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Learning the mechanisms 
of network growth
Lourens Touwen 1, Doina Bucur 2, Remco van der Hofstad 1, Alessandro Garavaglia 1 & 
Nelly Litvak 1*

We propose a novel model-selection method for dynamic networks. Our approach involves training a 
classifier on a large body of synthetic network data. The data is generated by simulating nine state-
of-the-art random graph models for dynamic networks, with parameter range chosen to ensure 
exponential growth of the network size in time. We design a conceptually novel type of dynamic 
features that count new links received by a group of vertices in a particular time interval. The proposed 
features are easy to compute, analytically tractable, and interpretable. Our approach achieves a near-
perfect classification of synthetic networks, exceeding the state-of-the-art by a large margin. Applying 
our classification method to real-world citation networks gives credibility to the claims in the literature 
that models with preferential attachment, fitness and aging fit real-world citation networks best, 
although sometimes, the predicted model does not involve vertex fitness.

In this paper, we investigate model selection for dynamic growing networks using machine learning. By model 
selection we mean choosing a generative mathematical model that describes the dynamic network in the best 
possible way. We apply our methods to citation networks, as these are prominent examples of dynamic networks 
where vertices and edges remain in the network forever.

Model selection for complex networks
In dynamic networks, model selection identifies generative mechanisms that drive the formation of new con-
nections. There are numerous ways in which model selection can help solve network problems: (a) The specific 
topology of a graph affects the performance of algorithms for common tasks such as computing the shortest 
paths 1,2 and finding strongly connected components 3. Therefore, the classification of generative network-growth 
mechanisms of real-life networks is useful for selecting suitable network algorithms and forecasting their per-
formance as well as their requirements for computing power and storage. (b) Scale-free networks with the same 
exponent but different degree cut-off values can be small- or ultra-small worlds 4. As such, the right model is 
necessary for accurate prediction of the shortest paths in networks. (c) Exact assumptions on the scale-free 
model may lead to the opposite conclusions on the epidemic threshold being positive 5 (the network has initial 
resistance to an epidemic) or zero 6 (even the smallest infection spreads widely). (d) Predictions of the network 
robustness depend on the fine details of the model. Indeed, a scale-free preferential attachment model of the 
Internet predicts an alarming sensitivity to targeted attacks 7, while more realistic models suggest a much higher 
robustness 8. (e) Different models assign different importance to the vertices. For example, PageRank follows a 
power-law distribution with the same exponent as the in-degree in a scale-free directed configuration model 9, 
but, surprisingly, has a smaller exponent, thus higher variability, in directed preferential attachment networks 10. 
(f) Last but not least, realistic models enable us to predict the growth and evolution of networks in the future.

The common approach for model selection is to fit the parameters of a generative model to the target network, 
generate synthetic networks with these fitted parameters, and compare their features (e.g., degree distributions, 
shortest paths, etc.) to the target network 11–16. However, fitting the model parameters is a difficult problem in 
itself, so only simple models admit explicit analytical results 17,18. Numerical methods for parameter fitting are 
available for a wider range of models, for instance,19 fits a discrete choice model, where the probability of an edge 
from u to v depends on the features (e.g., degrees) of u and v. The parameters are fitted using logit regression, 
where a large regression coefficient implies that the feature is important. The downside is that the model must 
be fitted for each network separately, and the parameter estimates are analytically intractable, thus conclusions 
do not easily generalize to other networks. Interestingly, experiments in19 find all features statistically signifi-
cant, even when coefficients are small. This illustrates a fundamental challenge in model selection for complex 
networks, in that statistical tests are likely to reject any generative model.
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Here we propose a machine learning approach to model selection that works as follows: First, many synthetic 
networks are generated from a particular set of generative models. Then a classifier is trained based on the net-
work features. As a result, the classifier labels any network as being produced by one of the generative models. 
Recent work on machine learning for model selection usually compares fundamentally different models, such as 
Erdős-Rényi (ER) (random connections) vs. Barabási–Albert (BA) (connection probability to a vertex is propor-
tional to its current degree) 20, or ER vs. BA vs. Chung-Lu (connection probability to a vertex is proportional to 
its fixed weight) vs. Hyperbolic Random Graphs (connection probability to a vertex is defined by its position in a 
hyperbolic space) 21. Some works also compare distinct models to real-life networks from different domains 22,23. 
In this work, we view a generative model as a combination of growth mechanisms. More specifically, we apply 
our methods for selecting the best combinations of growth mechanisms used in the literature to describe citation 
networks: fitness, aging, and preferential attachment 19,24–28.

