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OPEN A multivariate process quality

correlation diagnosis method
based on grouping technique

Qing Niu%?*, Shujie Cheng®? & Zeyang Qiu*-2

Correlation diagnosis in multivariate process quality management is an important and challenging
issue. In this paper, a new diagnostic method based on quality component grouping is proposed.
Firstly, three theorems describing the properties of the covariance matrix of multivariate process
quality are established based on the statistical viewpoint of product quality, to prove the correlation
decomposition theorem, which decomposes the correlation of all the quality components into a
series of correlations of components pairs, and then by using the factor analysis method, all quality
components are grouped in order to maximize the correlations in the same groups and minimize
the ones between different groups. Finally, on the basis of correlations between different groups
are ignored, T2 control charts of component pairs in the same groups are established to form the
diagnostic model. Theoretical analysis and practice prove that for the multivariate process quality
whose the correlations between different components vary considerably, the grouping technique
enables the size of the correlation diagnostic model to be drastically reduced, thus allowing the
proposed method can be used as a generalized theoretical model for the correlation diagnosis.

Keywords Multivariate process quality, Correlation diagnosis, Grouping technology, Factor analysis, T?
control chart

With the development of the modern global market, the product’s quality has been one of the key factors that
greatly influence the competitiveness of enterprises. In the whole formation of the product’s quality, process
quality is one of the most basic sessions because the product’s quality will be influenced by every process’ quality
directly or indirectly, so process quality control is the essence of quality management in manufacturing.

The objective of managing univariate process quality was achieved by using Shewhart’s control chart, which is
a tool in the theory of statistical process control (SPC)'-*. But in modern manufacturing, there are many processes
that involve more than one quality component. Due to the correlation of quality components, all components and
their correlation must be monitored simultaneously>®. The theory of monitoring the correlation shift of all the
quality components using T? control charts was originally proposed by Hotelling’. For a p-dimensional process
quality y=(yy, ..., ¥,)"> the T? statistic is defined as:

P=y-w'Zy—w ey

where p is the mean vector, and X is the covariance matrix of y. When T?> 0, it signifies that all the quality
components in y are correlated.

The general distribution of T? statistics can have different forms®1°. Particularly, when y follows the normal
distribution N(u, X), the T? statistic follows the 3 distribution with p-freedom, and the proof can be found in Sup-
plementary. Suppose « is the false probability, then the upper control limit (UCL) of the T? statistic is x2(p), and
the lower control limit (LCL) is 0. Thus, the T? control chart can be established to monitor the correlation shift of
. T2 control chart has the advantage of being able to fully take into account the correlation between components
and gives accurate false probability under condition of component correlation, however, this control chart is
unable to pinpoint the cause(s) of the correlation shift when it is out of control. Since then, on the basis of T sta-
tistic, scholars have carried out a lot of research on the diagnostic methods of abnormal correlation shift between
quality components, and have successively proposed diagnostic methods based on component combinations,
principal component analysis, orthogonal decomposition of the T? statistics, and intelligent diagnostic methods.

8-10

!Department of Product Design, Lanzhou Jiaotong University, Lanzhou, Gansu, People’s Republic of China. ?These
authors contributed equally: Qing Niu, Shujie Cheng and Zeyang Qiu. ®email: liuging@mail.lzjtu.cn

