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Hard ticks are known vectors of various pathogens, including the severe fever with thrombocytopenia
syndrome virus, Rickettsia spp., Coxiella burnetii, Borrelia spp., Anaplasma phagocytophilum, and
Ehrlichia spp. This study aims to investigate the distribution and prevalence of tick-borne pathogens
in southwestern Korea from 2019 to 2022. A total of 13,280 ticks were collected during the study
period, with H. longicornis accounting for 86.1% of the collected ticks. H. flava, I. nipponensis and A.
testudinarium comprised 9.4%, 3.6%, and 0.8% of the ticks, respectively. Among 983 pools tested,
Rickettsia spp. (216 pools, 1.6% MIR) were the most prevalent pathogens across all tick species,

with R. japonica and R. monacensis frequently detected in I. nipponensis and Haemaphysalis spp.,
respectively. Borrelia spp. (28 pools, 0.2% MIR) were predominantly detected in /. nipponensis (27
pools, 13.8% MIR, P <0.001). Co-infections, mainly involving Rickettsia monacensis and Borrelia
afzelii, were detected in I. nipponensis. Notably, this study identified R. monacensis for the first time
in A. testudinarium in South Korea. These findings offer valuable insights into the tick population and
associated pathogens in the region, underscoring the importance of tick-borne disease surveillance
and prevention measures.

Hard ticks are a type of external parasite that feeds on the blood of both animals and humans and are known
to transmit various viruses, parasites, and bacteria'. In a study on geographical distribution of Ixodid ticks in
Korea from 2013 to 2015, Haemaphysalis longicornis accounted for 88.9%, followed by H. flava (10.1%), Ixodes
nipponensis (0.5%), I persulcatus (0.2%), H. japonica (0.2%), Amblyomma testudinarium (0.1%), and I. granulatus
(<0.1%)2 H. longicornis peaked in May to July (with larvae in September, and nymphs in May, and adults in July),
while H. flava collected mainly in September to October (with larvae and adults in September, and nymphs in
October) based on dry-ice bait trap method.?. Hard ticks mainly found in the southern region of Korea include
H. longicornis, H. flava, 1. nipponensis, and A. testudinarium®.

The important tick-borne pathogens (TBPs) that are transmitted by hard ticks include the following: Severe
Fever with Thrombocytopenia Syndrome (SFTS) virus, Rickettsia spp., Coxiella burnetii, Borrelia spp., Anaplasma
phagocytophilum, Ehrlichia spp"*. SFTS is a vector-borne infectious disease that was first reported in China
in 2011°. Its incidence has increased in China, Japan, and Korea, and it is currently designated as a category
three national notifiable infectious disease in Korea®. It is mainly transmitted by H. longicornis, with H. flava, I.
nipponensis, and A. testudinarium also known as vectors for the SFTS virus in Korea’. The prevalence of SFTS
virus in ticks®, and wild animals®~!! has been determined. Kim et al. also reported a molecular epidemiological
correlation between a patient with SFTS and questing ticks collected from the patient’s residence!?.

Spotted fever group rickettsioses (SFGR) are febrile diseases caused by Rickettsia species associated with
chiggers, fleas, and hard ticks'®!*. In Korea, R. rickettsii and R. japonica were confirmed in H. longicornis by
PCR?™. Japanese spotted fever (caused by R. japonica) was first reported in 2005'*. Moreover, R. monacensis was
also isolated from a patient in Korea'®. Recently, a study provided the first description of R.raoultii detected in
H. longicornis ticks, which were collected from patients with a history of tick bites in Korea'®. This pathogen was
also shown to have a high prevalence in ticks collected from dogs in Korea'®.

Q fever is a globally occurring zoonotic illness caused by Coxiella burnetii'’. C. burnetii is known to be
transmitted to humans via inhalation of contaminated aerosols from animals and consumption of contaminated
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milk'®. The role of C. burnetii-infected ticks in human Q fever is being disputed, as ticks are not essential vectors
for C. burnetii transmission. However, several studies have shown ticks may play an important role in the
transmission of coxiellosis between livestock and wildlife, which may lead to human coxiellosis®.

