
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:13212  | https://doi.org/10.1038/s41598-024-61954-y

www.nature.com/scientificreports

A multivariate process quality 
correlation diagnosis method 
based on grouping technique
Qing Niu 1,2*, Shujie Cheng 1,2 & Zeyang Qiu 1,2

Correlation diagnosis in multivariate process quality management is an important and challenging 
issue. In this paper, a new diagnostic method based on quality component grouping is proposed. 
Firstly, three theorems describing the properties of the covariance matrix of multivariate process 
quality are established based on the statistical viewpoint of product quality, to prove the correlation 
decomposition theorem, which decomposes the correlation of all the quality components into a 
series of correlations of components pairs, and then by using the factor analysis method, all quality 
components are grouped in order to maximize the correlations in the same groups and minimize 
the ones between different groups. Finally, on the basis of correlations between different groups 
are ignored, T2 control charts of component pairs in the same groups are established to form the 
diagnostic model. Theoretical analysis and practice prove that for the multivariate process quality 
whose the correlations between different components vary considerably, the grouping technique 
enables the size of the correlation diagnostic model to be drastically reduced, thus allowing the 
proposed method can be used as a generalized theoretical model for the correlation diagnosis.

Keywords  Multivariate process quality, Correlation diagnosis, Grouping technology, Factor analysis, T2 
control chart

With the development of the modern global market, the product’s quality has been one of the key factors that 
greatly influence the competitiveness of enterprises. In the whole formation of the product’s quality, process 
quality is one of the most basic sessions because the product’s quality will be influenced by every process’ quality 
directly or indirectly, so process quality control is the essence of quality management in manufacturing.

The objective of managing univariate process quality was achieved by using Shewhart’s control chart, which is 
a tool in the theory of statistical process control (SPC)1–4. But in modern manufacturing, there are many processes 
that involve more than one quality component. Due to the correlation of quality components, all components and 
their correlation must be monitored simultaneously5,6. The theory of monitoring the correlation shift of all the 
quality components using T2 control charts was originally proposed by Hotelling7. For a p-dimensional process 
quality y = (y1, y2,…, yp)T, the T2 statistic is defined as:

where μ is the mean vector, and Σ is the covariance matrix of y. When T2 > 0, it signifies that all the quality 
components in y are correlated.

The general distribution of T2 statistics can have different forms8–10. Particularly, when y follows the normal 
distribution N(μ, Σ), the T2 statistic follows the χ2 distribution with p-freedom, and the proof can be found in Sup-
plementary. Suppose α is the false probability, then the upper control limit (UCL) of the T2 statistic is χ2

α(p) , and 
the lower control limit (LCL) is 0. Thus, the T2 control chart can be established to monitor the correlation shift of 
y. T2 control chart has the advantage of being able to fully take into account the correlation between components 
and gives accurate false probability under condition of component correlation, however, this control chart is 
unable to pinpoint the cause(s) of the correlation shift when it is out of control. Since then, on the basis of T2 sta-
tistic, scholars have carried out a lot of research on the diagnostic methods of abnormal correlation shift between 
quality components, and have successively proposed diagnostic methods based on component combinations, 
principal component analysis, orthogonal decomposition of the T2 statistics, and intelligent diagnostic methods.

(1)T2 = (y − µ)T�−1(y − µ)
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Diagnosis method based on component combinations
For a p-dimensional process quality y = (y1, y2,…, yp)T, when the T2 control chart K, which monitors the correla-
tion shift of all the quality components shows an abnormality, it indicates that the correlations of one or more 
quality component combinations must be abnormal. In order to diagnose the specific component combinations 
that cause the T2 control chart K to be abnormal, a straightforward approach is to use the exhaustive method, 
i.e., to list all possible forms of component combinations, and for each form of combinations, to create a T2 
control chart. When the T2 control chart K displays an abnormality, the specific component combinations that 
lead to the abnormality of the T2 control chart K can be determined by analyzing the results of the T2 control 
charts corresponding to all combinations of quality components one by one11–13, this approach is referred as 
component combinations based diagnostic (CCBD) method in this paper. While this approach is theoretically 
sound and appealing, it has inherent deficiencies. For a p-dimensional process quality y = (y1, y2, …, yp)T, the 
number of T2 control charts using this method is N = C2

p + C3
p + · · · + C

p
p = 2p-p-1, where N is an exponential 

function of p, and the space complexity is O(2p). When p is small, this approach has some feasibility, however, 
when p increases, N will increase sharply, leading to a significant expansion of the diagnostic system scale, so 
this method is difficult to apply in practice.

On the other hand, the defect of information redundancy in diagnostic results can not be avoided in the 
CCBD method. For example, in a 4-dimensional process quality y = (y1, y2, y3, y4)T, suppose the abnormal cor-
relation shift between y1 and y2 is the only cause which causes the correlation of y out of control. Now in the 
CCBD method, besides T2 control chart to monitor the correlation shift of (y1, y2) is out of control, the other 
combinations which contain y1 and y2, namely (y1, y2, y3) and (y1, y2, y4), their T2 control charts are both out of 
control. This phenomenon that because of the correlation shift of one component combination is out of control, 
the correlations of other component combinations which contain the abnormal component combination are 
all out of control is called as the redundancy of diagnostic messages. The redundancy in diagnostic results is 
disturbance for process quality adjustment.