An important contribution of this work is the novel feature design for dynamic networks. The literature mostly 
uses a set of features that in fact are metrics of the network’s final snapshot, for instance, the degree distribution, 
the PageRank distribution, the number of triangles, etc. 15,16,21,22,29 (see more details in “Machine learning meth-
odology” section). There are also deep learning methods that take the entire adjacency matrix as input 20,30. We 
call these input features static because they do not explicitly include the network evolution. Instead, we propose 
new dynamic features inspired by the state-of-the-art network models14,31, and the growing data availability of 
dynamic networks (e.g., https://​netwo​rkrep​osito​ry.​com/​dynam​ic.​php)32. Our features are aggregated statistics 
of the network growth in time. These statistics are interpretable, easy to compute, and have explicit analytical 
expressions suitable for mathematical derivations of their properties. Our method achieves almost perfect clas-
sification of synthetic data obtained from the state-of-the-art network models14,31. Our results on real-world 
citation data mostly support the current models24–27 with fitness, aging and preferential attachment as discussed 
next, but also show that the selected model may depend on a specific feature design, thus telling a cautionary tale 
for blanket application of these models as well as the usage of machine learning for model selection.

Dynamic network mechanisms
We propose network models where edges do not disappear. Citation networks are a natural real-world example 
of such networks. Motivated by the properties of citation networks, our models include three generative mecha-
nisms: fitness, aging and preferential attachment.

Fitness Some papers generate tremendous follow-up work, while others may not. One may say that in terms 
of attracting citations, not all papers are equally fit. Fitness is the mechanism that allows relatively young papers 
to be cited a lot. Wang, Song, and Barabási24 estimate the fitness of papers based on citations they receive. Zhou, 
Holme, Gong, et al.28 propose a model of link formation based on fitness and degrees. They find that, for citation 
networks like most non-social networks, the evolution based on fitness describes the degree distribution and the 
degree ratio of adjacent nodes better than the evolution based on degrees. Moreover, in models with fitness but 
without preferential attachment, power-law distribution of fitness results in power-law degree distribution (see 
Proposition A.1 in the Supplementary Material).

Aging Citations to a paper depend on the (calendar) time since its publication (see33 and Figure A.2b in the 
Supplementary Material). The literature suggests that aging occurs according to a log-normal distribution in 
calendar time (see24 and Figure A.3c in the Supplementary Material).

Preferential Attachment Highly-cited papers can be expected to get even more citations, thus giving rise to a 
preferential attachment effect. This effect was already observed in the context of citation networks by De Solla 
Price34, and was put forward as a main driver for the occurrence of power-law degrees in11. See e.g.,24, as well as35 
for an attempt to measure this effect. Contrary to fitness, preferential attachment means that papers receive extra 
citations because they have already been cited, and not because they are fit. This effect may be due to scientists 
reading paper A that cites paper B, and thus citing B as well.

Modeling networks in calendar time
Most models of dynamic networks take the network growth time approach, that is, vertices arrive one by one at 
time t = 1, 2, . . . . We instead propose a continuous-time approach that mimics the networks’ exponential growth 
in calendar time (illustrated in Figure A.3a of the Supplementary Material). Our approach relies on the power-
ful concept of continuous-time branching processes (CTBP)14,36,37. We use CTBPs to produce random trees, and 
then transition from trees to graphs with random out-degrees using a collapsing procedure that identifies several 
vertices in the CTBP to one vertex in the random graph. We refer to Sect. 4.1 for details.

Results
Dynamic network models
We model a network as a collapsed CTBP. By switching each of the generative mechanisms – fitness, aging, and 
preferential attachment – on or off, we obtain a flexible set of models that we wish to compare to real-world 
network data sets. Figure 1 illustrates the eight possible combinations of mechanisms. We use acronyms F (fit-
ness), A (aging) and P (preferential attachment). The illustrations demonstrate how in the models with aging, 
the probability to connect to the older vertex is low; in the models with preferential attachment, the connec-
tion probability increases with degree; and in the models with fitness, the fit vertices have a higher connection 
probability. In addition to the eight different combinations of mechanisms, in models F and FA, we consider 
two distributions of fitness: power-law and exponential. We denote this by FPL and Fexp , respectively. Model FP 
requires bounded fitness38, therefore we assume that the fitness has a uniform distribution and denote this by 
F
unif

 . Finally, we disregard model A (only aging) because it lacks the property of exponential growth in calendar 
time (see Sect. A.3 of the Supplementary Material). Altogether, we obtain a set of nine models from which we 

https://networkrepository.com/dynamic.php
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generate synthetic data to train our classifier for machine learned model selection. In the classification problem, 
each generative model corresponds to one category, or class.

