exact solution of (1) becomes

If h′′ �= 0, then 2γ h′ + α2 = 0 , which yields h(σ ) = c1 − α2

2γ σ . Thus, the invariant solution for the DNA Eq. (1) 
is written as,

Invariant solution by non similar class
 �6 = �Y3�.

Taking into account the symmetry generator Y3 = ∂
∂z

 , the characteristic equation is presented as follows

The use of similarity variables u = h(σ ) and σ = t leads to the Eq. (1) being reduced to an ordinary differential 
equation

this gives,

(39)�9 = Y1.

(40)Y = k2Y2

(41)�10 = Y2.

(42)

�1 = Y3 + cY5, c �= 0,

�2 = Y5,

�3 = Y1 ± Y3 ± Y4,

�4 = Y3 ± Y4,

�5 = Y1 ± Y3,

�6 = Y3,

�7 = Y1 ± Y4,

�8 = Y4,

�9 = Y1,

�10 = Y2,

dz

0
=

dt

1
=

du

0
·

(43)−h′′(2γ h′ + α2) = 0.

(44)u(z, t) = c1z + c2.

(45)u(z, t) = c1 −
α2

2γ
z.

dz

1
=

dt

0
=

du

0
·

(46)h′′ = 0,
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Thus, the invariant solution for the DNA Eq. (1) is written as

Invariant solution by non similar class
 �7 = �Y1 + Y4�.

Taking into account the symmetry generator Y1 + Y4 = ∂
∂t

+ t ∂
∂u

 , the characteristic equation is presented 
as follows

The use of similarity variables u = t2

2 + h(σ ) and σ = z leads to the Eq. (1) being reduced to an ordinary dif-
ferential equation

This gives,

Thus, the invariant solution for the DNA Eq. (1) is written as

Invariant solution by non similar class
 �7 = �Y1 − Y4�.

Taking into account the symmetry generator Y1 − Y4 = ∂
∂t

− t ∂
∂u

 , the characteristic equation is presented 
as follows

The use of similarity variables u = − t2

2 + h(σ ) and σ = z leads to the Eq. (1) being reduced to an ordinary 
differential equation

this gives,

Thus, the invariant solution for the DNA Eq. (1) is written as

Invariant solution by non similar class
 �4 = �Y3 + Y4�.

Taking into account the symmetry generator Y3 + Y4 = ∂
∂z

+ t ∂
∂u

 , the characteristic equation is presented 
as follows

The use of similarity variables u = zt + h(σ ) and σ = t leads to the Eq. (1) being reduced to an ordinary dif-
ferential equation

this gives,

Thus, the invariant solution for the DNA Eq. (1) is written as

(47)h(σ ) = c1σ + c2.

(48)u(z, t) = c1t + c2.

dz

0
=

dt

1
=

du

t
·

(49)−2γ h′h′′ − α2h′′ + 1 = 0.

(50)h(σ ) =
−6α2γ σ + ((4c1 + 4σ)γ + α4)

3
2

12γ 2
+ c2·

(51)u(z, t) =
(6t2 + 12c2)γ

2 − 6α2γ z + ((4c1 + 4z)γ + α4)
3
2

12γ 2
·

dz

0
=

dt

1
=

du

−t
·

(52)2γ h′h′′ + α2h′′ + 1 = 0,

(53)h(σ ) =
−6α2γ σ + ((−4c1 − 4σ)γ + α4)

3
2

12γ 2
+ c2.

(54)u(z, t) =
(−6t2 + 12c2)γ

2 − 6α2γ z + ((−4c1 − 4z)γ + α4)
3
2

12γ 2
·

dz

1
=

dt

0
=

du

t
·

(55)h′′ = 0,

(56)h(σ ) = c1σ + c2.
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Invariant solution by non similar class
 �4 = �Y3 − Y4�.

Taking into account the symmetry generator Y3 − Y4 = ∂
∂z

− t ∂
∂u

 , the characteristic equation is presented 
as follows

The use of similarity variables u = −zt + h(σ ) and σ = t leads to the Eq. (1) being reduced to an ordinary dif-
ferential equation

this gives,

Thus, the invariant solution for the DNA Eq. (1) is written as

Invariant solution by non similar class
 �2 = �Y5�.

Taking into account the symmetry generator Y5 = t ∂
∂t

+ (−2u− α2

γ
z) ∂

∂u
 , the characteristic equation is pre-

sented as follows

The use of similarity variables u = −α2zt2+2γ h(σ )
2γ t2

 and σ = z leads to the Eq. (1) being reduced to an ordinary 
differential equation

We propose solving the aforementioned ODE numerically.