Diagnosis method based on principal component analysis
When the number of quality components to be monitored in manufacturing process is large, direct analysis 
of process quality data will lead to a significant increase in the computational effort of the diagnostic process. 
Therefore, reducing the complexity of process quality data in an appropriate means is an effective way to improve 
diagnostic efficiency. Because the principal component analysis (PCA) is a useful tool for dealing with high-
dimensional data, scholars proposed by using the principal component analysis method14–17, the original process 
quality y = (y1, y2,…, yp)T is converted to p independent principal components and sorted by variance decreasing 
order, denoted as z = (z1, z2, … , zp)T. Then firstly, p Shewhart control charts are constructed to monitor the nor-
mality of zi; Secondly, the first n(n < p) principal components whose the cumulative sum of their variance exceeds 
a specified critical value are grouped as component pairs, and T2 control charts are constructed to monitor the 
normality of (zi, zj) (i, j ≤ n, i ≠ j); At last, the normality of the rest principal components group (zn+1, zn+2,…, zp) 
is monitored by a T2 control chart.

Compared with the CCBD method, the number of control charts based on PAC method is 
N = p+ C2

n + 1 = p+ n(n− 1)/2+ 1 , the space complexity approximately is O(p2), and the diagnostic effi-
ciency is improved. However, n still increases rapidly while p is increasing, the scale of diagnostic system is still 
large. Furthermore, due to zi generally has no engineering meaning after conversion, the cause(s) which cause 
the correlation shift of y out of control can only be specified by a comprehensive analysis of all the results in 
control charts and consulting the mapping relationship between y and z, the calculation of diagnosis is increased, 
and the accuracy of diagnostic results is affected. Meanwhile, the redundancy of diagnostic messages also can 
not be avoided.

Diagnosis method based on correlation orthogonal decomposition
In 1995, Mason, Young and Tracy18–20 proposed by using regression analysis method, the T2 statistic can be 
decomposed into conditional and unconditional terms which have equal weight in the decomposition results 
and are orthogonally independent each other. Then, according to the statistical distribution of the conditional 
and unconditional terms, the corresponding control limits are established to diagnose the specific cause(s) when 
the manufacturing process is abnormal. Compared with the diagnostic methods based on principal component 
analysis, the conditional and unconditional terms obtained by MYT orthogonal decomposition method can be 
directly corresponded to the quality components or component combinations, which improves the accuracy of 
the diagnostic results.

As an example, in bivariate process quality y = (y1, y2)T, the basic idea of the MYT orthogonal decomposition 
method21–24 is to decompose the T2 statistic into the following form:

where T2
1 , called the unconditional term, is related only to the quality component y1 and is used to measure the 

contribution shift in y1 to the T2 statistic; and T2
2•1 , called the conditional term, whose value is related to the 

conditional probability P(y2|y1) and is used to measure the contribution in the correlation between y1 and y2 to 
the T2 statistic.

Similar to Eq. (2), the T2 statistic can also be decomposed into another form:
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where the unconditional term T2
2
 is related only to the quality component y2, and is used to measure the contribu-

tion shift in y2 to the T2 statistic; the conditional term T2
1•2 depends on the conditional probability P(y1|y2), and 

is used to measure the contribution in the correlation between y2 and y1 to the T2 statistic.
Conditional probability P(y2|y1) ≠ P(y1|y2) when y1 and y2 are correlated, and hence the conditional term 

T
2
2·1 �= T

2
1·2 . For this reason, Eqs. (2) and (3) are two distinct representations of the T2 statistic’s decomposition 

results. In general, for a p-dimensional process quality y = (y1, y2,…, yp)T, the decomposition results have a total 
of p(p-1)… × 2 × 1, and the space complexity is O(p!). As the number of quality components increases, under the 
condition that every possible form of decomposition is analyzed, will lead to a significant increase of calcula-
tions and a serious reduction in diagnostic efficiency. At the same time, the accuracy of the diagnostic results 
based on this method will be affected when there are obvious correlations between different quality components.

Intelligent diagnosis methods
In addition to the traditional diagnostic methods based on mathematical model analysis, in recent years, with 
the development of artificial intelligence technology, intelligent diagnostic methods are applied to the field of 
multivariate process quality diagnosis, and the diagnostic methods based on artificial neural network (ANN)25–28, 
Bayesian network29–32, support vector machine (SVM)33–35, etc. have been widely applied. Intelligent diagnostic 
methods can effectively reduce the scale of the diagnostic system and improve the diagnostic efficiency, however, 
these methods generally require a large amount of data to train the network’s parameters, and the constructed 
network are generally suitable for specific applications, thus their generality will be greatly restricted. Therefore, 
establish a general and efficient method for multivariate process quality correlation diagnosis is a major problem 
to be solved in the field of quality management.