The models proposed in this paper come with many parameters. We choose these parameters in such a way 
that the network characteristics obey asymptotic laws that are close to those observed in real-world networks. In 
particular, to mimic citation networks, we aim for models whose sizes grows exponentially in time. Mathemati-
cally, it means that the collapsed CTBP must satisfy a certain supercriticality condition, explained in Sect. A.3 
of the Supplementary Material. Table 3 in Sect. 4 gives an overview of the models and the parameters used to 
generate the synthetic data set.

Classification of dynamic networks
Generating the training data. For training, we have generated 6733 synthetic networks, about 750 for each of 
the nine generative models (categories), of size 20, 000. The numbers and size of synthetic networks are chosen 
so that the learning curves of machine learning models flatten at these data and network sizes (see Sect. A.6 in 
the Supplementary Material). Synthetic networks are generated by the following procedure. For a given genera-
tive model, the parameters are chosen uniformly at random from the range in Table 3. Then we let the network 
grow until it reaches 20, 000 vertices. If the CTBP dies out, we repeat the simulations with the same parameter 
combination at most 1000 times, until one of the runs reaches 20,000 vertices before dying out. The resulting 
network of 20, 000 vertices is included in the dataset. A few parameter combinations result is a very low survival 
probability, so we do not succeed in 1000 attempts; then we have slightly less than 750 synthetic networks of the 
corresponding category.

Static features. Static features use only the final snapshot of the graph. We use 36 static features from the 
recent literature15,16,21,23,39, that are feasible to compute on many medium-to-large size networks. They include 
assortativity, transitivity, and the distributions of numerical values associated with each vertex: degree, coreness, 
local clustering coefficient, and the number of triangles. See “Machine learning methodology” section  for details.

Dynamic features. Our novel dynamic features significantly depart from the standard static features: they 
explicitly capture the network’s aggregated dynamics. The literature either learns the model from the final snap-
shots of many networks15,16,21,23,39 thus ignoring the dynamics, or considers each edge as a data point and learns 
the model from the set of edges of one network 19 thus allowing no generalization of the learned model to other 
networks. Our approach strikes the balance between viewing the network as a whole and at the same time includ-
ing its dynamics. Specifically, denote the network graph at time t ∈ [0,T] by G(t) = (V(t),E(t)) , where V(t) is 
the set of vertices, and E(t) is the set of edges. We subdivide vertices in V(T) in equal groups Vj , j ∈ {1, 2, . . . , r} , 
by their degrees in the final graph G(T) from large to small. Furthermore, we subdivide the time interval T in s 
sub-intervals. We do this in two ways: using size-cohorts (where each sub-interval contains the same number of 

U F

P A FA

FP AP FAP

Figure 1.   An example of the eight combinations of growth mechanisms. F stands for fitness, A for aging, and 
P for Preferential Attachment. U stands for uniform attachment, when a new vertex connects to existing ones 
uniformly at random. The circles are the vertices, arranged horizontally from left to right in the order of their 
arrival. The vertical positioning is chosen to make all directed edges visible, it has no further meaning. In the 
models with fitness, the size of the circles is proportional to their fitness. The red circle on the right is the new 
vertex that will connect to one of the existing vertices. The color of the other vertices from dark blue to yellow 
corresponds to the connection probability, from low to high, of the red vertex to an older vertex.
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arrivals, |V(T)|/s), and using time-cohorts (where each sub-interval is of the same length, T/s, in calendar time). 
The dynamic features Dij are the average numbers of edges per vertex, received by group Vj in the i-th sub-interval 
(see “Machine learning methodology” section  for the formal definition). This way the features (Dij)1≤i≤s,1≤j≤r 
track the network’s dynamics. We call D = (Dij) the Dynamic Feature Matrix (DFM).

Near‑perfect classification of synthetic dynamic networks
Classification results with static features. Static features already yield high accuracy of 92.81± 1% , where 
92.81% is the accuracy in the reported train-test split and 1% is the maximal observed absolute difference with 
other train-test splits in our experiments. The confusion matrix in Figure 2a predictably shows that the most 
common confusion is between P and FunifP. For discussion of feature importance, see Sect. A.8 and Figure A.7a 
in the Supplementary Material.

Classification results with dynamic features. Our dynamic features convincingly outperform static features, 
yielding near-perfect accuracy 98.06± 0.5 % with time-cohorts, and 97.62± 0.5% with size-cohorts. The confu-
sion matrix with time-cohorts in Figure 2b shows a significant improvement.

The next natural question is, can we interpret the difference between generative models using the dynamic 
features? The standard permutation importance approach (see Sect. A.8 and Figure A.7b in the Supplementary 
Material) as well as extensive computations of correlations between features (omitted in this article, see Sect. A.12 
in the Supplementary Material), did not offer any intelligible way to identify most informative features. Therefore, 
we propose a new approach to interpretation of the dynamic features. To begin with, Figure 3 shows the values 
of the dynamic features for the nine models.