Lyme disease is a tick-borne illness caused by Borrelia burgdorferi sensu lato (s.l.), which comprises
approximately 20 genospecies?®*!. In Korea, Borrelia burgdorferi s.l. was first detected in Ixodes ticks in 1993,
and the first human case of Lyme disease was reported in the same year®?. To date, Borrelia afzelii, B. garinii, B.
tanukii, B. turdi, B. yangtzensis, B. bavariensis, and B. valaisiana genospecies have been identified in ticks and
wild animals in Korea®'.

Anaplasma phagocytophilum and Ehrlichia spp. belong to the family Anaplasmataceae and share similar
characteristics®. Both A. phagocytophilum and Ehrlichia spp. have been identified in H. longicornis, I. nipponensis,
and L. persulcatus in Korea'?.

As a result of tropical climate change, the summer season in South Korea is becoming longer and warmer
This leads to an increased risk of tick-borne infectious diseases due to the higher survival rate, increased egg-
laying rate, and larger population of ticks®*®. Moreover, not only agricultural workers but also the general
population are facing an increased risk of tick exposure, due to the rising popularity of outdoor activities such
as hiking, camping, and the increasing pet population?. The growing risk of tick-borne diseases necessitates
research on the distribution of ticks and the presence of the pathogens they carry. Therefore, we investigated the
distribution of ticks and tick-borne pathogens in Gwangju city, located in southwestern region of Korea, from
2019 to 2022.

24,25

Results

Distribution of field collected ticks

During the study period in Gwangju, South Korea, a total of 13,280 ticks were collected. Among the adult and
nymph ticks, H. longicornis accounted for 86.1% of the collected ticks, with 349 adults and 4320 nymphs. H.
flava comprised 9.4% of the ticks, with 252 adults and 260 nympbhs. I. nipponensis made up 3.6% of the ticks,
with 169 adults and 27 nymphs. A. testudinarium constituted 0.8% of the ticks, with 3 adults and 42 nymphs.
Additionally, there were 7858 larvae that were difficult to differentiate between H. longicornis and H. flava,
accounting for 59.2% of the total ticks collected, as shown in Table 1. Ticks were collected throughout the year,
with the highest prevalence observed in the spring and fall seasons, as illustrated in Figs. 1 and 2. Specifically,
larvae were primarily collected in the spring, while nymphs were predominantly collected in the fall. Interestingly,
Ixodes ticks were observed from autumn to spring, while A. testudinarum ticks were observed in early summer
(Fig. 3).

Detection of tick-borne pathogens

A total of 983 pools were tested, including 460 pools for H. longicornis, 194 pools for H. flava, 135 pools for
I. nipponensis, 37 pools for A. testudinarium, and 157 pools for larvae. Adult ticks were analyzed individually
or pooled, while nymphs and larvae were pooled according to their species, sex, and life stage to compare the
prevalence of pathogens. In total, 2.0% (minimum infection rate, MIR) of the field-collected ticks were found
to be pathogen-positive; H. longicornis, H. flava, I. nipponensis, A. testudinarium, and larvae (Haemaphysalis
spp.) exhibited detection rates of 2.5%, 2.2%, 29.6%, 13.3%, and 0.9% MIR, respectively. Compared to other
tick species, I. nipponensis and A. testudinarium demonstrated significantly higher pathogen prevalence rates
(P<0.001). Specifically, I. nipponensis exhibited a high detection rate for both Borrelia spp. and Rickettsia spp.,
while A. testudinarium was mainly associated with Rickettsia spp.

Rickettsia spp. were the most prevalent pathogens across all tick species (216 pools, 1.6% MIR, P <0.001).
Notably, Rickettsia spp. exhibited a high MIR in both I. nipponensis (13.8% MIR, P <0.001) and A. testudinarium
(13.3% MIR, P<0.001).