Sketch of the algorithm
In this paper, a new correlation diagnosis method based on quality component grouping is proposed. For the 
multivariate process quality y = (y1, y2,…, yp)T, three theorems describing the properties of the multivariate 
process quality covariance matrix are first established based on the statistical viewpoint of product quality in 
manufacturing processes; Then the correlation decomposition theorem is proved by drawing on the idea of 
decomposing the T2 statistic in the MYT orthogonal decomposition method, which decomposes the correlation 
of all the quality components into the correlations of all the component pairs, to reduce the space complexity 
of the diagnostic system to O(p2); Next, refer to the grouping idea in the principal component analysis method, 
based on the correlation between different components, the quality components are grouped, so that the correla-
tions between components in the same groups are as large as possible, and the correlations between components 
of different groups are as small as possible; Finally, draw on the principle of component combination diagnosis 
method, on the premise of ignoring the correlations between different groups, quality components in the same 
groups are combined as component pairs to establish the corresponding T2 control charts, which constitutes the 
multivariate process quality correlation diagnostic system, thus the space complexity of the diagnostic system is 
reduced to approximate O(p), to improve the diagnostic efficiency.

Covariance matrix properties of multivariate process quality
In the manufacturing process, factors affecting the product’s quality can be attributed to 5 aspects: man, machines, 
materials, methods and environment (4M1E). On this basis, ISO9000 supplemented another 3 factors: the 
manufacturing software, auxiliary materials and utilities. Among the many factors affecting the product’s qual-
ity, changes in any one of them will have an impact on the final quality of the product, so the product’s quality 
is fluctuating in manufacturing. Tolerance theory is a direct proof of the fluctuation of the product’s quality.

For the multivariate process quality y = (y1, y2,…, yp)T, the covariance matrix is an important parameter to 
describe its correlation. Combined with the fluctuation of the product’s quality in the manufacturing process, 
this paper firstly establishes 3 theorems describing the characteristics of the covariance matrix of multivariate 
process quality.

Theorem 1  In the covariance matrix Σ of the multivariate process quality y = (y1, y2,…, yp)T, all of the elements 
are not 0.

Suppose the mean vector of y is μ = (μ1, μ2,…, μp)T. According to the definition of the covariance matrix, it 
is known that:

For any element σij = E[(yi − µi)(yj − µj)] in Σ, the sufficient and necessary condition for it to be 0 is:

(4)
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According to the properties of mathematical expectation, Eq. (5) implies that the quality component yi or yj 
is a constant in the manufacturing process. Clearly, this is in conflict with the viewpoint of the fluctuation of the 
product’s quality, and therefore, Eq. (5) does not hold, i.e., all the elements in Σ are not 0.

Theorem 2  The covariance matrix Σ of the multivariate process quality y = (y1, y2, … , yp)T is a real symmetric 
positive definite matrix.

According to Eq. (4) on the definition of the covariance matrix:

From the properties of mathematical expectation can be seen:

That is, Σ is a symmetric matrix.
Let p-dimensional vector c = (c1, c2,…, cp)T ≠ 0.

Bringing Eq. (4) into (6), after simplification and consolidation, we get

Let random variable z =
∑p

i=1 ci(yi − µi) , bringing this into Eq. (7), we get

From the proof of Theorem 1, it is clear that according to the viewpoint of the fluctuation of the product’s 
quality, z ≠ 0, i.e.

Therefore, the covariance matrix Σ of the multivariate process quality y = (y1, y2,…, yp)T is a real symmetric 
positive definite matrix.

Theorem 3  The inverse matrix Σ−1 of the covariance matrix Σ of the multivariate process quality y = (y1, y2,…, yp)T 
is a real symmetric positive definite matrix.

First prove the symmetry of Σ−1. It follows from the symmetry of Σ:

Inverting both ends of the above equation:

The above equation shows that Σ−1 is a symmetric matrix.
Let the eigenvalues of Σ be λ1, λ2,…, λp. By the positive definiteness of Σ, λi > 0 (i ≤ p). According to the nature 

of the inverse matrix, the eigenvalues of Σ−1 are 1/λ1, 1/λ2,…, 1/λp, i.e., the eigenvalues of Σ−1 are all greater than 
0, so Σ−1 is a positive definite matrix.

Theoretical basis for correlation grouping diagnosis
The exponential function between N and p is the main reason why applying this approach is difficult in the 
CCBD method. If the gradient of N with p can be lowered by proper means, the defect of diagnostic system scale 
expands greatly while p is increasing will be avoided to a certain extent, and thus this approach can be applied 
in multivariate process quality management.

(5)yi = µi or yj = µj

σij = E[(yi − µi)(yj − µj)]
σji = E[(yj − µj)(yi − µi)]

σij = σji
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Correlation decomposition

Theorem 4  In the multivariate process quality y = (y1, y2,…, yp)T, the sufficient and necessary 
condition of the correlation of all the components exists is, for any two components yi and yj, 
they are correlated.

Firstly, the sufficiency of Theorem 4 is proved. Any two components yi and yj in y are correlated shows that σij ≠ 0. 
From Theorems 2 and 3, the covariance matrix Σ and its inverse matrix Σ−1 are real symmetric positive definite 
matrix. From the definition of the T2 statistic in Eq. (1), it is clear that for any sample data, its T2 statistic is greater 
than 0, i.e., the correlation of all the components exists.

The following proves the necessity of Theorem 4 by reduction and absurdum. The existence of correlation of 
all the components in y implies that for any sample data, its T2 statistic is greater than 0. From the definition of 
the T2 statistic in Eq. (1), there exists an inverse matrix of the covariance matrix Σ of y, and the rank of Σ is p.