Scientific Reports |

(2024) 14:13212 | https://doi.org/10.1038/s41598-024-61954-y nature portfolio


http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-61954-y&domain=pdf

www.nature.com/scientificreports/

Diagnosis method based on component combinations

For a p-dimensional process quality y=(y}, ..., )", when the T? control chart K, which monitors the correla-
tion shift of all the quality components shows an abnormality, it indicates that the correlations of one or more
quality component combinations must be abnormal. In order to diagnose the specific component combinations
that cause the T? control chart K to be abnormal, a straightforward approach is to use the exhaustive method,
i.e., to list all possible forms of component combinations, and for each form of combinations, to create a T?
control chart. When the T? control chart K displays an abnormality, the specific component combinations that
lead to the abnormality of the T? control chart K can be determined by analyzing the results of the T? control
charts corresponding to all combinations of quality components one by one!!~'%, this approach is referred as
component combinations based diagnostic (CCBD) method in this paper. While this approach is theoretically
sound and appealing, it has inherent deficiencies. For a p-dimensional process quality y=(y;, y5 ..., ¥,)", the
number of T? control charts using this method is N = Cﬁ + C; +-+ ng 2P-p-1, where N is an exponential
function of p, and the space complexity is O(2?). When p is small, this approach has some feasibility, however,
when p increases, N will increase sharply, leading to a significant expansion of the diagnostic system scale, so
this method is difficult to apply in practice.

On the other hand, the defect of information redundancy in diagnostic results can not be avoided in the
CCBD method. For example, in a 4-dimensional process quality y=(yy, ¥,, ¥3 ¥4)7, suppose the abnormal cor-
relation shift between y, and y, is the only cause which causes the correlation of y out of control. Now in the
CCBD method, besides T? control chart to monitor the correlation shift of (y,, y,) is out of control, the other
combinations which contain y, and y,, namely (y,, y,, y;) and (y,, ¥,, y,), their T? control charts are both out of
control. This phenomenon that because of the correlation shift of one component combination is out of control,
the correlations of other component combinations which contain the abnormal component combination are
all out of control is called as the redundancy of diagnostic messages. The redundancy in diagnostic results is
disturbance for process quality adjustment.

Diagnosis method based on principal component analysis

When the number of quality components to be monitored in manufacturing process is large, direct analysis
of process quality data will lead to a significant increase in the computational effort of the diagnostic process.
Therefore, reducing the complexity of process quality data in an appropriate means is an effective way to improve
diagnostic efficiency. Because the principal component analysis (PCA) is a useful tool for dealing with high-
dimensional data, scholars proposed by using the principal component analysis method'*-"7, the original process
quality y=(y;, ..., ¥,)" is converted to p independent principal components and sorted by variance decreasing
order, denoted as z=(z;, 25, ... » zP)T. Then firstly, p Shewhart control charts are constructed to monitor the nor-
mality of z; Secondly, the first n(n < p) principal components whose the cumulative sum of their variance exceeds
a specified critical value are grouped as component pairs, and T? control charts are constructed to monitor the
normality of (z;, zj) (i, j<n, i#}); At last, the normality of the rest principal components group (2,1, Z,42:---» zp)
is monitored by a T? control chart.

Compared with the CCBD method, the number of control charts based on PAC method is
N=p+C:+1=p+n(n—1)/2+ 1, the space complexity approximately is O(p?), and the diagnostic effi-
ciency is improved. However, # still increases rapidly while p is increasing, the scale of diagnostic system is still
large. Furthermore, due to z; generally has no engineering meaning after conversion, the cause(s) which cause
the correlation shift of y out of control can only be specified by a comprehensive analysis of all the results in
control charts and consulting the mapping relationship between y and z, the calculation of diagnosis is increased,
and the accuracy of diagnostic results is affected. Meanwhile, the redundancy of diagnostic messages also can
not be avoided.

Diagnosis method based on correlation orthogonal decomposition
In 1995, Mason, Young and Tracy'®-2° proposed by using regression analysis method, the T? statistic can be
decomposed into conditional and unconditional terms which have equal weight in the decomposition results
and are orthogonally independent each other. Then, according to the statistical distribution of the conditional
and unconditional terms, the corresponding control limits are established to diagnose the specific cause(s) when
the manufacturing process is abnormal. Compared with the diagnostic methods based on principal component
analysis, the conditional and unconditional terms obtained by MYT orthogonal decomposition method can be
directly corresponded to the quality components or component combinations, which improves the accuracy of
the diagnostic results.

As an example, in bivariate process quality y=(y;, y,)7, the basic idea of the MYT orthogonal decomposition
method*~**is to decompose the T statistic into the following form:

T =T} + T2, (2)

where T?, called the unconditional term, is related only to the quality component y, and is used to measure the
contribution shift in y, to the T statistic; and T2, called the conditional term, whose value is related to the
conditional probability P(y,|y;) and is used to measure the contribution in the correlation between y, and y, to
the T? statistic.