Borrelia spp. were the second most commonly reported pathogen in this study (28 pools, 0.2% MIR). It was
mainly detected in I. nipponensis (27 pools, 13.8% MIR, P <0.001), with only one positive pool found in H.
longicornis ticks.

A. phagocytophilum (15 pools, 0.1% MIR) was found in H. longicornis (11 pools, 0.2% MIR) and I. nipponensis
(4 pools, 2.0% MIR), while Ehrlichia spp. (3 pools, 0.02% MIR) were confirmed only in H. longicornis ticks.

Co-infections were detected in I. nipponensis (14 pools) and larvae of Haemaphysalis spp. (6 pools); Borrelia
spp. and Rickettsia spp. were found in 12 pools of I. nipponensis; Borrelia spp. and A. phagocytophilum were found
in 1 pool of I nipponensis; Rickettsia spp. and A. phagocytophilum were found in 6 pool of larvae (Haemaphysalis
spp.). Additionally, one female I. nipponensis tick was positive for 3 pathogens simultaneously; Borrelia spp.
and Rickettsia spp. and A. phagocytophilum. Meanwhile, there were no positive samples for SFTSV and Coxiella
burnetii in this study.

Molecular and phylogenetic analysis

Sequencing analysis of groEL gene, obtained from 196 Rickettsia spp. positive samples (196/612), revealed the
presence of R. canadensis, R. japonica, and R. monacensis in 5, 160, and 31 pools, respectively. Among the
Rickettsia species, R. japonica, the etiological agent of Japanese spotted fever (JSF), exhibited the highest detection
frequency, with 160 pools (1.2% MIR) of all ticks testing positive. The majority of sequences of R. japonica were
detected in Haemaphysalis spp (159/160 pools); only one adult I. nipponensis tick tested positive for this pathogen.
Interestingly, R. japonica was predominantly detected in male H. longicornis ticks (25% MIR, P <0.001). The
nucleotide sequences of R. japonica showed significant similarity to those identified in humans from Japan
(AP017595) (Fig. 4). R. monacensis was the second most frequently detected species. Unlike R. japonica, which
was primarily detected in Haemaphysalis spp., R monacensis exhibited a remarkably high prevalence in L
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Figure 1. Seasonal distribution of tick samples collected in Gwangju, Korea.
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Figure 2. Seasonal distribution of Haemaphysalis species per life stage (adults and nymph) collected in
Gwangju, Korea.

nipponensis and A. testudinarium ticks. The nucleotide sequences of R. monacensis showed close similarity
to those obtained from Ixodes ricinus ticks collected in Munich, Germany (LN794217) (Fig. 4). R. canadensis,
recently recognized as a pathogenic species*’, was detected in 4 pools of H. longicornis nymphs and in one pool
of A. testudinarium nymphs.

Borrelia spp., the causative agents of Lyme disease and tick-borne relapsing fever, were predominantly detected
in I nipponensis ticks (13.8% MIR), and in one pool of H. longicornis ticks (Fig. 5). Nucleotide sequence analysis
revealed the presence of B. afzelii in 20 adult pools and 1 pool from nymphs of I. nipponensis ticks. The partial
flaB sequences of the B. afzelii group showed high identity with that of B. afzelii detected in I. nipponensis tick
in Korea (MH102391). Borrelia garinii and Borrelia miyamotoi were each detected in two pools from female 1.
nipponensis ticks, respectively.

A. phagocytophilum was detected in I nipponensis ticks (2.0% MIR) and H. longicornis ticks (0.24% MIR).
Considering the sample size, the detection rate was notably high in I. nipponensis ticks. The nucleotide sequences
displayed high similarity to those reported in Korea (OM681329). Additionally, 10 pools from Haemaphysalis
spp. nymphs exhibited nucleotide sequences highly similar to those found in deer and ticks in Korea (GU046565,
GUS556621) (Fig. 6).

Ehrlichia spp. were exclusively detected in H. longicornis ticks; however, the PCR targeting the 16S rRNA gene
did not reveal any distinct Ehrlichia species (Fig. 7).