Assume yk and yj in y are uncorrelated, i.e., σkj = 0. By the definition of covariance, there is:

The sufficient and necessary condition for Eq. (9) to hold is yk = μk or yj = μj. It may be useful to set yk = µk. 
From the definition of covariance, we know that for any component yi (i = 1, 2 ,… , p), there are:

Equation (10) shows that in the covariance matrix Σ of y, the kth row and kth column are both 0, i.e., 
R(Σ) ≤ p − 1. This contradicts Eq. (8), the assumption is not valid, and the necessity of Theorem 4 is proved.

Theorem 4 means that the correlation of all the quality components can be represented as correlations of 
component pairs, so in the correlation diagnostic system, it only needs to monitor the correlation shifts of all 
the component pairs. In addition, T2 control chart to monitor the correlation shift of all the components should 
be added, the number of T2 control charts is N = Cp

2 + 1 = p(p − 1)/2 + 1, N is the power function of p, the space 
complexity of the diagnostic system is lowered to O(p2). Compared to the CCBD method, the gradient of N with p 
is decreased significantly. Meanwhile, because the component pair is the minimum combination of components, 
the information redundancy in diagnostic results can be avoided effectively.
Grouping principle
Although the functional relation between N and p is lowered to a power function by correlation decomposition, 
N will still increase rapidly while p is increasing, so further proper ways should be adopted to reduce the scale 
of the diagnostic system on the basis of the above analysis. For this reason, this paper proposes the following 
grouping principle.

Theorem 5  Let p = p1 + p2 + … + pm, where p and pi (i = 1, 2, … , m) are integers greater than 0, m > 1. In this case 
there is the following inequality:

The proof of Theorem 5 proceeds as follows:

Theorem 5 shows that for the multivariate process quality y = (y1, y2,…, yp)T, if the quality components are 
grouped according to the degree of correlations, so that the correlations of quality components located within 
the same groups should be as large as possible, and the correlations of quality components located between 
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different groups should be as small as possible, the number of T2 control charts in the diagnostic model can be 
further reduced by ignoring the correlations of the quality components located in the different groups, and the 
reduction of the number of T2 control charts is 

∑m
k,j=1

k �=j

pkpj , where m is the number of quality components 

grouped, pk and pj denote the number of quality components contained in the kth and jth groups after grouping. 
In this case, the space complexity of the multivariate process quality correlation diagnostic model based on the 
grouping technique is approximated as O(p).

Methodology for grouping quality components
Grouping techniques can lead to a significant reduction in the number of T2 control charts required in the cor-
relation diagnostic system. Typically, quality components can be grouped with reference to practical experience, 
but this way can not give an accurate estimate of the error before and after grouping. In order to analyze the 
errors quantitatively, a grouping method based on the analysis of the covariance matrix of the quality compo-
nents is used here.

Before grouping, the multivariate process quality y = (y1, y2,…, yp)T needs to be standardized in order to avoid 
differences in the observed scales from affecting the grouping results:

where μi and σi are the mean and variance of yi. In the standardization result y∗ = (y∗1 , y
∗
2 , · · · , y∗p )T , the mean 

of each component is 0, and the variance is 1.

Factor analysis
Factor analysis is a method of grouping components based on the degree of correlations between different 
components, using the covariance matrix of a random vector as a reference. The basic model of factor analysis 
is as follows36,37:

(1)	 The standardized multivariate process quality y* is an observable random vector with mean vector E(y*) = 0 
and covariance matrix D(y*) = Σ*;

(2)	 The common factor vector F = (F1, F2, …, Fm)T (m < p) is an unobservable random vector with mean vector 
E(F) = 0 and covariance matrix D(F) = I, where I is a diagonal matrix where the main diagonal elements 
are 1, and the remaining elements are 0, i.e., the components in F are independent of each other;

(3)	 The error vector ε = (ε1, ε2, …, εp)T is independent of the common factor vector F with E(ε) = 0, and the 
covariance matrix D(ε) is a diagonal matrix:

Under the above conditions, the factor analysis model can be expressed as the following equations:

Expressing the above system of equations in matrix form:

where aij in the matrix A = (aij)p×p is called the factor loading, and its absolute value indicates the degree of 
dependence between the quality component y∗i  and the common factor Fj. The matrix A formed by all the factor 
loadings is called the factor loading matrix.

From Eq. (14), calculate the covariance matrix of y*:

On the other hand, by Theorem 2, Σ* is a real symmetric positive definite matrix for which Cholesky decom-
position is performed:

where G = (
√
�1e1,

√
�2e2, · · · ,

√

�pep) , λi(i = 1, 2, …, p) are the eigenvalues of the covariance matrix Σ* with 
λ1 > λ2 > … > λp, ei is the eigenvector corresponding to λi.

Comparing Eqs. (15) and (16), it can be seen that if A = G, the error vector ε = 0 in Eq. (14), the obtained 
factor analysis model is accurate, but this means that after standardization, all the quality components in y* will 
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be grouped into p groups, i.e., the accurate factor analysis model can only be obtained when the correlations 
between the quality components in y* are completely ignored. Therefore, considering the general situation, it is 
necessary to retain most of the correlations between the quality components, in which case an approximation of 
the factor loading matrix A is constructed from the first m (m < p) columns of the matrix G, i.e.:

Error analysis
The error vector ε ≠ 0 when building the factor analysis model from the factor loading matrix derived from 
Eq. (17), this implies that there must be a certain amount of information loss when grouping the quality com-
ponents in y* based on Eq. (14).

