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Detection of COVID‑19 
by quantitative analysis of carbonyl 
compounds in exhaled breath
Zhenzhen Xie 1, James D. Morris 1, Jianmin Pan 2,3,4, Elizabeth A. Cooke 5, Saurin R. Sutaria 6, 
Dawn Balcom 7, Subathra Marimuthu 7, Leslie W. Parrish 7, Holly Aliesky 7, Justin J. Huang 8, 
Shesh N. Rai 2,3,4, Forest W. Arnold 7, Jiapeng Huang 5*, Michael H. Nantz 6* & Xiao‑An Fu 1*

COVID-19 has caused a worldwide pandemic, creating an urgent need for early detection methods. 
Breath analysis has shown great potential as a non-invasive and rapid means for COVID-19 detection. 
The objective of this study is to detect patients infected with SARS-CoV-2 and even the possibility 
to screen between different SARS-CoV-2 variants by analysis of carbonyl compounds in breath. 
Carbonyl compounds in exhaled breath are metabolites related to inflammation and oxidative 
stress induced by diseases. This study included a cohort of COVID-19 positive and negative subjects 
confirmed by reverse  transcription polymerase chain reaction between March and December 2021. 
Carbonyl compounds in exhaled breath were captured using a microfabricated silicon microreactor 
and analyzed by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS). 
A total of 321 subjects were enrolled in this study. Of these, 141 (85 males, 60.3%) (mean ± SD age: 
52 ± 15 years) were COVID-19 (55 during the alpha wave and 86 during the delta wave) positive and 
180 (90 males, 50%) (mean ± SD age: 45 ± 15 years) were negative. Panels of a total of 34 ketones and 
aldehydes in all breath samples were identified for detection of COVID-19 positive patients. Logistic 
regression models indicated high accuracy/sensitivity/specificity for alpha wave (98.4%/96.4%/100%), 
for delta wave (88.3%/93.0%/84.6%) and for all COVID-19 positive patients (94.7%/90.1%/98.3%). The 
results indicate that COVID-19 positive patients can be detected by analysis of carbonyl compounds 
in exhaled breath. The technology for analysis of carbonyl compounds in exhaled breath has great 
potential for rapid screening and detection of COVID-19 and for other infectious respiratory diseases in 
future pandemics.
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The World Health Organization (WHO) declared the COVID-19 outbreak caused by SARS-CoV-2 a pandemic 
in March 2020. The COVID-19 pandemic has had an enormous global economic impact1. Subjects infected by 
SARS-CoV-2 virus show similar symptoms as those of other common respiratory diseases. There were as high as 
40% asymptomatic subjects among confirmed COVID-19 patients all over the world2. Rapid screening and diag-
nosis of COVID-19 is a critical tool to curb spreading of the disease. Currently, reverse transcription-polymerase 
chain reaction (RT-PCR) is considered as the gold standard for screening and diagnosis of COVID-193. Antigen 
tests have become an important screening tool due to their rapid processing time (15 min) and ease of use at 
home4. However, the nasal/pharyngeal swabs to acquire samples for PCR and antigen tests are uncomfortable 
and the antigen tests are not able to differentiate SARS-CoV-2 variants5.

Breath analysis offers a rapid, and non-invasive detection of diseases and has attracted much attention 
because of its wide application in medical diagnosis, metabolite bioinformatics and drug discovery6. The National 
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Institutes of Health in the United States launched the RADx℠ Radical program to seek innovative, non-tradi-
tional diagnostic approaches to address gaps in COVID-19 testing and surveillance (www.​radxr​ad.​org) in late 
2020. The SCENT program is one of the RADx-rad focus areas for developing new technology platforms to screen 
for COVID-19 through analysis of volatile organic metabolites in exhaled breath. Volatile organic compounds 
(VOCs) are generated upon infection by host responses through a series of lipid degradations including ketosis 
and inflammatory processes present in the lungs7,8.