In our study, 0.25% MIR of the field-collected ticks were found positive for more than one tick-borne
pathogen, primarily in I. nipponensis ticks and larvae of Haemaphysalis spp. R. monacensis and B. afzelii were
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Figure 3. Seasonal distribution of Ixodes nipponensis and Amblyomma testudinarum ticks collected in Gwangju,
Korea.
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Figure 4. Phylogenetic relationship for Rickettsia species, based on the nucleotide sequences of groEL gene. The
neighbor-joining method was used for constructing a phylogenetic tree. Sequences identified in this study are
indicated by black circles (@) for Haemaphysalis spp, black triangles (A ) for I. nipponensis, and black squares
(M) for A. testudinarum. Scale bar indicates sequence distances.
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Figure 5. Phylogenetic relationship for Borrelia species, based on the nucleotide sequences of flaB gene. The
neighbor-joining method was used for constructing a phylogenetic tree. Sequences identified in this study are
indicated by black triangles (A ). Scale bar indicates sequence distances.

identified in I. nipponensis ticks (MIR 6.5%); R. monacensis and B. garinii in 1. nipponensis ticks (MIR 1.2%);
B. afzelii and A. phagocytophilum in I. nipponensis ticks (MIR 1.2%). Both R. japonica and A. phagocytophilum
were detected in 6 pools from larvae (MIR 0.1%). Furthermore, three pathogens were identified in one pool of
I. nipponensis; R. monacensis, B.afzelli, and A. phagocytophilum.

Discussion
In South Korea, the incidence rate of tick-borne diseases mediated by hard ticks is relatively low compared to
countries such as the United States and Europe. For instance, the reported occurrence of Lyme disease in the
United States is 73.3 cases per 100,000 individuals?®, while in Finland, it is around 118 cases®. Canada reported
7.0 cases in 2019%, and Lyme disease patients are reported annually in China and Japan as well*!. In Korea,
the total number of confirmed cases over a 10-year period from 2012 to 2021 was exceptionally low, with only
110 cases (domestically)*~. Consequently, research on these ticks, which serve as vectors for TBPs, is limited.
However, there is an increasing possibility of a higher incidence of tick-borne diseases due to the introduction
of exotic tick species and the potential introduction of pathogens facilitated by climate change®*3*. Factors such
as increased international exchanges and outdoor activities contribute to this possibility**. This study aimed to
investigate the distribution of tick species, seasonal variations, and conduct molecular epidemiological analysis
of pathogens in field ticks from the southwestern region of Korea between 2019 and 2022.

During the study period, a total of 13,280 hard ticks were collected, and the distribution of ticks was in
accordance with other studies conducted in Korea. According to research by Seo et al.**, which utilized the dry-ice
trap method throughout Korea, out of 63,376 hard ticks collected, H. longicornis accounted for 96.5%, H. flava
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Figure 6. Phylogenetic relationship for A. phagocytophilum, based on the nucleotide sequences of 16 s rRNA
gene. The neighbor-joining method was used for constructing a phylogenetic tree. Sequences identified in this
study are indicated by black triangles (A ) for Haemaphysalis spp, and empty triangles (A) for I. nipponensis.
Scale bar indicates sequence distances.

for 2.8%, 1. nipponensis for 1.7%, and A. testudinarium for 0.5%. In a study conducted by Lee et al.%, utilizing the
flagging and dragging method, H. longicornis accounted for 80.7%, and H. flava accounted for 16.2%. Similarly,
in this study, H. longicornis was identified as the dominant species, accounting for 86.1%. A. testudinarium were
found very rarely. A. testudinarium was mainly found in southern region of Korea®.