Similar to Eq. (2), the T? statistic can also be decomposed into another form:

T’=T?+T%, (3)
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where the unconditional term 72 is related only to the quality component y,, and is used to measure the contribu-
tion shift in y, to the T? statistic; the conditional term T, depends on the conditional probability P(y,|y,), and
is used to measure the contribution in the correlation between y, and y, to the T? statistic.

Conditional probability P(y,|y;) # P(y,|y,) when y, and y, are correlated, and hence the conditional term
T2, # T?,. For this reason, Eqs. (2) and (3) are two distinct representations of the T? statistic’s decomposition
results. In general, for a p-dimensional process quality y= (31, ..., ¥,)", the decomposition results have a total
of p(p-1)...x2x 1, and the space complexity is O(p!). As the number of quality components increases, under the
condition that every possible form of decomposition is analyzed, will lead to a significant increase of calcula-
tions and a serious reduction in diagnostic efficiency. At the same time, the accuracy of the diagnostic results
based on this method will be affected when there are obvious correlations between different quality components.

Intelligent diagnosis methods

In addition to the traditional diagnostic methods based on mathematical model analysis, in recent years, with
the development of artificial intelligence technology, intelligent diagnostic methods are applied to the field of
multivariate process quality diagnosis, and the diagnostic methods based on artificial neural network (ANN)*-2,
Bayesian network?-*?, support vector machine (SVM)**~%, etc. have been widely applied. Intelligent diagnostic
methods can effectively reduce the scale of the diagnostic system and improve the diagnostic efficiency, however,
these methods generally require a large amount of data to train the network’s parameters, and the constructed
network are generally suitable for specific applications, thus their generality will be greatly restricted. Therefore,
establish a general and efficient method for multivariate process quality correlation diagnosis is a major problem
to be solved in the field of quality management.

Sketch of the algorithm

In this paper, a new correlation diagnosis method based on quality component grouping is proposed. For the
multivariate process quality y = (y,, ¥,..., ¥,)", three theorems describing the properties of the multivariate
process quality covariance matrix are first established based on the statistical viewpoint of product quality in
manufacturing processes; Then the correlation decomposition theorem is proved by drawing on the idea of
decomposing the T? statistic in the MYT orthogonal decomposition method, which decomposes the correlation
of all the quality components into the correlations of all the component pairs, to reduce the space complexity
of the diagnostic system to O(p?); Next, refer to the grouping idea in the principal component analysis method,
based on the correlation between different components, the quality components are grouped, so that the correla-
tions between components in the same groups are as large as possible, and the correlations between components
of different groups are as small as possible; Finally, draw on the principle of component combination diagnosis
method, on the premise of ignoring the correlations between different groups, quality components in the same
groups are combined as component pairs to establish the corresponding T? control charts, which constitutes the
multivariate process quality correlation diagnostic system, thus the space complexity of the diagnostic system is
reduced to approximate O(p), to improve the diagnostic efficiency.

Covariance matrix properties of multivariate process quality
In the manufacturing process, factors affecting the product’s quality can be attributed to 5 aspects: man, machines,
materials, methods and environment (4M1E). On this basis, ISO9000 supplemented another 3 factors: the
manufacturing software, auxiliary materials and utilities. Among the many factors affecting the product’s qual-
ity, changes in any one of them will have an impact on the final quality of the product, so the product’s quality
is fluctuating in manufacturing. Tolerance theory is a direct proof of the fluctuation of the product’s quality.
For the multivariate process quality y=(yy, ..., ¥,)" the covariance matrix is an important parameter to
describe its correlation. Combined with the fluctuation of the product’s quality in the manufacturing process,
this paper firstly establishes 3 theorems describing the characteristics of the covariance matrix of multivariate
process quality.

Theorem 1 In the covariance matrix X of the multivariate process quality y= (1, ¥..., y,)"; all of the elements
are not 0.