Recently, different methods have been used for analysis of exhaled breath or exhaled breath condensate 
to detect COVID-19, such as gas chromatography-mass spectrometry (GC-MS)9,10, proton transfer reaction 
time-of-flight mass spectrometry (PTR-ToF-MS)11–13, Fourier transform infrared spectroscopy (FTIR)14, gas 
chromatography-ion mobility spectrometry (GC-IMS)15,16, sensors and electronic nose17,18, and others19,20. In 
April 2022, the US Food and Drug Administration approved the first COVID-19 screening test by GC-MS analy-
sis of breath samples under emergency use authorization (EUA)21. Breath analysis techniques also demonstrated 
the potential for differentiation of variants of SARS-CoV-222,23. Many variants of SARS-CoV-2 create challenges 
for its detection and curbing the disease. Further, asymptomatic COVID-19 subjects also increase the difficulty 
to control the spread of infections.

In the present work, we demonstrated a unique approach of using a panel of thirty-four carbonyl compounds 
detected in all exhaled breath samples for detection of COVID-19, differentiation of Alpha from Delta variant, 
and detection of asymptomatic COVID-19 infection. Although COVID-19 has faded away because of vaccines, 
this breath analysis approach could be used for endemic or next pandemic. Carbonyls represent a category of 
organic molecules from oxidation of lipids24 and they play a crucial role in various biological processes, such as 
inflammation and oxidative stress that strongly occur upon SARS-CoV-2 infection25. Carbonyl compounds have 
been widely detected in breath by both GC-MS and LC-MS26–28. We recently developed a microreactor approach 
coupled with LC-MS for quantitative analysis of a broad range or carbonyl compounds in exhaled breath28. 
Whereas some carbonyl compounds in exhaled breath including acetaldehyde, octanal, acetone and 2-butanone 
have been reported as biomarkers of COVID-19 in exhaled breath15,19, there is no study that focused solely on 
analysis of carbonyl compounds to diagnose COVID-19. Furthermore, no previous studies have used carbonyl 
VOCs to differentiate COVID-19 variants or to detect asymptomatic SARS-CoV-2 infection. The objective of 
this work was to detect SARS-CoV-2 patients by analysis of a broad range of carbonyl compounds in breath and 
differentiation between the Alpha and Delta variant waves.

Material and methods
Study participants
The research protocol of this study was approved by University of Louisville Institutional Review Board (IRB 
Number 20.1154). All research was performed in accordance with the Declaration of Helsinki and the rel-
evant guidelines/regulations of the IRB. Informed consent was obtained from all participants. Participants were 
enrolled from the Travel Clinic of the Division of Infectious Diseases at the University of Louisville and the 
University of Louisville Health Hospitals in Louisville, Kentucky. The Travel Clinic offered COVID-19 PCR test-
ing required prior to international travel, testing for employees of local businesses that required a negative test 
result prior to returning to their workplace, and for patients requiring a negative PCR test prior to an out-patient 
surgical procedure. The majority of recruited participants from the Travel Clinic did not exhibit any symptoms 
of COVID-19 infection and most of the participants were COVID-19 negative from PCR test. Subjects recruited 
at the hospitals were patients most with mild COVID-19 symptoms and also subjects with trauma and an inci-
dental SARS-CoV-2 positive test. Written informed consent was obtained from each participant. All participants 
were tested for SARS-CoV-2 using RT-PCR from nasopharyngeal swab samples. Adult patients aged 18 or over 
were recruited for the study. Both symptomatic and asymptomatic subjects were included. COVID-19 negative 
subjects were recruited from the Travel Clinic.

Exhaled breath sample collection and process
A novel silicon microreactor (Fig. S1) was used to capture carbonyl compounds in breath and then the captured 
compounds were analyzed by ultra high-performance liquid chromatography-mass spectrometry (UHPLC-MS). 
Exhaled breath samples were collected in 1L Tedlar bags (Sigma-Aldrich, St. Louis, MO) based on our previous 
study28,29. The silicon microreactor was fabricated using microelectromechanical systems (MEMS) technology 
and the device has been characterized for analyzing carbonyl compounds in exhaled breath28. Subjects were 
instructed to breathe directly into a Tedlar bag through the mouthpiece connected to the bag. A 1 L breath sam-
ple of a mixture of tidal and alveolar breath was collected. After collection, the mouthpiece was disconnected, 
disinfected, and then disposed. The Tedlar bag was sealed with the attached valve and placed in a biohazard bag 
inside a cooler at 4 °C before transporting to a BioSafety Level 2 Laboratory (BSL-2) for processing and analysis. 
A nasopharyngeal swab sample for RT-PCR was also collected to test the SARS-CoV-2.