Invariant solution by non similar class
 �5 = �Y1 + Y3�.

Taking into account the symmetry generator Y1 + Y3 = ∂
∂t

+ ∂
∂z

 , the characteristic equation is presented 
as follows

The use of similarity variables u = h(σ ) and σ = t − z leads to the Eq. (1) being reduced to an ordinary dif-
ferential equation

Invariant solution by non similar class
 �3 = �Y1 + Y3 + Y4�.

Taking into account the symmetry generator Y1 + Y3 + Y4 = ∂
∂t

+ ∂
∂z

+ t ∂
∂u

 , the characteristic equation is 
presented as follows

The use of similarity variables u = − z2

2 + zt + h(σ ) and σ = −z + t leads to the Eq. (1) being reduced to an 
ordinary differential equation

We propose solving the aforementioned ODE numerically.

The new auxiliary equation method
Consider a general nonlinear partial differential equation (PDE) represented as

(57)u(z, t) = (c1 + z)t + c2.

dz

1
=

dt

0
=

du

−t
·

(58)h′′ = 0,

(59)h(σ ) = c1σ + c2.

(60)u(z, t) = (c1 − z)t + c2.

dz

0
=

dt

t
=

du

(−2u− α2

γ
z)
·

(61)(−2α2γ h′ + 6ϑ3)h
′′ + 6α2h = 0.

dz

1
=

dt

1
=

du

0
·

(62)−α2(α2 − 2γ h′ − 1)h′′ + ϑ3h
(iv) = 0.

dz

1
=

dt

1
=

du

t
·

(63)ϑ3h
(iv) − 2α2

(

(γ σ +
α2

2
− γ h′ −

1

2
)h′′ − γ σ −

α2

2
+ γ h′

)

= 0.
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where Q is a polynomial function of u and their derivatives with respect to two independent variables z and t. 
The procedure has a few phases, which are listed below;

Step: 1 Suppose a new dependent and an independent variable as

where σ is a new independent variable, with c representing a real parameter for Eq. (64). By substituting Eq. (65) 
into Eq. (64), we obtain the following ODE;

Step: 2 Consider a solution for Eq. (66) in the following form

which satisfies the auxiliary equation

where b′is are constants which will be computed later.
Step: 3 To determine the value of k in Eq. (67), we employ the balancing procedure, where we compare the 

highest-order nonlinear term with the highest-order derivative.
Step: 4 By substituting Eqs. (67) and (68) into Eq. (66) and collecting the coefficients of various powers of 

�h(σ ) (i = 0, 1, 2, · · · ) , we form a system of equations. Setting all coefficients equal to zero yields a system that 
can be solved using Maple software to obtain the solution.

Step: 5 The nature of solutions for Eq. (68) can be determined as;
Case:1 When ϑ2

1 − ϑ2ϑ3 < 0 and ϑ3  = 0

Case:2 When ϑ2
1 + ϑ2ϑ3 > 0 and ϑ3  = 0

Case:3 When ϑ2
1 + ϑ2ϑ3 > 0 and ϑ3  = 0 and ϑ3  = −ϑ2

Case: 4 When ϑ2
1 + ϑ2ϑ3 < 0 , ϑ3  = 0 and ϑ3  = −ϑ2

Case: 5 When ϑ2
1 − ϑ2

2 < 0 and ϑ3  = −ϑ2

(64)Q(u, uz , ut , uzz , · · · ) = 0,

(65)u(z, t) = h(σ ), σ = z − ct,

(66)P(h, h′, h′′, ...) = 0.

(67)h(σ ) =
k

∑

i=0

bi�
ih(σ ),

(68)h′(σ ) =
1

ln(�)
{Ŵ1 + Ŵ2�

h(σ ) + Ŵ3�
−h(σ )}, � > 0, � �= 1,

(69)�h(σ ) =
−ϑ1

ϑ3
+

√

−(ϑ2
1 − ϑ2ϑ3)

ϑ3
tan

(

√

−(ϑ2
1 − ϑ2ϑ3)

2
σ

)

,

(70)�h(σ ) =
−ϑ1

ϑ3
+

√

−(ϑ2
1 − ϑ2ϑ3)

ϑ3
cot

(

√

−(ϑ2
1 − ϑ2ϑ3)

2
σ

)

.