Suppose the mean vector of y is = (uy, fhy,..., #,)". According to the definition of the covariance matrix, it
is known that:

[E[p1 — n) (1 — w)] ELn — 1) (2 — u2)] -+ E[(n — 1) 0p — ip)]
E[(y2 — n2)(1 — p)l El(y2 — p2)(y2 — n2)] -+ El(y2 — pn2)(yp — 12p)]

Yy =
| ELGyp — 129) 01 — )] ELGp — 11p) (2 — )] -+ ELGyp — 1) (5 — )] "
[o11 012 -+ 0o1p
021 021 ... O'zp

L Op1 Op1 """ Opp

For any element 0j; = E[(y; — w;)(yj — i;)]in Z, the sufficient and necessary condition for it to be 0 is:
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Yi =i OF Y= (5)

According to the properties of mathematical expectation, Eq. (5) implies that the quality component y; or y;
is a constant in the manufacturing process. Clearly, this is in conflict with the viewpoint of the fluctuation of the
product’s quality, and therefore, Eq. (5) does not hold, i.e., all the elements in X are not 0.

Theorem 2 The covariance matrix X of the multivariate process quality y=(y,, y», ... , y,)" is a real symmetric
positive definite matrix.
According to Eq. (4) on the definition of the covariance matrix:
oij = El(yi — n) (yj — )1
oji = E[(y; — wj) (i — i)l
From the properties of mathematical expectation can be seen:
Oij = Oji

Thatis, Yisa symmetric matrix.
Let p-dimensional vector ¢=(c}, ¢y,..., cp)T:t 0.

I'Se=(ci,e0, ) Bl 0,00 6p)T (6)
Bringing Eq. (4) into (6), after simplification and consolidation, we get
P P
'Sc=E KZ cilyi — I/«i)) (Z Ok — uk)Ck)} )
i=1 k=1
Let random variable z = 21;:1 ci(yi — i), bringing this into Eq. (7), we get
Tc=E@E) >0

From the proof of Theorem 1, it is clear that according to the viewpoint of the fluctuation of the product’s
quality, z#0, i.e.

I'se= E(zz) >0
Therefore, the covariance matrix ¥ of the multivariate process quality y=(y;, ..., ,)" is a real symmetric

positive definite matrix.

Theorem 3 The inverse matrix ™' of the covariance matrix X of the multivariate process quality y= (1, ya..» ¥p)"
is a real symmetric positive definite matrix.

First prove the symmetry of £!. It follows from the symmetry of X:
=37
Inverting both ends of the above equation:
= (@) = (Y

The above equation shows that X! is a symmetric matrix.

Let the eigenvalues of L be A, A,,..., A,.. By the positive definiteness of X, ;>0 (i< p). According to the nature
of the inverse matrix, the eigenvalues of X! are 1/, 1/A,,..., 1/, i.e., the eigenvalues of £" are all greater than
0, so 27! is a positive definite matrix.

Theoretical basis for correlation grouping diagnosis

The exponential function between N and p is the main reason why applying this approach is difficult in the
CCBD method. If the gradient of N with p can be lowered by proper means, the defect of diagnostic system scale
expands greatly while p is increasing will be avoided to a certain extent, and thus this approach can be applied
in multivariate process quality management.
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Correlation decomposition

Theorem 4 In the multivariate process quality y=(yy, y5,-.., ¥,)’, the sufficient and necessary
condition of the correlation of all the components exists is, for any two components y;and y;,
they are correlated.

Firstly, the sufficiency of Theorem 4 is proved. Any two components y; and y; in y are correlated shows that ;0.
From Theorems 2 and 3, the covariance matrix X and its inverse matrix X' are real symmetric positive definite
matrix. From the definition of the T? statistic in Eq. (1), it is clear that for any sample data, its T? statistic is greater
than 0, i.e., the correlation of all the components exists.

The following proves the necessity of Theorem 4 by reduction and absurdum. The existence of correlation of
all the components in y implies that for any sample data, its T? statistic is greater than 0. From the definition of
the T? statistic in Eq. (1), there exists an inverse matrix of the covariance matrix X of y, and the rank of X is p.