Between March and December 2021, a cohort of subjects with an age range of 18–82 years were recruited 
for the study. In Louisville, Kentucky, the Alpha variant of SARS-CoV-2 was dominant reported by the City 
Health Office during the study period between March and June 2021, so subjects recruited during that period 
of COVID-19 were attributed to the Alpha wave. The Delta variant was dominant between July and December 
202130. Thus, subjects recruited during that period of COVID-19 were attributed to the Delta wave.

All breath samples were transferred to the BSL-2 laboratory in the Division of Infectious Diseases Labora-
tory at the University of Louisville within 2 h of collection for processing. Breath samples were left at ambient 
temperature for 5 min and then evacuated through the silicon microreactors at a flow rate of 7 mL/min to achieve 
above 90% capture efficiencies of carbonyl compounds. The silicon microreactor has thousands of triangular 
micropillars as shown in Fig. S1 (Supporting Information). The fabrication of silicon microreactors is described 
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in a recent publication28. The surfaces of the channels and micropillars in the microreactors are functionalized 
with 2-(aminooxy)ethyl-N,N,N-trimethylammonium triflate (ATM) for capture of aldehydes and ketones via 
oximation reactions. Tedlar bags were connected to the silicon microreactors through deactivated silica tubes. 
Breath samples were evacuated from the Tedlar bag through the microreactors, then through HEPA filter, and 
finally through a 75% alcohol in water impinge before entering into air in a BSL-2 hood to avoid contaminations. 
Detailed characterization of the silicon microreactors and processing of breath samples were reported elsewhere28.

UHPLC‑MS analysis
After the breath sample in the Tedlar bag had been completely evacuated through the microreactors, the ATM 
reacted adducts were eluted from the microreactor using 200 µL methanol. ATM-acetone-d6 adduct (5 × 10–9 mol) 
was added as an internal reference (IR) to the eluted samples. Then, the sample was diluted with water by a 
factor of 10 for analysis. After processing, all materials including tubes and Tedlar bags were decontaminated 
according to the laboratory standard procedure for biohazardous waste disposal. The samples were analyzed 
using a Thermo Scientific UHPLC-MS system equipped with an automatic sampler, a Vanquish UHPLC and 
a Q Exactive Focus Orbitrap Mass Spectrometer (MS). The UHPLC had an ACQUITY BEH phenyl column 
(2.1 mm × 100 mm, 1.7 μm, Waters, MA, USA) for the separation of ATM-carbonyl adducts. The liquid flow rate 
through the column was set to 0.2 mL/min. The column temperature was stabilized at 30 °C. The autosampler 
tray temperature was set at 8 °C. 5 μL of sample volume was injected into the column. The mobile phase A was 
0.1% formic acid in water, and mobile phase B was acetonitrile. The mass spectrometer was operated in positive 
electron spray ionization (ESI) mode with a spray voltage of 3.5 kV. Nitrogen was used as sheath, auxiliary, and 
sweep gas at flow rates of 49, 12, and 2 (arbitrary units), respectively. Full MS mode with the mass range (m/z) 
from 50 to 500 with a resolution of 70,000 was used to process the breath samples. For MS/MS analyses, a paral-
lel reaction monitoring (PRM) method was used by MS. Chromatographic separation conditions were set via a 
gradient elution program28. The total chromatographic runtime was 11 min. A total of 34 carbonyl compounds 
were detected for all breath samples and compound concentrations were calculated by comparison of each 
compound peak area with that of the IR in each breath sample UHPLC-MS chromatogram, including saturated 
ketones and aldehydes, hydroxy-aldehydes, unsaturated 2-alkenals, and 4-hydroxy-2-alkenals28. A total of 56 
features including the 34 carbonyl compound concentrations and 22 derived features of compound ratios and 
summations including the sum of formaldehyde, acetaldehyde and acetone, the sum of all other carbonyl com-
pounds (OT) and ratios of acetone to butanone were used for statistical analysis (Table S1). Data acquisition and 
processing were carried out using Thermo Scientific Xcaliber version 4.4. For chemical structure identification 
of the majority of detected carbonyl compounds, ATM adduct standards were synthesized in-house and used 
for comparison of retention times and MS/MS spectra28.