(71)�h(σ ) =
−ϑ1

ϑ3
+

√

(ϑ2
1 − ϑ2ϑ3)

ϑ3
tanh

(

√

(ϑ2
1 − ϑ2ϑ3)

2
σ

)

,

(72)�h(σ ) =
−ϑ1

ϑ3
−

√

(ϑ2
1 − ϑ2ϑ3)

ϑ3
coth

(

√

(ϑ2
1 − ϑ2ϑ3)

2
σ

)

.

(73)�h(σ ) =
ϑ1

ϑ3
+

√

(ϑ2
1 + ϑ2

2 )

ϑ3
tanh

(

√

(ϑ2
1 + ϑ2

2 )

2
σ

)

,

(74)�h(σ ) =
ϑ1

ϑ3
+

√

(ϑ2
1 + ϑ2

2 )

ϑ3
coth

(

√

(ϑ2
1 + ϑ2

2 )

2
σ

)

.

(75)�h(σ ) =
ϑ1

ϑ3
+

√

−(ϑ2
1 + ϑ2

2 )

ϑ3
tan

(

√

−(ϑ2
1 + ϑ2

2 )

2
σ

)

,

(76)�h(σ ) =
ϑ1

ϑ3
+

√

−(ϑ2
1 + ϑ2

2 )

ϑ3
cot

(

√

−(ϑ2
1 + ϑ2

2 )

2
σ

)

.



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:11920  | https://doi.org/10.1038/s41598-024-59983-8

www.nature.com/scientificreports/

Case: 6 When ϑ2
1 − ϑ2

2 > 0 and ϑ3  = −ϑ2

Case: 7 When ϑ2ϑ3 > 0 , ϑ3  = 0 and ϑ1 = 0

Case: 8 When ϑ1 = 0 and ϑ2 = −ϑ3

Case: 9 When ϑ2
1 = ϑ2ϑ3

Case: 10 When ϑ1 = k , ϑ2 = 2k and ϑ3 = 0

Case: 11 When ϑ1 = k , ϑ3 = 2k and ϑ2 = 0

Case: 12 When 2ϑ1 = ϑ2 + ϑ3

Case: 13 When −2ϑ1 = ϑ2 + ϑ3

Case: 14 When ϑ2 = 0

Case: 15 When ϑ2 = ϑ1 = ϑ3 �= 0

Case: 16 When ϑ2 = ϑ3 , ϑ1 = 0

(77)�h(σ ) =
−ϑ1

ϑ3
+

√

−(ϑ2
1 − ϑ2

2 )

ϑ3
tan

(

√

−(ϑ2
1 − ϑ2

2 )

2
σ

)

,

(78)�h(σ ) =
−ϑ1

ϑ3
+

√

−(ϑ2
1 − ϑ2

2 )

ϑ3
cot

(

√

−(ϑ2
1 − ϑ2

2 )

2
σ

)

.

(79)�h(σ ) =
−ϑ1

ϑ3
+

√

(ϑ2
1 − ϑ2

2 )

ϑ3
tanh

(

√

(ϑ2
1 − ϑ2

2 )

2
σ

)

,

(80)�h(σ ) =
−ϑ1

ϑ3
+

√

(ϑ2
1 − ϑ2

2 )

ϑ3
coth

(

√

(ϑ2
1 − ϑ2

2 )

2
σ

)

.

(81)�h(σ ) =

√

−ϑ2

ϑ3
tanh

(
√
−ϑ2ϑ3

2
σ

)

,

(82)�h(σ ) =

√

−ϑ2

ϑ3
coth

(
√
−ϑ2ϑ3

2
σ

)

.

(83)�h(σ ) =
−(1+ e2ϑ2σ )±

√

2(1+ e2ϑ2σ )

e2ϑ2σ − 1
·

(84)�h(σ ) =
−ϑ2(ϑ1σ + 2)

ϑ2
1σ

·

(85)�h(σ ) = eσ − 1.

(86)�h(σ ) =
eσ

1− eσ
·

(87)�h(σ ) =
1+ ϑ2e

1
2 (ϑ2−ϑ3)σ

1+ ϑ3e
1
2 (ϑ2−ϑ3)σ

·

(88)�h(σ ) =
ϑ2 + ϑ2e

1
2 (ϑ2−ϑ3)σ

ϑ3 + ϑ3e
1
2 (ϑ2−ϑ3)σ

·

(89)�h(σ ) =
ϑ1e

ϑ1σ

1+ ϑ3
2 e

ϑ1σ
·

(90)�h(σ ) =
−(ϑ2σ + 2)

ϑ2σ
·

(91)�h(σ ) = tan

(

ϑ2σ + c

2

)

.
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Case: 17 When ϑ3 = 0

Step: 6 Replacing all the values of �h(σ ) from step: 5 into Eq. (67), we get the results for Eq. (64).