In Korea, adult ticks and nymphs typically peak from May to August, while larvae peak from August to
September****¥. Following their life cycle, adult ticks lay eggs during the summer, which then hatch into larvae.
These larvae predominantly feed on hosts in the autumn and subsequently molt into nymphs, which spend the
winter to spring period. Consequently, there is a higher distribution of nymphs in the spring and larvae in the
autumn®. In this study, adult ticks and nymphs were primarily collected from April to July, while larvae were
collected from July to November. Notably, Ixodes ticks were predominantly collected from autumn to spring in
this study. Since there have been no previous reports on the distribution of I. nipponensis ticks, including the
winter season, in Korea, this observation represents a novel finding. It underscores the importance of continuous
monitoring of I nipponensis tick distribution throughout Korea.

Meanwhile, there are reports suggesting that climate change can affect tick abundance®®*. When the seasons
favored by nymphs and larvae overlap, there is an increased risk of pathogen transmission as they can co-feed
on the same host. In cases of tick-borne pathogens with non-systemic infection, larvae have no chance of
acquiring the pathogen. However, with climate change leading to simultaneous population peaks of nymphs
and larvae, infected nymphs can transmit the pathogen to larvae via the host’s blood system, without causing
systemic infection®®. The results of this study also indicate a trend of increasing ambiguity in the timing of
peak periods for adult ticks, nymphs, and larvae after 2019. This highlights the need for continuous monitoring
of tick distribution and its peak seasons. It should be noted that factors such as the specific method employed
for collecting ticks, the timing of the collection, and the type of sampler utilized can introduce some degree of
variability in species distribution and seasonal patterns.

The results confirmed that the detection rate of Rickettsia spp. was the highest when examining the pathogens
carried by field ticks in southwestern Korea. This result may reflect the characteristics of the pathogen, such
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A PP528508 Haemaphysalis longicornis GJ190704E
61 | MT258399 Uncultured Ehrlichia sp. Tick/H.longicornis Japan
A PP528507 Haemaphysalis longicornis GJ190702E

A PP528506 Haemaphysalis longicornis GJ190516E
— OM681333 Uncultured Ehrlichia sp. Tick/H.longicornis Korea
EU682762 Ehrlichia chaffeensis Deer Korea

~

AY 309970 Ehrlichia sp. Tick/Haemaphysalis sp. JAPAN
_86{ 0Q552620 Uncultured Ehrlichia sp. Tick/H.flava Korea
KJ410253 Ehrlichia sp. Dermacentor nuttalli China
MK116407 Uncultured Ehrlichia sp. Hirudinaria sp. Japan
3 M73221 E. canis Oklahoma USA
— AF416764 E. chaffeensis strain Arkansas USA
AY055469 A. phagocytophilum USG3 USA

—
0.010

Figure 7. Phylogenetic relationship for Ehrlichia species, based on the nucleotide sequences of 16s rRNA gene.
The maximum likelihood method was used for constructing a phylogenetic tree. Sequences identified in this
study are indicated by black triangles (A ) for Haemaphysalis spp. Scale bar indicates sequence distances.

as trans-stadial and trans-ovarial infections in ticks®’. Similar findings were reported in studies conducted in
Latvia*!, Spain*?, and France®, where the detection rate of Rickettsia spp. was found to be the highest. On
the other hand, in a study conducted in Finland, Borrelia burgdorferi, the causative agent of Lyme disease,
was predominantly detected*’. Meanwhile, information about the prevalence of various tick-borne pathogens,
including Rickettsia spp. in Korea is very scarce. Our report confirms the potential risk of Rickettsia spp. to
humans.

In the Asian region, Rickettsia spp. have been predominantly detected in Haemaphysalis spp., A. testudinarium,
or Dermacentor spp. Among Rickettsia species, R. japonica is commonly reported to be confirmed mainly in
Haemaphysalis spp. or Dermacentor spp., while R. monacensis has been reported in Amblyomma dissimile,
Dermacentor variabilis, Ixodes boliviensis, 1. persulcatus, 1. ricinus, I. sinensis, I. pacificus, and Rhipicephalus
sanguineus®~* . In this study, R. japonica was predominantly confirmed in Haemaphysalis spp., which is consistent
with previous findings*>°.