We see that all feature matrices have a similar shape. The largest feature is D10,1 in the bottom left corner, as 
expected, because it is the average degree increment of the top-10% degree vertices obtained from the last, by 
far the largest (due to the exponential growth of the network in calendar time), time-cohort. The values of the 
other features gradually reduce with their distance to D10,1 . The top-right corner is always empty, conform the 
old-get-richer phenomenon: low-degree vertices did not get any link early on. Surprisingly, this is true even for 
the Uniform model and for the models with aging. While all feature matrices have a similar shape, it turns out 
that the classifier discriminates the models by the differences between the numbers in the cells. We visualize this 
in Figure 4 as follows. For each feature Dij we compute its average over all synthetic networks, D̄ij . Then for each 
model, we plot the relative difference δij = (Dij − D̄ij)/D̄ij . Note that for fixed i, j, the sum of δij over all models 
equals zero because D̄ij is the average over the nine models. However, the elements of the δ matrix for a given 
model are not comparable because they are normalized by different values of D̄ij.

The matrices in Figure 4 are strikingly different. This explains the success of the classifier. Moreover, Figure 4 
yields several interesting insights. First, note that the largest negative value of δij is −1 , when Dij = 0 . In particular, 
in the Uniform model, and all models with fitness but without preferential attachment, the last column has only 
−1’s, so at least 10% vertices in these models have in-degree zero. As expected, the models with aging smooth out 
the degree increments. Indeed, we see that δ has values closer to zero, in other words, if Dij ’s in the models with 
aging are relatively close to D̄ij . Next, we now see that in Figure 4, the ‘old-get-richer’ effect is most prominent 
in the pure preferential attachment model, P. Indeed, low-quantile vertices are the ones that are born late in the 
process because this is when they start gaining positive degree increments.

Classification results with static and dynamic features. With static and dynamic features together, the 
accuracy increases to 98.40± 0.3 %. It is on average higher than with the dynamic features alone, but the error 
margins do overlap. The confusion matrix is shown in Figure 2c. We conclude that adding static features does 
not significantly improve the accuracy.

(a) (b) (c)

Figure 2.   Confusion matrix using: (a) static features, (b) dynamic features with time cohorts, (c) both static 
features and dynamic features with time cohorts.
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Classification applied to citation networks
We use citation network data from the Web of Science. Our dataset contains publications between 1980 and 2015. 
Citations are included only to the papers contained in the dataset. In order to obtain somewhat homogeneous 
real-life networks, we use citation networks separately for different scientific fields. See the brief summary of 
the data in Table 1.

Figure 3.   The values of the dynamic features with time-cohorts for the nine models. The shape of the matrix is 
similar for all models but the values reduce with their distance to D10,1 in different ways.

Figure 4.   The relative difference, δij = (Dij − D̄ij)/D̄ij with time-cohorts. The sum of elements i, j over all 
classes equals zero. The value −1 appears often because it corresponds to Dij = 0.
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Section A.1 in the Supplementary Material contains detailed discussion of typical empirical properties of 
citation networks reported in the literature.

The classifier takes the dynamic citation network as input and returns the probability distribution over the 
nine categories. Table 2 shows the most likely category for each research field using static features, dynamic 
features and the combination thereof. For the complete distribution over classes, see Tables A.2–A.5 in the Sup-
plementary Material.

With static features only, citation networks are classified FexpA or AP. This is surprising because neither of 
these growth mechanisms gives rise to power-law in-degrees. With the size-cohorts dynamic features or the 
combination of the static features and the size-cohorts dynamic features, most citation networks are classified 
as FexpAP , the model that has been suggested in the literature24. Interestingly, precisely this combination of 
mechanisms makes the in-degrees have dynamic power-laws, where the exponent decreases over time to some 

Table 1.   The summary of the Web of Science citation networks for several scientific fields. In the experiments, 
only the connected component was used.

Acronym Field Original size Size of connected component

AP Astrophysics 477113 451730

BT Biotechnology 537867 421643

PS Probability and statistics 185167 157500

GE Geology 56692 46672

NP Nuclear physics 223321 198162

OC Organic chemistry 567146 535945

OP Optics 501817 416893

SO Sociology 222416 91736

Table 2.   Classification results on WoS citation networks.