Implementation of new auxiliary equation method
In this context, we analyze the traveling wave profiles for Eq. (1) using Eq. (62) and employing the new auxiliary 
equation method. The solution can be expressed as

Inserting Eq. (93) and its derivatives into Eq. (62), and subsequently equating the coefficients of �h(σ ) , we form 
a system of algebraic equations. The solution to the resulting equations is provided below

Now by utilizing Eq. (94) into Eq. (93), we get

The traveling wave patterns for Eq. (1) based on the obtained result are

By inserting the solutions specified by Eq. (68) into Eq. (95), the solutions retrieved are;
Class:1 When ϑ2

1 − ϑ2ϑ3 < 0 and ϑ3  = 0

Class:2 When ϑ2
1 + ϑ2ϑ3 > 0 and ϑ3  = 0

Class:3 When ϑ2
1 + ϑ2ϑ3 > 0 and ϑ3  = 0 and ϑ3  = −ϑ2

Class: 4 When ϑ2
1 + ϑ2ϑ3 < 0 , ϑ3  = 0 and ϑ3  = −ϑ2

(92)�h(σ ) = eϑ1σ −
ϑ2

2ϑ1
·

(93)h(σ ) = b0 + b1�
h(σ ) + b2�

2h(σ ).

(94)b0 =b0, b1 =
6Ŵ1(α

2 − 1)

γ (4Ŵ1Ŵ3 − Ŵ2
2)
, b2 = 0, ϑ3 =

α2(α2 − 1)

4Ŵ1Ŵ3 − Ŵ2
2

·

(95)h(σ ) = b0 +
6Ŵ1(α

2 − 1)

γ (4Ŵ1Ŵ3 − Ŵ2
2)
�2h(σ ).

(96)u(z, t) = b0 +
6Ŵ1(α

2 − 1)

γ (4Ŵ1Ŵ3 − Ŵ2
2)
�2h(σ ).

(97)u1(z, t) =b0 +
6Ŵ1(α
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2)




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�

�
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1 − ϑ2ϑ3)

2
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�





2

,
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6Ŵ1(α
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γ (4Ŵ1Ŵ3 − Ŵ2
2)




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1 − ϑ2ϑ3)

ϑ3
cot

�

�
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2
σ

�





2

.

(99)u3(z, t) =b0 +
6Ŵ1(α
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2)




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�
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�
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2
σ

�





2

,
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
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σ

�




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.
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6Ŵ1(α
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
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
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,
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
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�
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2
σ

�




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.

(103)u7(z, t) =b0 +
6Ŵ1(α
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2)




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+

�
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Class: 5 When ϑ2
1 − ϑ2

2 < 0 and ϑ3  = −ϑ2

Class: 6 When ϑ2
1 − ϑ2

2 > 0 and ϑ3  = −ϑ2

Class: 7 When ϑ2ϑ3 > 0 , ϑ3  = 0 and ϑ1 = 0

Class: 8 When ϑ1 = 0 and ϑ2 = −ϑ3

Class: 9 When ϑ2
1 = ϑ2ϑ3

Class: 10 When ϑ1 = k , ϑ2 = 2k and ϑ3 = 0

Class: 11 When ϑ1 = k , ϑ3 = 2k and ϑ2 = 0

Class: 12 When 2ϑ1 = ϑ2 + ϑ3

Class: 13 When −2ϑ1 = ϑ2 + ϑ3

Class: 14 When ϑ2 = 0
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�
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2
σ

�





2

.
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γ (4Ŵ1Ŵ3 − Ŵ2
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


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+

�
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�

�
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2 )

2
σ

�





2

,
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2)




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ϑ3
+

�
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�

�
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2
σ

�





2

.
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
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+
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�
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2
σ

�





2

,
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


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+

�
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�

�
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2
σ

�





2

.
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(
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)

,
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2
σ

)
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e2ϑ2σ − 1

]2
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Class: 15 When ϑ2 = ϑ1 = ϑ3 �= 0

Class: 16 When ϑ2 = ϑ3 , ϑ1 = 0

Class: 17 When ϑ3 = 0

where in all above cases σ = t − z.