Data and statistical analysis
There are many classification methods, which include generalized partial least squares, support vector machines, 
random forests, and logistic regression model to classify the patients into disease and control groups based on 
breath analysis data31. Prediction (classification) methods involve structured categorical outcome and multi-
ple structured or unstructured covariates32,33. There are no models suited for every condition. Therefore, it is 
important to identify a good model which takes into account sequential structured covariates for the prediction. 
Furthermore, the proper identification of key carbonyl compounds through statistical and machine learning 
techniques requires further advances.

In a typical breath sample analysis, the molecular concentration data on several hundred(s) of endogenous 
and exogenous VOCs are usually obtained. For the detected VOCs, it may not be required to use all VOCs for 
the patient classification or the predictive model building process (i.e., training the machine learning models 
and later use them for class label predictions). Therefore, it is pertinent to select/identify a few metabolic VOCs 
related to COVID-19 as key features for COVID-19 detection. The selection of key features (here metabolic 
VOCs) out of many VOCs is called feature selection in machine learning34. Further, it is essential to determine 
the number of significant VOCs (e.g., feature size or dimension of VOC data), which can be used in the training 
of the classification model to predict the class type of COVID-19 patients. The selection of significant VOCs 
saves time for all VOCs present in the breath samples. Thus, the researchers can focus on a few VOCs instead of 
generating data on all the VOCs present in breath samples of the patients.

The data was first normalized using logarithm (log2) method and then a t-test was used for continuous vari-
ables and chi-square test was used for categorical variables35. A p-value less than 0.05 defines statistically signifi-
cant difference at a 95% confidence interval. All calculations were performed with SAS statistical software36. A 
logistic regression model was employed for both univariable and multivariable regressions. After the logarithm 
and quantile methods to normalize the data, it is no longer non-linear. The multivariable logistic prediction 
model is the most robust one especially when there are less covariates32. The model performance was evaluated 
by the receiver operator characteristic (ROC) curve with area under the ROC curve (AUC), accuracy, sensitivity, 
specificity, positive predictive value (PPV) and negative predictive value (NPV). Boxplots were used to visualize 
the differences between COVID-19 positive and negative groups. A random section of about 67% of samples was 
used for the training dataset and 33% of samples for testing dataset for all logistic regression models.

Results
A total of 321 subjects were enrolled. Of these, 141 (85 males, 56 females) were COVID-19 positive and 180 
(90 males, 90 females) were negative as confirmed by PCR test. 55 COVID-19 positives were collected during 
Alpha wave from March to June 2021 and 86 during Delta wave from July to December 2021. Thirty one of the 
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141 (22%) COVID-19 positive samples were from asymptomatic subjects. The demographic information and 
the monthly COVID-19 positive and negative participants are presented in Fig. 1 and Table 1.

SARS‑CoV‑2 alpha wave
The Alpha variant spread quickly in 2020 in United Kingdom and soon became the dominant variant in the U.S. 
as well. There were 55 samples positive for the Alpha wave, and 70 negative samples collected from March to June 
2021. Twenty two out of the 56 features showed significant differences between positive and negative (Table 2). 
Table S1 indicates all 56 features, chemical formula, m/z and retention times. The best performing multivariable 
logistic model was generated using only two features (ID # 41: acetone/2-butanone and 52: 2-pentenal/OT) to 
distinguish COVID-19 Alpha wave positive group from negative group with a sensitivity of 96.4%, specificity 
of 100%, PPV of 100%, NPV of 97.2%, an overall accuracy of 98.4% and an AUC of 96.5%. Boxplots of the two 
features are shown in Fig. S2. ROC curve for the model is shown in Fig. 2. The decrease of 2-pentenal/OT in 
COVID-19 positive subjects indicates that there was less 2-pentenal in the sum of all other detected carbonyl 
compounds excluding formaldehyde, acetaldehyde and acetone (Fig. S2). Acetone/2-butanone ratio as a marker 
of COVID-19 has been reported15. Acetone and many aldehydes including butanal, pentanal, hexanal, heptanal, 
and octanal were elevated in COVID-19 Alpha wave patients (Table 2). These compounds were reported as 
biomarkers for COVID-1911,15,19.