Static Features Yes No Yes No Yes

Dynamic Features No Size-cohorts Size-cohorts Time-cohorts Time-cohorts

Accuracy on synthetic data 92.81% 97.33% 97.62% 98.06% 98.40%

AP Astrophysics FexpA FexpAP FexpAP AP FexpA

BT Biotechnology AP FexpAP FexpAP AP FexpAP

GE Geology AP FexpAP AP AP AP

NP Nuclear Physics FexpA FexpAP FexpAP AP FexpA

OC Organic Chemistry FexpA FexpAP FexpAP AP FexpA

OP Optics AP FexpAP FexpAP AP FexpAP

PS Probability and Statistics AP FexpAP FexpAP AP FexpAP

SO Sociology AP P AP AP AP

Table 3.   Dynamic network models with parameters. The parameter range is chosen so that the CTBP is 
supercritical, i.e., it grows exponentially in time (see Sect. A.3 for details).

Code Name Growth mechanism Parameters Range Power-law

0 U Uniform attachment None – No 50, Exercise 8.17

1 P Affine PA a, b a ∈ (1, 4), b ∈ (1, 4) Yes 50, Theorem 8.3

2 F
pl

Power-law fitness (xmin, τ) xmin ∈ (0.5, 1), τ ∈ (2, 4) Yes (Proposition A.1)

3 Fexp Exponential fitness � � ∈ (0.1, 3) No (Proposition A.1)

4 F
pl

A Power-law fitness lognormal aging (xmin, τ)(µ, σ)
xmin ∈ (0.5, 1), τ ∈ (2, 2.7)
µ ∈ (0.1, 3), σ = 1

Yes (Proposition A.1)

5 FexpA Exponential fitness Lognormal Aging �(µ, σ) � ∈ (0.1, 1)µ ∈ (0.1, 3), σ = 1 No (Proposition A.1)

6 F
unif

P Affine PA uniform fitness (a, b) (c, d) a ∈ (1, 4), b ∈ (1, 4)
c ∈ (0.1, 1), d ∈ (1, 5)

Yes38, Theorem 3

7 AP Affine PA lognormal aging (a, b) (µ, σ) a ∈ (3.3, 7), b ∈ (1, 4)
µ ∈ (0.1, 3), σ = 1

No14, Section 5.1

8 FexpAP Affine PA Exponential fitness Lognor-
mal aging (a, b) �(µ, σ) a ∈ (1, 4), b ∈ (1, 4)

� ∈ (0.1, a+ b

E[M]
)µ ∈ (0.1, 3), σ = 1

Yes14, Section 5.2
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limit14, as observed in the data (see Figure A.3a in the Supplementary Material). SO is clearly different, it is the 
only citation network never being classified as FexpAP . Furthermore, it is classified as P by dynamic features with 
size-cohorts, which is the only classification that does not involve aging. Notably, the results with time-cohorts 
dynamic features differ from those with size-cohorts dynamic features; the citation networks are often classified 
as AP and sometimes FexpA. Altogether, with the best classifiers, we find it likely that aging is part of the real-
world mechanisms, but whether this is combined with preferential attachment, exponential fitness, or both, is 
inconclusive. It is also clear that Fexp appears statistically most likely out of the considered fitness options.

Discussion
Excellent classification of dynamic network models. The classification of the synthetic data based on networks 
dynamics has excellent accuracy higher than 98%, greatly superseding the accuracy with state-of-the-art static 
features (92.8%). The accuracy may improve only slightly when adding static features to the dynamic ones. Our 
dynamic features are interpretable in that we identify clear differences between distinct models. This is a highly 
desirable property for machine learned model selection.

Application to citation networks. Using dynamic features, FexpAP is often the most likely classification for 
citation networks. SO is an outlier in that it is never classified FexpAP . However, in some cases, other models 
are also quite plausible in terms of the likelihood of their classification. For instance, in Table A.6 in the Sup-
plementary Material we see that the classifier (with both static features and dynamic features with size-cohorts) 
estimates the likelihood of uniform attachment (U) for OC as 47.484%, which is only slightly smaller than the 
likelihood 50.6094% of FexpAP . This demonstrates that the most likely classification of real-life networks is 
not always robust, the entire distribution over the nine models is more informative. Furthermore, in practice, 
we recommend to use both dynamic features designs – with size-cohorts and time-cohorts – for more reliable 
conclusions. In particular, in our application to citation networks, all feature choices have clear preferences for 
just a few classes ( FexpAP , AP, sometimes FexpA and P). At the same time, many other classes are clearly ruled 
out, e.g., the quite plausible F

pl
A and most models without aging, see Tables A.2–A.6).