R. monacensis was detected at a very high rate in I. nipponensis. A study was conducted on ticks collected
from wild rodents captured in the U.S. military bases and training grounds located in Korea, where I. nipponensis
accounted for 99.5% of the ticks collected. Among the 197 pooled samples, Rickettsia spp. was detected in 58.4%,
with 87 pools of R. monacensis and 18 pools of R. japonica*®. Recent studies conducted in Korea and Japan also
reported a high correlation between R. monacensis and 1. nipponensis**™.

Interestingly, R. monacensis, known to cause a Mediterranean spotted fever-like illness>'~?, was detected at a
very high rate in A. testudinarium, as well. To the best of our knowledge, this study represents the first report of
this pathogen being detected in A. testudinarium. In a previous study conducted from 2014 to 2018 in Korea?, no
pathogens were detected in A. testudinarium. A. testudinarium is primalrily reported to inhabit southern regions
of Korea, and it is necessary to monitor whether their habitats are changing due to climate change.

Ixodes ticks are recognized as major vectors of Borrelia bacteria, with 1. persulcatus or 1. nipponensis being
identified in Asia. In a study of ticks collected from pasture around livestock farms in Korea, the detection rate
of Borrelia spp. was found to be 34.0% MIR in I. nipponensis®. Another study in Korea also reported that the
MIR of Borrelia spp. in I. nipponensis was 2.1%, while in H. longicornis and H. flava, it was 0.09%, and 0.1%,
respectively™. The incidence of Lyme disease is associated with Borrelia genotypes, yet there are few reports on
genotypes in field ticks in Korea. B. afzelii and B. miyamotoi were previously detected in 3 pools (12.0%), and 1
pool (4%), respectively in I nipponensis adults in Korea>. Lee et al. reported that all Borrelia species, detected
in I. nipponensis collected from Korean water deer and by tick drag were identified as B. afzelii by the ospA gene
sequences®. During our survey, B. afzelii, B.garinii, and B. miyamotoi were detected in 10.7%, 1.0%, and 1.0%,
respectively. These results indicate B. afzelii is common, while B.garinii, and B. miyamotoi are rarely detected in
I nipponensis in Korea.

A. phagocytophilum is reported to be transmitted by Ixodes ticks. In the United States, representative vectors
include Ixodes scapularis or Ixodes pacificus. In Western Europe, transmission is primarily associated with I.
ricinus, while in Asia, I persulcatus is known as a vector™. In this study, I. nipponensis exhibited high detection
rates of A. phagocytophilum.

51,52
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Research on the genus Ehrlichia has been limited in Korea. In a study investigating TBPs in ticks from
grazing cattle in Korea, E. canis was detected with the highest rate, followed by E. chaffeensis, E. ewingii, and
E. muris®. Another study found E. chaffeensis was the most frequently detected species in H. longicornis ticks
collected in northern Korea®. However, in this study, the PCR targeting the 16S rRNA gene did not reveal any
distinct Ehrlichia species. Three samples belonging to the genus Ehrlichia clustered with Ehrlichia spp. detected
in H. longcornis in Japan (MT258399) . Since the 16S rRNA gene is known to be more conserved, further study
is warranted by comparing more divergent gene sequences, such as the groEL gene.

Ixodes ticks are commonly co-infected with other tick-borne pathogens such as Borrelia spp., Babesia spp.,
Ehrlichia spp., Rickettsia spp., and Powassan virus®. In this study, co-infections were observed in a total of 14
pools of I. nipponensis, mostly consisting of Borrelia spp. and Rickettsia spp. These findings corroborate previous
research suggesting that co-infection is common among Ixodes ticks***. Co-infection may lead to increased
diversity, severity, and duration of symptoms"o. Therefore, raising awareness of potential co-infections is crucial,
and further studies are warranted.