SARS‑CoV‑2 delta wave
There were 86 samples positive for the Delta wave and 110 negative samples from July to December 2021. Eight-
een out of 56 features showed significant differences between Delta positive and negative (Table 2). There were 
only two elevated compounds acetone and hydroxy-pentanal in common for both Alpha and Delta waves. A 
new set of 12 biomarkers (ID # 9, 17, 22, 23, 31, 32, 35, 36 37, 41, 42, and 45, see Table 2) were used to generate 
the multivariable logistic model to distinguish COVID-19 Delta wave period positive and negative group with 
a sensitivity of 93.0%, specificity of 84.6%, PPV of 82.5%, NPV of 93.9%, an overall accuracy of 88.3% and an 
AUC of 93.3% (Table 3). Figures S3 and S4 show the boxplots of the 12 biomarkers and ROC curve of the model, 
respectively.

Figure 1.   Number of breath samples for COVID-19 positive and negative subjects recruited monthly during 
the study.

Table 1.   Study subject information.

All subjects COVID-19 Positive COVID-19 Negative p-value (all positives vs all negatives)

Subjects number 321 55 (Alpha), 86 (Delta) 180 –

Vaccinated (n) 156 11 (Alpha), 27 (Delta) 118 –

Age (years) (mean ± SD) 48 ± 15 52 ± 15 45 ± 15 0.0004

Male (n) 175 85 90 0.0934

White race 228 92 136 0.0570

Height (ft) (mean ± SD) 5.66 ± 0.33 5.70 ± 0.32 5.64 ± 0.35 –

Weight (lb) (mean ± SD) 192 ± 51 208 ± 58 179 ± 40 –

BMI (kg/m2) 29.2 ± 7.4 31.4 ± 8.9 27.5 ± 5.4 0.0000
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All COVID‑19 positive and negative subjects
All the 141 COVID positive and 180 negative breath data were analyzed together. Eighteen out of 56 features 
showed significant differences between all COVID-19 positive group and all COVID-19 negative group with 
p-value < 0.05. A multivariable logistic model containing a set of five biomarkers (ID # 3: acetone, 9: hexanal, 35: 
total of formaldehyde and acetaldehyde and acetone, 41: ratio of acetone/2-butanone and 45: ratio of butanal/
OT, see Table 2) were able to differentiate COVID-19 positive from negative groups regardless of variants, with 
a sensitivity of 90.1%, specificity of 98.3%, PPV of 97.7%, NPV of 92.7%, an overall accuracy of 94.7% and an 
AUC of 93.3%. Figures S5 and  S6 show the boxplots of the five and ROC curve of the multivariable logistic 
regression model, respectively.

SARS‑CoV‑2 alpha wave vs delta wave
We also compared Alpha wave with Delta wave breath samples to examine the VOC signature differences between 
variants. A multivariable logistic model with four biomarkers (malondialdehyde, butylaldehyde, pentanal, ratio 
of octanal/OT) were able to distinguish Alpha positive and Delta positive with above 90% sensitivity and speci-
ficity. The box plots of the four biomarkers and ROC curve are shown in Figs. S7 and S8. These results indicate 
that the breath signatures vary as different variants emerge, which may impact the future breath analysis on 
diagnosing COVID-19 and other viral respiratory infections. It was reported that Delta variant caused more 

Table 2.   VOC biomarkers selected to distinguish between different groups. ID, identification. *Indicates that 
the VOC appears in multiple biomarker sets.

ID Features name Alpha (55) vs Negative (70) Delta (86) vs Negative (110)
All Positive (141)
vs Negative (180)

Asymptomatic (31)
vs Negative (183)

1 Formaldehyde ↓

2* Acetaldehyde ↑ (P = 0.212) ↑ ↑

3* Acetone ↑ ↑ ↑ ↑

5* Butanal ↑ (P = 0.156) ↑ ↑

7 Pentanal ↑

8* Hexanone ↑ ↑

9* Hexanal ↑ ↓ ↓ (p = 0.466)

10* Heptanal ↑ ↑

11* Octanal ↑ ↓ (p = 0.078) ↑

12 Nonanal ↑

16* Acrolein ↓ ↓ ↓

17* Crotonaldehyde ↓ ↓

18* 2-Pentenal ↓ ↓ (p = 0.0578)