In search for a simple explanation why different features result in a different classification on real-life net-
works, we have performed many additional experiments, for instance, computing distances between the synthetic 
and real-life feature vectors. These attempts however were not successful in the sense that simple measures like 
distances did not explain the classification. As an example, and for completeness, we report the results of our best 
attempt, the two-dimensional UMAP (Uniform Manifold Approximation and Projection) embeddings of the 
features, see Sect. A.10 of the Supplementary Material. We see that the two-dimensional embeddings of differ-
ent synthetic classes have significant overlap. This makes classification of citation networks with UMAP highly 
unreliable, and exemplifies the complexity of learning the right model, even for synthetic networks. Similarly, 
in our experiments with other known methods, the complex structure of our features could not be captured in 
spaces of much lower dimensions.

Power laws in networks. Interestingly, by14, the FexpAP model, that is often selected by our classifier for cita-
tion networks, has dynamical power-law in-degrees with exponent decreasing over time. This is a new argument 
in favor of using power laws as a mathematical model for degree distributions. There is a lively debate about 
whether power-law in-degrees are rare or ubiquitous (see40–42 and the references therein). One of the problems 
with statistical evaluation of power laws is that, fundamentally, a power law holds only in the infinite network 
size limit 41. Model selection offers an alternative, albeit arguably qualitative, approach to infer the presence of 
power laws: first, identify the model based on a finite network; then analyze this model when the network size 
grows to infinity.

A cautionary tale on ML techniques for model selection. Our machine learning methods work really well 
to distinguish between synthetic networks having different growth mechanisms. Moreover, these methods are 
general in that they identify the combination of mechanisms regardless the exact value of parameters. However, 
applying these methods to real-world networks with the aim to distinguish network growth mechanisms may 
lead to non-robust results because models are never perfect representations of the real-world networks, and 
machine-learning methods pick up differences easily. We believe that the true reason for this sensitivity is that 
in reality, citation networks are not accurately described at a detailed level by any of the models considered here. 
Therefore, depending on the features, the model selection yields the result that is most consistent with the chosen 
features. Hence, the best modeling choice depends on which features we want to capture. This calls for systematic 
approaches to feature design depending on a specific research question and application, as well as validation 
methods of machine learned model selection.

Further research. It would be of interest to study other possible generative models. Particularly for citation 
networks, models with copying 43 or high probability of triangles 19 might be appropriate. This will account for 
the situation when authors cite both a paper and some references from that paper. One may also want to include 
geometry and make closer vertices more likely to connect 44 mimicking research topics and communities. It 
would be highly interesting to find a set of mechanisms that will be consistently selected by different classifiers 
for all citation networks, if such a combination of mechanisms exists. Furthermore, we may consider networks 
where links between fixed vertices change over time as many related real-world networks, such as social networks 
and the World Wide Web.

Our dynamic features are computationally light, this enables further investigation of machine learning meth-
ods. For instance, one could include varying network sizes, explore other approaches to feature importance (e.g. 
Shapley values), and use regression to fit model parameters for real-life networks. Moreover, our features have 
explicit analytical expressions, thus we may hope to analytically derive the accuracy of machine learning methods 
and identify most informative features using the theory of continuous-time branching processes.
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In terms of model selection, our cautionary tale requires further investigation. Our results show that model 
selection is sensitive to the choice of features. This calls for new methods of systematic feature design that is suit-
able for the problem at hand. New experiments can be done to go further in details in choosing the best classifier 
(e.g. training binary classifiers which predict the presence or absence of a dynamic network mechanism such as 
aging, broader parameter range for simulations, larger tuning hyperspace).

Methods
Collapsed CTBP models for dynamic networks
Modeling growth mechanisms with CTBPs. Our models build on a continuous-time branching process (CTBP) 
representation of preferential attachment models. The equivalence of these processes was established, for instance, 
in  45, Theorem 3.3 and46, Theorem 2.1. Furthermore, collapsed CTBPs represent the local weak limit of directed 
PAMs as established in47, Theorem 1 and48, Proposition 6.10, see also a unified treatment of this result in10, Sec-
tion 4.2. The CTBP’s are random growing trees. By defining the rates, at which vertices of a CTBP produce their 
offspring, one can model desired mechanisms of network’s growth. In this work, the rates explicitly depend on 
the fitness of the vertex, its age, and its degree (preferential attachment). Fix a vertex u of CTBP, and let tu denote 
its birth time. Then, the rate at which vertex u produces offspring at time t is given by

where h : [0,∞) → [0,∞) denotes the aging function, ηu the fitness of vertex u, f the preferential attachment 
function, and in-degreeu(t) is the in-degree, that is, number of offspring of vertex u at time t. This gives a flexible 
class of CTBPs models for aging, fitness, and preferential attachment, moreover, we can switch off any of these 
mechanisms by taking h, ηu and/or f equal to 1. Motivated by empirical properties of citation networks (see 
Sect. A.1 in the Supplementary Material), we make the following choices in (1).