Meanwhile, Coxiella burnetii was not detected in this study. Its primary route of transmission is through the
inhalation of contaminated aerosols'®. Although C. burnetii has been detected in various tick species, tick-borne
transmission is considered to be low' . A case report described an 8-year-old Korean girl who was co-infected
with the SFTS virus and C. burnetii after playing with a dog and being bitten by a tick. In a study of 816 horses in
Korea, six samples (0.7%) tested positive by PCR, suggesting the potential for C burnetii transmission to humans
during horseback riding. Additionally, other studies provided evidence of ticks harboring C burnetii in Korea®2.
Given these reports, further investigation into the epidemiology of Q fever is required.

There are several limitations to this study. Firstly, our research was focused solely on the Gwangju city,
southwestern Korea, which may not be fully representative of the entire tick population in Korea. Secondly,
our tick collection methods primarily relied on dragging and flagging, which could introduce sampling bias. /
these method might not accurately capture the overall tick population and their habitats. Thirdly, our pooling
strategy for tick samples may raise question about accuracy. Some research has shown that pools with more
than 20 nymphs did not significantly improve the detection probability of Rickettsia species®®. Additionally, the
calculation of the minimum infection rate (MIR) assumes that only one infected individual exists in a positive
pool, potentially underestimating the actual prevalence of infection. Therefore, our reported prevalence rates may
represent a lower bound of the infection rate®. Lastly, our analysis of Rickettsia species was based on the groEL
gene. While this gene provides valuable information, a more comprehensive analysis could have been achieved by
analyzing additional sequences targeting genes such as rrs, gltA, and ompA. Despite these limitations, our study
offers valuable insight into the distribution and pathogen characteristics of hard ticks in the natural environments
of Korea. This is particularly relevant for less-studied species like I. nipponensis and A. testudinarium, which have
been underrepresented in research due to their smaller collection scale compared to other tick species. Future
research incorporating a broader range of molecular markers and expanding the geographic scope of sampling
could further enhance our understanding of tick-borne diseases in Korea.

In conclusion, this study comprehensively investigated the distribution of hard ticks and characteristics of
TBPs using 13,280 specimens collected from the southwestern region of Korea between 2019 and 2022. Rickettsia
spp. was the most commonly detected pathogen, with R. japonica and R. monacensis being frequently detected
in I. nipponensis and Haemaphysalis spp., respectively. Notably, our study identified R. monacensis for the first
time in A. testudinarium in South Korea. These findings underscore the imperative for continuous research on
indigenous hard ticks and associated pathogens in South Korea. Given the impact of factors such as climate
change, increased international exchange, and alterations in wildlife behavior on the dynamics of tick-borne
diseases, continuous monitoring is essential to detect and manage the potential introduction of exotic ticks and
pathogens, which could pose new challenges for human health.

Materials and methods

Tick sampling and classification

Ticks were collected from the field on a monthly basis for 1-2 days by using the dragging and flagging methods. A
1 m x 1 m white flannel cloth attached to a wooden bar was utilized for this purpose. The collection was conducted
in Gwangju city, situated in the southwestern region of the Republic of Korea. Collection sites comprised 3-5
locations in hills and mountainous areas surrounding Gwangju city, chosen based on accessibility or suitablility
for crop cultivation. The collection process involved three to four collectors, each spending 15-20 min. Ticks
were carefully removed from the flannel cloth using fine forceps and transferred to 50 mL tubes. Subsequently,
the collected ticks were stored at — 80 °C until further processing. Identification of ticks was performed using an
Axio Zoom.V16 microscope, following the guidelines provided by Yamaguti et al.®.