19* 2-Nonenal ↓ ↓

22* Malondialdehyde ↑ ↓

23* Hydroxy-pentenal ↓ ↓ ↓

25* Hydroxy-heptenal ↑ ↑

27 4-HNE ↓

28 Hydroxy-acetaldehyde ↑

29 Hydroxy-acetone ↑

30 Hydroxy-2-butanone ↑

31* Hydroxy-pentanal ↑ ↑ ↑ (0.116)

32* Hydroxy-hexanal ↑ ↓ ↑

34* 4-HHE ↑ ↑

35* Total of formaldehyde + acetalde-
hyde + acetone (C1 + C2 + C3) ↑ ↑ ↑ ↑

36* Other total (excluded C1, C2, C3) ↑ ↓

37* Formaldehyde/(C1 + C2 + C3) (p = 0.247) ↓ ↓ ↓

40* Acetone/formaldehyde ↑ ↑ ↑

41* Acetone/2-butanone ↑ (p = 0.091) ↑ ↑

42 2-Butanone + butanal + 2-pen-
tanone + pentanal (C4 + C5) ↑ (p = 0.060)

45* Butanal/OT ↑ ↑ ↑ ↑

50 Octanal/OT ↑

51 Nonanal/OT (p = 0.078) (p = 0.075) ↑

52* 2-Pentenal/OT ↓ ↓

54* Hydroxy-acetaldehyde/ OT ↑ ↑

56 Hydroxy-2-butanone/OT ↑
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severe inflammation than Alpha variant37. Delta variant was significantly more transmissible than the Alpha 
variant38. McCartney et al.23 and Sharma et al.22 reported that both sensitivity and specificity were significantly 
improved when modeling the Delta wave and the Omicron wave separately.

Asymptomatic COVID‑19 positive vs negative
Asymptomatic SARS-CoV-2 positives were separated and compared with all negatives. Out of 141 COVID-19 
positive subjects, 31 (Alpha n = 12, Delta n = 19) were asymptomatic positive subjects. In this analysis, we com-
pared 31 asymptomatic COVID-19 positive subjects with all 180 negative subjects. Twenty out of 56 features 
show significant differences with p-value < 0.05. A sensitivity of 71.0%, specificity of 99.5%, PPV of 95.7%, NPV of 
95.3%, an overall accuracy of 95.3% and an AUC of 88.0% were achieved with a logistic model of four biomarkers 
(ID # 3: acetone, 32: hydroxyhexanal, 41: acetone/2-butanone, 45: butanal/OT in Table 2). The separated logistic 
regression models for Alpha and Delta provide much higher sensitivity for asymptomatic SARS-CoV-2 positive 
subjects as shown above. Boxplots of the four biomarkers and ROC curve of the multivariable logistic model 
are shown in Figs. S9 and S10. The sample size of asymptomatic COVID-19 positive patients is small, which is 
a limitation of this comparison.

Discussion
Three different logistic regression models were developed for differentiation of COVID-19 positive from negative 
using samples from Alpha, Delta waves and a combination of all Alpha and Delta. Table 3 lists the sensitivities, 
specificities, NPV, PPV and accuracies with lower and upper 95% confidence interval for each group. The models 
showed similar or better results than previous breath analysis reports involving COVID-19 patients9,12,14–16,21–23. 
As indicated in Table 3, sensitivity is higher when we modeled the waves separately. The model for prediction of 
Alpha positives had the highest sensitivity (96.4%), followed by that for Delta (93.0%) and combined Alpha and 

Figure 2.   Receiver operator characteristics (ROC) curve (AUC = 0.9647) for multivariable model to distinguish 
COVID-19 Alpha wave positive and negative groups with two features of acetone/2-butanone ratio and 
2-pentenal/OT.

Table 3.   Summarized accuracy, sensitivity, specificity, PPV and NPV with lower and upper 95% confidence 
interval for each group.