The preferential attachment function f, when present, is affine, a key example being the linear preferential 
attachment function used in the Barabási–Albert model11. We take f (k) = ak + b , a, b > 0.

The fitness variables (ηv)v∈V(T) are positive i.i.d. random variables. In the FP models, the distribution of ηv ’s 
must have finite support, since otherwise condensation occurs that is absent in citation networks 38,49. Therefore, 
we assume the uniform distribution on the interval [c, d]. In FAP models, in order to obtain sufficient variability 
in the network’s degree distribution, ηv ’s must have unbounded support, with at least an exponential tail 14, there-
fore we assume the exponential distribution with parameter � . Finally, in F and FA models, we consider ηv ’s to 
have either the exponential distribution or a power law, that is pure Pareto with density (τ − 1)xτ−1

min x
−τ , x > xmin.

We let the aging function h, when present, be the density of a log-normal distribution conform to the log-
normal aging as in Figure A.13,

From trees to graphs with collapsed CTBP’s. A CTBP produces a tree, which we convert to a graph G(t) with 
out-degrees greater than 1, using the following collapsing procedure.

First, we generate random out-degrees M1,M2, . . . as independent copies of a random variable M sam-
pled from the empirical distribution of the number of references in a paper in the WoS OC network, with 
E[M] ≈ 10.29 . The OC network was chosen because it is sufficiently representative for the out-degree distribu-
tions in the other citation networks as well. See Sect. A.2 in the Supplementary Material for details.

Next, we start generating the CTBP, simultaneously assigning its vertices to batches of sizes M1,M2, . . . in 
the order of their arrival. At time t, graph G(t) is produced by collapsing every batch into one vertex v of G(t). 
When generating the CTBP, all vertices in the batch of v receive the same fitness ηv and the same birth time tv , 
equal to the birth time of the oldest CTBP vertex in the batch. Furthermore, we make the total rate, at which 
a collapsed vertex v produces offspring, independent of its out-degree Mv , by distributing the original rate (1) 
equally among the Mv collapsed vertices. Summarising, in our collapsed model, every vertex u of the CTBP, that 
is to be collapsed into vertex v of G(t), produces offspring at rate

In application to citation networks, each collapsed vertex v models one paper; this paper cites Mv other papers; 
the publication date is the birth time of the oldest collapsed vertex; the citations to this paper are the offspring 
produced by the Mv collapsed vertices together.

Parameters range of the collapsed CTBP. Table 3 summarises the generative models, on which we have 
trained our machine-learning methods. The last column (‘Power law’) states which models have power-law in-
degrees, based on the literature and Proposition 1 in Sect. A.5 of the Supplementary Material. Column ‘Range’ 
displays the parameter ranges that we used for different models. These ranges are derived from the following 
considerations. There are only three possible scenarios of the CTBP’s growth: 1) CTBP is subcritical, it dies out 
after producing a random finite tree, 2) CTBP is supercritical, it grows exponentially in time with positive prob-
ability, or 3) CTBP is explosive, it produces an infinite tree in a finite time. Since real-life citation networks grow 
exponentially in time (as in Figure A.1a in the Supplementary Material), we choose the range of parameters 
a, b, c, d, �, xmin, τ ,µ, σ inside the region where the CTBP with the original rate (1) is supercritical. We derive 
these conditions in Sect. A.3, and discuss the supercriticality of the collapsed process in Sect. A.4 of the Supple-
mentary Material. In the models with aging, a supercritical branching process dies out with positive probability. 
In the experiments, for each parameter combination, we remove networks that die out, and keep the first network 

(1)ηuh(t − tu)f ( in-degreeu(t)), t > tu,

h(t) =
1

xσ
√
2π

e
− (ln(t)−µ)2

2σ2 , t > 0.

(2)
1

Mv
ηvh(t − tv)f ( in-degreeu(t)), t > tv .
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that achieves a size of 20, 000 within at most 1000 attempts. For example, Figure A.5 in the Supplementary Mate-
rial shows the number of F

pl
 A networks that died out for different values of τ . For simplicity of interpretation, 

we choose the parameter range so that the average rate of producing offspring is similar across different models. 
Finally, we choose the models such that the CTBP cannot be explosive. Thus, we exclude FP models with expo-
nential or power law fitness, as such models do explode in finite time38.