In statistics, the total amount of information contained in a random variable is generally measured by its 
variance. In Eq. (14), let A = G, which gives the sum of the variances of the components in y* under the exact 
decomposition condition:

Equation (18) shows that under the condition of exact decomposition, the sum of the information contained 
in all the quality components in y* is equal to the cumulative sum of all the eigenvalues of the covariance matrix 
Σ* of y*.

The factor loading matrix A is then constructed according to Eq. (17), at which point it is given by Eq. (14):

Comparing Eq. (18) with Eq. (19) shows that grouping the quality components in y* with Eq. (14), under 
the condition of ignoring the correlation of the quality components between different groups, the sum of infor-
mation loss is 

∑p
i=m+1 �i . Therefore, for a specified error β, the number of quality component group m can be 

determined by the following inequality:

where η is the cumulative variance contribution rate of the first m eigenvalues. Empirically, when η > 80% ~ 85%, 
the number of groupings m can be determined by inequality (20). The value of η can be reasonably adjusted in 
combination with specific applications, but the basic principle of adjustment is that it should be conducive to 
the reasonable interpretation of the factor analysis model.

Correlation diagnostic algorithm based on grouping theory
The above analysis is founded on the condition that the mean μj and covariance matrix Σ of the manufacturing 
process are given. However, in many applications, these parameters are generally unknown. In this case, the 
unbiased estimator of the manufacturing process parameters can be calculated from a set of sample data yi = (yi1, 
yi2, … , yip)T, (i = 1, 2,…, n) collected while the process is in stable state.

Then the sample data can be standardized as y∗i = (y∗i1, y
∗
i2, · · · , y∗ip)T , (i = 1, 2,…, n), where

The covariance matrix Σ* can be calculated by the standardize sample data:

Based on the above analysis, after grouping the quality components in the standardized multivariate pro-
cess quality y* using factor analysis method, on the premise of ignoring the correlation of quality components 
between different groups, the quality components within the same groups are combined as component pairs, 
and the corresponding binary T2 control charts are established to form the multivariate process quality correla-
tion diagnostic model. The space complexity of this diagnostic model is approximated as a linear function of 
the quality component number p, which can lead to a significant improvement in the efficiency of the diagnosis.

(17)A ≈ (
√

�1e1,
√
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√

�mem)
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∑
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The multivariate process quality correlation diagnostic model based on grouping technique can be constructed 
as follows:

(1)	 Collect sufficient quality data yi(i = 1, 2,…, n) while the manufacturing process is in stable state;
(2)	 Calculate the manufacturing parameters according to Eqs. (21)–(24);
(3)	 Calculate the eigenvalues of the covariance matrix Σ* and arrange all the eigenvalues in descending order 

as �1 > �2 > · · · > �p ;
(4)	 Calculate the eigenvector ei corresponding to the eigenvalue λi(i = 1, 2, …, p);
(5)	 For the given error β, calculate the number m of eigenvectors for constructing the factor loading matrix 

according to inequality (20), and then construct the factor loading matrix A from the first m eigenvectors 
according to Eq. (17);

(6)	 Group all the quality components according to Eqs. (13), and the grouping results are recorded as G1, G2, 
…, Gm;

(7)	 For each pair of components (y∗s , y∗t ) (s ≠ t) in Gk (k = 1, 2, …, m), build the corresponding T2 control chart 
Kst;

(8)	 Establish the T2 control chart K to monitor the correlation shift of all the quality components.

In the manufacturing process, if the T2 statistic of the new sample data exceeds the control limit in the control 
chart K, it indicates that the correlation shift of all the quality components is abnormal, and the cause(s) can be 
specified by examining the rest binary T2 control charts in the diagnostic model.

Case study
Blades are important parts in steam turbines and aviation engines, and their machining quality directly affects 
the life and performance of the equipment. The contour method is a commonly used blade quality inspection 
technique, and its basic principle is to measure a number of cross-section contour lines of the blade along the 
height direction (Z-axis direction) in the way shown in Fig. 1, and then match the actual contour lines meas-
ured in different height directions with their respective theoretical contour lines by translational and rotational 
transformations as shown in Fig. 2, so as to decompose the blade profiling error into 4 quality components: 
blade contouring error before matching, blade contouring error after matching, blade positional error, and 
blade torsion error.

The machining process shows that the 4 quality components are correlated, so it is necessary to monitor the 
correlation shift during the manufacturing process and to diagnose the causes of the abnormal correlation. Here, 
a T2 control chart is used to monitor the correlation shift of the 4 quality components, and the method proposed 
in this paper is used to diagnose the causes of the abnormal correlation.

Parameters estimation
The above 4 quality components are expressed in vector form as y = (y1, y2, y3, y4)T. 15 sample data are collected 
at the cross-section height Z = 25 mm as shown in Table 1, in order to estimate the mean vector and covariance 
matrix for the manufacturing process.