DNA/RNA extraction

Ticks were pooled in Precellys® 2 mL tubes along with 2 mm ceramic bead and 700 uL of sterile phosphate-
buffered saline. Depending on the species, sex, collection date, and stage of development, 1-2 adults, 1-30
nymphs, and 1-50 larvae were pooled from each collection site for comparison in the prevalence of pathogens.
The pooled ticks were homogenized for 1 min at 8000 rpm using Precellys® 2000 homogenizer and then
centrifuged for 5 min at 10,000 rpm. The resulting supernatants were subjected to DNA/RNA extractions
using the Maxwell® RSC viral total nucleic acid purification kit (Promega, Wisconsin, USA), following the
manufacturer’s instruction.
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Pathogens Primer Nucleotide sequence (5'-3") Product size | References
SFTS_M_F1 | TCATCCTGACTATTYAGCAATWG 640 o
SFTS_M_R2 | TAAGTYACACTCACACCCTTGAA
SFTSV (M segments)
MF3 GATGAGATGGTCCATGCTGATTCTAA 560 o
MR2 CTCATGGGGTGGAATGTCCTCAC
AE1-F AAGCTTAACACATGCAAGTCGAA
Anaplasma and Ehrlichia spp. 1406 o8
AE1-R AGTCACTGACCCAACCTTAAATG
AP-F GTCGAACGGATTATTCTTTATAGCTTGC
Anaplasma spp. (16S rRNA) 926
AP-R CCCTTCCGTTAAGAAGGATCTAATCTCC ©
EC-F CAATTGCTTATAACCTTTTGGTTATAAAT
Ehrlichia spp. (16S rRNA) 390
EC-R TATAGGTACCGTCATTATCTTCCCTAT
132-F TGGTATGGGAGTTTCTGG 4
77
905-R TCTGTCATTGTAGCATCTTT _
Borrelia spp. (flaB) 70
220-F CAGACAACAGAGGGAAAT 605
824-R TCAAGTCTATTTTGGAAAGCACC
IS111-F1 TACTGGGTGTTGATATTGC 485 7
IS111-R1 CCGTTTCATCCGCGGTG
Coxiella spp. (htpAB)
IS111-F2 GTAAAGTGATCTACACGA 260 .
IS111-R2 TTAACAGCGCTTGAACGT
groEL OF GTTGAAGTATGTTAAAGG s34
groEL ON TTTTTCTTTATTCATAATC
Rickettsia spp. (groEL) 7
groEL OFN GTAGTTAAAGGTATGATGTTTGATA 168
groEL ORN | ATCTTCAATATTTTTCTTATCACCG

Table 2. Primers for the detection of tick-borne pathogens.

Detection and characterization of pathogens

The nucleic acids were analyzed using the Applied Biosystems QuantStudio™ 5 real-time polymerase chain
reaction (QPCR) machines, while the remaining samples were stored at 4°C for further analysis. Molecular
identification of SFTSV, Rickettsia spp., C. burnetii, Borrelia spp., A. phagocytophilum, and Ehrlichia spp. was
carried out using qPCR assays with Popgen® pathogen detection kits (PostBio, Gyeonggi-do, Korea), following
the manufacturer’s instructions. Briefly, the PCR assay was performed in 20 pL reaction mixtures consisting of
15 pL of Popgen® qPCR reaction Mix (aliquot) and 5 pL of template DNA. The reaction conditions included an
initial denaturation step at 95 °C for 5 min, followed by 45cycles of denaturation at 95 °C for 10 s and annealing/
extension at 60 °C for 30 s.

Any positive pools identified in the screening assay were subsequently confirmed by the ProFlex™ PCR
machine using primer sets as listed in Table 2°°-7%, The amplified PCR products were sent to Bionics (Daejeon,
Korea), for sequencing using an ABI 3730XL DNA Analyzer (Applied Biosystems, Foster City, USA). The
nucleotide sequences obtained were aligned using ClustalW within MEGA-X software and compared
with GenBank database using the Basic Local Alignment Search Tool (BLAST) at the National Center for
Biotechnology Information (NCBI).

Phylogenetic analyses were conducted using MEGA-X software (v.6.4), and the phylogenetic trees were
constructed using the neighbor-joining method based on the Kimura 2-parameter model, with 1000 bootstrap
replicates.

The prevalence of pathogens was calculated as minimum infection rate (MIR). The MIR for pooled ticks
was determined by dividing the number of positive pools by the total number of ticks. The significance of the
difference in prevalence for each pathogen among species, sexual, and developmental stages was evaluated using
the chi-square test in Excel 2016.

Data availability
All data analysed for this study are included in this article.
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