Machine learning methodology
Static features. The 36 static features are selected from recent literature. We compute static features on the 
undirected version of our networks because most of these features are designed for undirected graphs. Two 
static features are global characteristics of the graph: the assortativity coefficient15,23,39 is the Pearson’s correlation 
coefficient between degrees of two vertices connected by an edge; the global clustering coefficient (or, transitiv-
ity)15,16,39 is the fraction of triangles among connected triplets of vertices. Other features describe the distribu-
tions of numerical values of individual vertices. For each value we compute the minimum, the maximum, the 
mean, the standard deviation, and 3 to 5 quantiles that proved descriptive for different networks. Two values are 
vertex centralities: in-degrees15,16,21,23 (quantiles 0.125, .25, .5, .75, .875), and coreness21,23 (quantiles .25, .5, .75). 
The coreness of a vertex equals the largest number k such that the vertex is in the k-core – the maximal induced 
subgraph with all vertices having degree k or higher. Another type of values describes the vertex neighborhoods. 
Of these, we use the number of triangles that contain the vertex16,23 (quantiles .80, .90, .95, .97, .99, which have 
sufficient variance to be used as features), and the local clustering coefficient21,23 (quantiles .5, .6, .7, .8, .9). The 
latter is the fraction of pairs of neighbors of the vertex that are connected to each other. Our features do not need 
to be independent of the network size39, because all synthetic networks in our training set have the same size.

We do not include edge density21, because our networks are of comparable density defined by the average 
in/out-degree E[M] . We do not use PageRank16,21 and Katz index21, because of their similarity to in-degree in 
our models. Diameter21, closeness and betweenness centrality21 and motif counts16,39 are excluded because their 
infeasible computational costs on many networks of size 20,000. Finally, our synthetic networks are not expected 
to contain communities, thus we omit the number of communities16.

Novel dynamic features. A core contribution of this paper is the dynamic feature design that directly sum-
marizes the evolution of the dynamic graph G(t) = (V(t),E(t)) , t ∈ (0,T] . Our dynamic features form a Dynamic 
Feature Matrix (DFM) D of size s × r , defined as follows. The columns j ∈ [r] of the matrix D correspond to 
groups of vertices Vj between (r − j)/r-th and (r − j + 1)/r-th quantiles of the empirical degree distribution at 
time T. Formally,

For instance, V1 contains the vertices whose degree at time T is in the highest (100/r)% of V(T).
The rows i ∈ [s] of the matrix D stand for cohorts of vertices in the order of their arrival. More specifically, we 

define time instants 0 = τ0 < τ1 < · · · < τs = T , and let cohort i consist of those vertices that have arrived in 
the time interval (τi−1, τi] . To define the τi’s, we consider size-cohorts and time-cohorts. Size-cohorts all contain 
the same number of vertices, and τi is the time when the ⌊|V(T)|i/s⌋-th vertex arrives. Time-cohorts correspond 
to the calendar time, they consist of vertices that have arrived in equal time intervals, and τi = Ti/s . Note that 
in the CTBP, the number of vertices in time-cohort i increases exponentially in i, so the highest-degree vertices 
in V1 attract many edges from the last, the largest, time-cohort.

The entries ij of the matrix D are the normalized average number of edges received by vertices in Vj from 
cohort i:

where

and C is the normalization constant so that 
∑s

i=1

∑r
j=1 Dij = 1 . This normalization is a common practice to 

prevent overfitting. In our case, �ij increases with the graph size, and, by construction, decreases in s and r. The 
normalization ensures that our learned classes are robust with respect to the choice of |V(T)|, s and r. Intuitively, 
the dynamic features are meaningful for model selection because different models prescribe different likelihood 
of vertices to attract new edges. This is exactly what we are able to track with dynamic features.

Choice of classifier is explained in Sect. A.7 of the Supplementary Material.

Data availability
The dataset with synthetic networks and their static and dynamic features: DOI 10.4121/0b40e329-7b33-4b8f-
a289-ab6d1893b437 available at https://​data.​4tu.​nl/​datas​ets/​0b40e​329-​7b33-​4b8f-​a289-​ab6d1​893b4​37.

Code availability
Code repository for network simulation and feature extraction: https://​gitfr​ont.​io/r/​user-​62399​85/​R9WcT​8Msr4​
6T/​Dynam​icNet​workS​imula​tion/.

Vj =
{

v ∈ V(T) :
r − j

r
<

1

|V(T)|
∑

w∈V(T)

1{deg
w
(T) ≤ deg

v
(T)} ≤

r − j + 1

r

}

, j ∈ [r].

(3)Dij = C�ij , i ∈ [s], j ∈ [r],

(4)�ij =
1

|Vj|
∑

v∈Vj

(degv(τi)− degv(τi−1)),

https://data.4tu.nl/datasets/0b40e329-7b33-4b8f-a289-ab6d1893b437
https://gitfront.io/r/user-6239985/R9WcT8Msr46T/DynamicNetworkSimulation/
https://gitfront.io/r/user-6239985/R9WcT8Msr46T/DynamicNetworkSimulation/
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