Experience shows that the 4 quality components to be monitored generally follow normal distribution. In 
order to check the normality of the sample data, set the confidence level αt = 0.95, and the Shapiro–Wilk test is 
done on the data of the 4 quality components in Table 1, and the results are shown in Table 2. It can be seen that 

Figure 1.   Contour method of blade inspection.
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the W statistics of the four components are all greater than the critical value W(15,0.05) = 0.881, indicating that 
the sample data in Table 1 follow normal distribution.

The sample data used to estimate the process parameters must be collected while the manufacturing process 
is in stable state, therefore, for the sample data in Table 1, the probability of false alarm α = 0.0027 is set for each 
quality component with reference to the 3σ principle of the Shewhart control chart. According to Bonferroni 
inequality and χ2 distribution, take the false alarm probability αy = 0.025 of the correlation shift, and establish 
Shewhart control charts for the 4 quality components and T2 control chart to monitor the correlation shift, as 
shown in Figs. 3, 4, 5, 6 and 7.

Figure 2.   Theoretical and actual contour lines of the blade.

Table 1.   Sample data used for process parameter estimation.

No
Blade contouring error before 
matching (y1/mm)

Blade contouring error after 
matching (y2/mm) Blade positional error (y3/mm) Blade torsion error (y4/’)

1 0.083 0.043 0.098 2.018

2 0.086 0.045 0.099 2.216

3 0.084 0.045 0.098 2.239

4 0.077 0.036 0.093 2.108

5 0.076 0.034 0.091 2.156

6 0.081 0.042 0.095 2.332

7 0.078 0.037 0.093 2.259

8 0.087 0.046 0.101 2.184

9 0.085 0.044 0.099 2.247

10 0.089 0.051 0.105 2.318

11 0.075 0.034 0.089 2.287

12 0.088 0.047 0.104 2.047

13 0.074 0.033 0.086 2.275

14 0.082 0.041 0.098 2.066

15 0.080 0.041 0.093 2.307

Table 2.   Results of normality test for sample data.

Quality components W statistics Critical value W(15,0.05)

y1 0.9551 0.881

y2 0.9476

y3 0.9707

y4 0.9182
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Figure 3.   Shewhart control chart for sample data component y1.

Figure 4.   Shewhart control chart for sample data component y2.

Figure 5.   Shewhart control chart for sample data component y3.

Figure 6.   Shewhart control chart for sample data component y4.
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Figures 3, 4, 5, 6 and 7 show that all the 5 control charts are in normal level, indicating that the sample data 
in Table 1 are obtained while the blade manufacturing process is in stable state, and can be used for process 
parameter estimation. The calculated mean vector and standard deviation are:

The sample data in Table 1 are standardized and the results are shown in Table 3.
Calculate the covariance matrix from the data in Table 3, we get:

Establishment of diagnostic model
Calculate the eigenvalues and eigenvectors of the covariance matrix Σ* and sort all the eigenvalues and eigenvec-
tors in descending order of the eigenvalues, as shown in the second and third columns in Table 4. On this basis, 
calculate the cumulative contribution rate of the variance of the first 1 to 4 eigenvalues, as shown in the fourth 
column in Table 4.

As can be seen from Table 4, the first two eigenvalues of the covariance matrix, which have a cumulative 
contribution rate of variance of 99.11%, are already much higher than the empirical threshold of 80–85%, so let 
m = 2 to construct an approximation of the factor loading matrix A from the first two eigenvectors.

µ = (0.0817, 0.0413, 0.0961, 2.2039)T

σ = (0.0029, 0.0054, 0.0054, 0.1029)T

�
∗ =







1 0.9814 0.9747 −0.1590

0.9814 1 0.9510 −0.0490

0.9747 0.9510 1 −0.2730

−0.1590 −0.0490 −0.2730 1







Figure 7.   T2 control chart for sample data.

Table 3.   Sample data after standardization.

No y*1 y*2 y*3 y*4

1 0.2733 0.3207 0.3485 − 1.8061

2 0.8881 0.6908 0.5351 0.1172

3 0.4782 0.6908 0.3485 0.3406

4 − 0.9564 − 0.9745 − 0.5849 − 0.9319

5 − 1.1613 − 1.3445 − 0.9583 − 0.4656

6 − 0.1366 0.1357 − 0.2116 1.2440

7 − 0.7514 − 0.7895 − 0.5849 0.5349

8 1.0930 0.8758 0.9085 − 0.1936

9 0.6831 0.5057 0.5351 0.4183

10 1.5029 1.8009 1.6552 1.1080

11 − 1.3633 − 1.3445 − 1.3316 0.8069

12 1.2979 1.0608 1.4685 − 1.5244

13 − 1.5712 − 1.5296 − 1.8917 0.6903

14 0.0683 − 0.0493 0.3485 − 1.3399

15 − 0.3416 − 0.0493 − 0.5849 1.0012
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It can be seen that there is a large degree of dependence between components y∗1,y∗2,y∗3 and factor F1, and 
a smaller degree of dependence with factor F2, so these 3 quality components are grouped together; y∗4 is only 
correlated with factor F2 to a large extent, and therefore will be divided into a group alone. The final result of the 
grouping is G1 = {y∗1,y∗2,y∗3 }, G2 = {y∗4}.