% Sensitivity Specificity PPV NPV Accuracy Features

Alpha period positive vs negative 96.4 (87.0–99.7) 100 (93.8–100) 100 (91.9–100) 97.2 (89.9–99.8) 98.4 (94.0–99.9) Acetone/2-butanone ratio, 2-pentenal/OT

Delta period positive vs negative 93.0 (85.3–97.1) 84.6 (76.5–90.2) 82.5 (73.6–88.9) 93.9 (87.2–97.5) 88.3 (83.0–92.1)

Hexanal, crotonaldehyde, malondialdehyde, 
hydroxy-pentenal, hydroxy-pentanal, hydroxy-
hexanal, C1 + C2 + C3, other total (excluded 
C1, C2, C3), formaldehyde/(C1 + C2 + C3), 
acetone/2-butanone, C4 + C5, butanal/OT

All positive vs all negative 90.1 (83.9–94.1) 98.3 (95.0–99.7) 97.7 (93.1–99.5) 92.7 (88.0–95.7) 94.7 (91.6–96.7) Acetone, hexanal, C1 + C2 + C3, acetone/2-
butanone and butanal/OT

Alpha positive vs Delta positive 100 (94.9–100) 100 (92.2–100) 100 (94.9–100) 100 (92.2–100) 100 (96.8–100) Butanal, pentanal, malondialdehyde, octanal/
OT

Asymptomatic vs all negative 71.0 (53.2–84.1) 99.5 (96.7–100) 95.7 (77.3–100) 95.3 (91.2–97.6) 95.3 (91.5–97.8) Acetone, hydroxy-hexanal, butanal/OT, 
acetone/2-butanone
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Delta (90.1%). The specificity, or true negative rate was 100% for Alpha period model, followed by the combined 
model (98.3%) and Delta period model (84.6%).

The VOCs affected by SARS-CoV-2 in exhaled breath could be from the host response to infection. Inflam-
mation responses could be induced by rapid SARS-CoV-2 viral replication, cellular damage, angiotensin-con-
verting enzyme-2 downregulation, and anti-spike protein-neutralizing antibodies (anti-S-IgG)25. The inflam-
mation responses to SARS-CoV-2 cause oxidation of lipids which leads to higher levels of specific carbonyl 
compounds in the respiratory tracts and lungs24. Liangou reported that acetone, acetaldehyde, heptanal, octanal, 
and 2-butanone were elevated in COVID-19 positive patients11. Ruszkiewicz could discriminate COVID-19 from 
other conditions by ketones (acetone, acetone/2-butanone cluster) and aldehydes (ethanal, propanal, heptanal, 
octanal)15. Berna found octanal, nonanal, and heptanal with elevated concentrations for COVID-19 infected 
patients19. However, there was no virus variant in these studies. This work identified acetone, butanal, pentanal, 
hexanal, and the acetone/2-butanone ratio as biomarkers for COVID-19.

One limitation of the current work is the lack of cross reactivity validation. Subjects infected by other viruses, 
such as influenza, respiratory syncytial virus (RSV), adenovirus, rhinovirus and bacterial pneumonia may exhibit 
similar symptoms as COVID-19 patients. Prior studies demonstrated the metabolite differences in breath from 
respiratory pathogens other than COVID-1939,40. Steppert et al.20 and Ruszkiewicz et al.15 reported that breath 
analysis could distinguish COVID-19 and influenza infections in a small cohort study by using MCC-IMS and 
GC-IMS, respectively. More studies on the VOC signatures by comparing COVID-19 and other respiratory 
infection may improve the machine learning model for better diagnosis. This breath analysis technology can be 
easily adopted for detection of other respiratory infection in future endemic and pandemic diseases.

Conclusion
UHPLC-MS in combination with a MEMS-fabricated silicon microreactor was used to analyze carbonyl com-
pounds in exhaled breath to differentiate COVID-19 positive and negative subjects. The sensitivity increased 
when modeling variants separately. The overall results are promising for SARS-CoV-2 detection. When all 
positive (both Alpha and Delta) and all negative samples were used for training a logistic regression algorithm, 
the model still achieved 90.1% sensitivity, 98.3% specificity and 94.7% accuracy. A study to compare the differ-
ence between SARS-CoV-2 and other respiratory pathogens is required to fully verify the method. The method 
could be adopted for detection of other contagious respiratory viral diseases for curbing future endemic and 
pandemic diseases.

Data availability
Data and data dictionary are available with the publication at https://​radx-​hub.​nih.​gov/​home.
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