Physical nature of the obtained solutions
In this section, we delve into the solitonic characteristics of the obtained solutions. Mathematica simulations 
are employed to identify some recognized structures for the DNA Eq. (1). Figure 1 illustrates the nature of the 
invariant solution. The periodic solution u1 is depicted in Fig. 2. The dynamics of the optical dark soliton solutions 
u13 are explored and presented in Fig. 3. The singular solution u14 is also showcased in Fig. 4. The exponential 
and rational nature of the obtained solutions is illustrated in Figs. 5 and 6, respectively.

(117)u21(z, t) = b0 +
6Ŵ1(α

2 − 1)

γ (4Ŵ1Ŵ3 − Ŵ2
2)

[

ϑ1e
ϑ1σ

1+ ϑ3
2 e

ϑ1σ

]2

.

(118)u22(z, t) = b0 +
6Ŵ1(α

2 − 1)

γ (4Ŵ1Ŵ3 − Ŵ2
2)

(

−(ϑ2σ + 2)

ϑ2σ

)2

.

(119)u23(z, t) = b0 +
6Ŵ1(α

2 − 1)

γ (4Ŵ1Ŵ3 − Ŵ2
2)

tan2
(

ϑ2σ + c

2

)

.

(120)u24(z, t) = b0 +
6Ŵ1(α

2 − 1)

γ (4Ŵ1Ŵ3 − Ŵ2
2)

(

eϑ1σ −
ϑ2

2ϑ1

)2

,

Figure 1.   Polynomial nature of displacement in DNA using the invariant solution (51) with 
c1 = c2 = 1, α = 1, γ = 1 and at t=1,2,3.

Figure 2.   Periodic nature of displacement in DNA using u1 with 
ϑ1 = ϑ3 = 1, ϑ2 = 2, b0 = 1, Ŵ1 = Ŵ2 = Ŵ3 = 1, α = γ = 1 and at t=0,1,2.
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Discussion and conclusions
We have successfully applied the Lie group method to characterize the properties of DNA molecules, specifi-
cally addressing the nonlinear dynamics described by Eq. (1). The symmetry algebra for this DNA equation was 
obtained, and the resulting invariant solutions have been documented. To the best of our knowledge, this study 
marks the first application of the Lie group method to the dynamics of DNA. The variable u(z, t) in our model 
represents the difference in longitudinal displacements between the bottom and top strands1–3. We have uncov-
ered several intriguing solutions to the nonlinear dynamics of DNA, considering a model consisting of two long 
elastic homogeneous strands connected by an elastic membrane. This investigation focuses on the longitudinal 

Figure 3.   Optical dark soliton nature of displacement in DNA using u13 with 
ϑ1 = 0, ϑ2 = 1, ϑ3 = 1, b0 = 1, Ŵ1 = Ŵ2 = Ŵ3 = 1, α = 2, γ = 1 and at t=0.1,0.2,0.3.

Figure 4.   Singular nature of displacement in DNA using u14 with 
ϑ1 = 0, ϑ2 = 1, ϑ3 = 1, b0 = 1, Ŵ1 = Ŵ2 = Ŵ3 = 1, α = 2, γ = 1 and at t=0.2,0.4,0.6.

Figure 5.   Exponential nature of displacement in DNA using u17 with 
k = 1, ϑ1 = 1, ϑ2 = 2, ϑ3 = 0, b0 = 1, Ŵ1 = Ŵ2 = Ŵ3 = 1, α = 2, γ = 1 and at t=0,1,2.
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motions2. Therefore, the invariant solutions and the solutions u1 through u24 are interpreted as new positions of 
longitudinal displacements of the strands. Additionally, corresponding simulations are presented in Figs. 1, 2, 
3, 4, 5 and 6. Our study contributes novel positions not previously documented in Refs.1,12–15.

The interplay of both invariant and waveform solutions governed the longitudinal displacement in DNA, 
providing insights into the unique characteristics of DNA as a significant real-world challenge. The interactions 
between DNA and an external microwave field were expressed through various mathematical forms, encompass-
ing rational, exponential, trigonometric, hyperbolic, polynomial, and other functions. Mathematica simulations 
corroborate these diverse solutions, showcasing longitudinal displacements in DNA as periodic waves, optical 
dark solitons, singular solutions, exponential forms, and rational forms. This groundbreaking study represents 
the inaugural application of the Lie group method to explore the interaction of DNA molecules. The findings 
present novel contributions that have not been reported in the existing literature. The success of this study inspires 
us to continue utilizing the Lie group method in our future research endeavors.

Data availability
All data generated or analyzed during this study are included in this published article.
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