For group G1, T2 control charts K12, K13 and K23 are built to monitor the binary correlations shift of compo-
nent pairs ( y∗1,y∗2 ), ( y∗1,y∗3 ) and ( y∗2,y∗3 ); Since there is only one quality component in G2, there is no need to create 
a T2 control chart; Finally, T2 control chart K that monitors the correlation shift of all the quality components is 
established, and the 4 control charts are used to form a diagnostic model of the correlation between the 4 quality 
components in blade processing.

Manufacturing process diagnosis
In subsequent manufacturing, 5 quality data at different moments are collected, as shown in Table 5, and the 
results after standardization are shown in Table 6. The T2 statistics for the 5 data were calculated and plotted in 
the T2 control chart K, as shown in Fig. 8. It can be seen that in the last three samples, the correlations of all the 
quality components are abnormal.

In order to diagnose the cause(s) of the abnormal control chart K, 3 control charts monitoring the binary 
correlation shift of the 3 component pairs shown from Figs. 9, 10 and 11 were analyzed, and the diagnostic 
results are shown in Table 7.

Validity analysis of diagnostic conclusions
In order to judge the accuracy of the diagnostic results in Table 7, another diagnostic model using the CCBD 
method is built, which contains a total of C2

4 + C3
4 = 10 T2 control charts, as shown in Figs. 12, 13, 14, 15, 16, 

17, 18, 19, 20 and 21.

A =







−0.9923 0.0829

−0.9754 0.1941

−0.9916 −0.0382

0.2409 0.9702

















y∗1 = −0.9923F1 + 0.0829F2
y∗2 = −0.9754F1 + 0.1941F2
y∗3 = −0.9916F1 − 0.0382F2
y∗4 = 0.2409F1 + 0.9702F2

Table 4.   Eigenvalues, eigenvectors of the covariance matrix and cumulative contribution of variance.

No Eigenvalues Eigenvectors Cumulative contribution rate of variance

1 2.9772 (− 0.5751, − 0.5653, − 0.5747, 0.1396)T 74.43%

2 0.9873 (0.0835, 0.1953, − 0.0384, 0.9764)T 99.11%

3 0.0236 (− 0.2351, − 0.5326, 0.7976, 0.1580)T 99.70%

4 0.0118 (0.7791, − 0.5989, − 0.1793, 0.0461)T 100%

Table 5.   Test data collected in subsequent manufacturing.

No
Blade contouring error before 
matching (y1/mm)

Blade contouring error after 
matching (y2/mm) Blade positional error (y3/mm) Blade torsion error (y4/’)

1 0.085 0.046 0.098 2.176

2 0.077 0.037 0.092 2.148

3 0.082 0.040 0.103 2.068

4 0.085 0.042 0.095 2.312

5 0.074 0.036 0.086 2.277

Table 6.   Test data after standardization.

No y*1 y*2 y*3 y*4

1 0.6831 0.8758 0.3485 − 0.2713

2 − 0.9564 − 0.7895 − 0.7716 − 0.5433

3 0.0683 − 0.2344 1.2819 − 1.3204

4 0.6831 0.1357 − 0.2116 1.0497

5 − 1.5712 − 0.9745 − 1.8917 0.7098
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Figure 8.   T2 control chart K for test samples.

Figure 9.   T2 control chart K12 monitoring the correlation between y1
* and y2.

*

Figure 10.   T2 control chart K13 monitoring the correlation between y1
* and y3.

*

Figure 11.   T2 control chart K23 monitoring the correlation between y2
* and y3.

*
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In order to compare the diagnostic conclusions derived from the two different diagnostic models, they are 
placed in Table 8. It can be seen that there are differences in the diagnostic conclusions of the last 3 points. Taking 
point 3 as an example, further analysis of the diagnostic results using the CCBD method reveals that since the 
correlations of component pairs (y*

1, y*
3), (y*

2, y*
3) are anomalous, the correlations of other component combina-

tions containing (y*
1, y*

3) or (y*
2, y*

3) are bound to be in anomalous states, and thus the diagnostic results that the 
correlation abnormalities of component combinations (y*

1, y*
2, y*

3), (y*
1, y*

3, y*
4) and (y*

2, y*
3, y*

4) are redundant 
diagnostic information. After removing the redundant diagnostic information, the diagnostic results of both 

Table 7.   Diagnostic results.

No Diagnostic conclusions

1 Normal

2 Normal

3 Anomalous correlations of component pairs (y*1, y*3), (y*2, y*3)

4 Anomalous correlations of component pairs (y*1, y*2), (y*1, y*3)

5 Anomalous correlations of component pairs (y*1, y*2), (y*2, y*3)

Figure 12.   Diagnostic model using CCBD method: T2 control chart KC12 for (y*
1, y*

2).

Figure 13.   Diagnostic model using CCBD method: T2 control chart KC13 for (y*
1, y*

3).

Figure 14.   Diagnostic model using CCBD method: T2 control chart KC14 for (y*
1, y*

4).
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Figure 15.   Diagnostic model using CCBD method: T2 control chart KC23 for (y*
2, y*

3).

Figure 16.   Diagnostic model using CCBD method: T2 control chart KC24 for (y*
2, y*

4).

Figure 17.   Diagnostic model using CCBD method: T2 control chart KC34 for (y*
3, y*

4).

Figure 18.   Diagnostic model using CCBD method: T2 control chart KC123 for (y*
1, y*

2, y*
3).
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diagnostic models for the causes of the anomaly in point 3 are identical. A similar analysis of the diagnostic results 
for points 4 and 5 leads to the same conclusions, as shown in Table 9. Therefore, the accuracy of the diagnostic 
method of multivariate process quality correlation based on the grouping technique can be guaranteed.

Figure 19.   Diagnostic model using CCBD method: T2 control chart KC124 for (y*
1, y*

2, y*
4).

Figure 20.   Diagnostic model using CCBD method: T2 control chart KC134 for (y*
1, y*

3, y*
4).

Figure 21.   Diagnostic model using CCBD method: T2 control chart KC234 for (y*
2, y*

3, y*
4).

Table 8.   Comparison of the diagnostic results of the two diagnostic models.

No Grouping-based diagnostic model Diagnostic model using CCBD method

1 Normal Normal

2 Normal Normal

3 Anomalous correlations of component pairs (y*1, y*3), (y*2, y*3)
Anomalous correlations of component combinations (y*1, y*3), (y*2, y*3), (y*1, y*2, y*3), (y*1, y*3, y*4), (y*2, 
y*3, y*4)

4 Anomalous correlations of component pairs (y*1, y*2), (y*1, y*3)
Anomalous correlations of component combinations (y*1, y*2), (y*1, y*3), (y*1, y*2, y*3), (y*1, y*2, y*4), (y*1, 
y*3, y*4)

5 Anomalous correlations of component pairs (y*1, y*2), (y*2, y*3)
Anomalous correlations of component combinations (y*1, y*2), (y*2, y*3), (y*1, y*2, y*3), (y*1, y*2, y*4), (y*2, 
y*3, y*4)
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Discussion and conclusion
For the problem of correlation diagnosis in multivariate process quality management, this paper proposed a 
grouping technique based correlation diagnosis method. Compared with the present diagnostic methods, the 
method proposed in this paper has the following advantages:

	1.1.	 The diagnosis is more efficient

The space complexity of the multivariate process quality correlation diagnostic method based on grouping 
technique is approximately O(p), while the space complexity of the diagnostic algorithm based on the CCBD 
method, principal component analysis method and the orthogonal decomposition of the T2 statistic are O(2p), 
O(p2), and O(p!), respectively. Therefore, the proposed method in this paper has higher diagnostic efficiency.

	2.2.	 The diagnostic results are more accurate

The grouping technique based multivariate process quality correlation diagnosis method takes the correlation 
of component pairs as the diagnostic unit. Because component pairs are the minimum combination of quality 
components, the disadvantage of redundant diagnostic information in diagnostic algorithms based on the CCBD 
method, the principal component analysis method and the orthogonal decomposition of T2 statistics can be 
avoided to provide more accurate diagnostic results for manufacturing processes.

	3.3.	 Better generality

Compared with the diagnostic methods based on artificial intelligence technology, the diagnostic method 
proposed in this paper is based on strict mathematical analysis as the theoretical foundation, avoids the defect 
of intelligent diagnostic methods in which the network structure and parameters are oriented to specific appli-
cation. Therefore, the proposed method can be used as a general theoretical model for the multivariate process 
quality correlation diagnosis.

The multivariate process quality diagnostic model based on grouping technique has the following two issues 
for further discussion in its application.

(1) Judgment of the difference degree in correlations between quality components

The difference degree in correlations between quality components can be judged by the covariance matrix Σ* 
obtained after standardizing the quality data collected in stable state. In general, if there exists at least one row 
of elements in Σ* such that the ratio of the maximum value to the minimum value, except for the main diagonal 
element, is not less than 2, it can be tentatively determined that there is a large difference in the correlations 
between different quality components.

(2) Basis for grouping quality components

The maximum value of each row elements in the factor loading matrix A can be used as a basis for grouping 
the quality components. The quality component yi

* can be assigned to group Gk represented by the common factor 
Fk if aik is the element with the largest absolute value in the ith row of A. Experience has shown that grouping is 
more desirable when aik > 0.7. When the difference between the absolute values of the elements of a row in A is 
small, it indicates that the corresponding quality component has an approximately equal degree of dependence 
on all the common factors, and at this point, the group where the corresponding quality component is located 
can be rationally determined in conjunction with the actual interpretation of the factor analysis model. If the 
absolute values between the elements of any row in A are all approximately equal, it indicates that the degree 
of dependence of all quality components on all common factors is approximately equal, at this time, all quality 
components are located within a same group, and the diagnostic model is degraded to the diagnostic method 
based on the correlation decomposition. We will study this issue in depth in our later work.

Table 9.   Comparison of the two diagnostic systems after redundant diagnostic results are removed.

No Grouping-based diagnostic model Diagnostic model using CCBD method

1 Normal Normal

2 Normal Normal

3 Anomalous correlations of component pairs (y*1, y*3), (y*2, y*3) Anomalous correlations of component pairs (y*1, y*3), (y*2, y*3)

4 Anomalous correlations of component pairs (y*1, y*2), (y*1, y*3) Anomalous correlations of component pairs (y*1, y*2), (y*1, y*3)

5 Anomalous correlations of component pairs (y*1, y*2), (y*2, y*3) Anomalous correlations of component pairs (y*1, y*2), (y*2, y*3)
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