RZ)=p (8)
Assume y; and y;in y are uncorrelated, i.e., 0;=0. By the definition of covariance, there is:
okj = El(yk — ne) ¢y — )1 =0 9)

The sufficient and necessary condition for Eq. (9) to hold is y, = or y;=p;. It may be useful to set y, = .
From the definition of covariance, we know that for any component y; (i=1, 2 ,..., p), there are:

oki = E[(yk — ui)(yi — )] =0 (10)

Equation (10) shows that in the covariance matrix X of y, the kth row and kth column are both 0, i.e.,
R(Z) <p-1. This contradicts Eq. (8), the assumption is not valid, and the necessity of Theorem 4 is proved.

Theorem 4 means that the correlation of all the quality components can be represented as correlations of
component pairs, so in the correlation diagnostic system, it only needs to monitor the correlation shifts of all
the component pairs. In addition, T? control chart to monitor the correlation shift of all the components should
be added, the number of T? control charts is N=C,’+1=p(p—1)/2+1, N is the power function of p, the space
complexity of the diagnostic system is lowered to O(p?). Compared to the CCBD method, the gradient of N with p
is decreased significantly. Meanwhile, because the component pair is the minimum combination of components,
the information redundancy in diagnostic results can be avoided effectively.
Grouping principle
Although the functional relation between N and p is lowered to a power function by correlation decomposition,
N will still increase rapidly while p is increasing, so further proper ways should be adopted to reduce the scale
of the diagnostic system on the basis of the above analysis. For this reason, this paper proposes the following
grouping principle.

Theorem5 Let p=p,+p,+... +p,,, where p and p; (i=1, 2, ... , m) are integers greater than 0, m> 1. In this case
there is the following inequality:

m
2 2
G >>.C (11)
i=1

The proof of Theorem 5 proceeds as follows:

Yo I Y )

A

=2 -p
i=1

1 m m
<SQ_p+2) pepi—p)
i=1 kj=1

ki
_le e
—2<<;p,) p)
_1
—Z(P p)
=c;

Theorem 5 shows that for the multivariate process quality y=(yy, ..., 9,)", if the quality components are
grouped according to the degree of correlations, so that the correlations of quality components located within
the same groups should be as large as possible, and the correlations of quality components located between
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different groups should be as small as possible, the number of T? control charts in the diagnostic model can be
further reduced by ignoring the correlations of the quality components located in the different groups, and the
reduction of the number of T? control charts is > " ] 1 Pkpj> where m is the number of quality components

#j
grouped, p and p; denote the number of quality components contained in the kth and jth groups after grouping.
In this case, the space complexity of the multivariate process quality correlation diagnostic model based on the
grouping technique is approximated as O(p).

Methodology for grouping quality components
Grouping techniques can lead to a significant reduction in the number of T? control charts required in the cor-
relation diagnostic system. Typically, quality components can be grouped with reference to practical experience,
but this way can not give an accurate estimate of the error before and after grouping. In order to analyze the
errors quantitatively, a grouping method based on the analysis of the covariance matrix of the quality compo-
nents is used here.

Before grouping, the multivariate process quality y=(yy, y,,..., ¥,)" needs to be standardized in order to avoid
differences in the observed scales from affecting the grouping results:

= (12

where y; and o; are the mean and variance of y;. In the standardization result y* = (y{,y5,-- -, y;)T, the mean
of each component is 0, and the variance is 1.

Factor analysis
Factor analysis is a method of grouping components based on the degree of correlations between different
components, using the covariance matrix of a random vector as a reference. The basic model of factor analysis

is as follows®*%7:

(1) The standardized multivariate process quality y" is an observable random vector with mean vector E(y") =0
and covariance matrix D(y") =X’;

(2) The common factor vector F=(F,, F,, ..., F,,)T (m<p) is an unobservable random vector with mean vector
E(F)=0 and covariance matrix D(F) = I, where I is a diagonal matrix where the main diagonal elements
are 1, and the remaining elements are 0, i.e., the components in F are independent of each other;

(3) The error vector e= (g, &, ..., sP)T is independent of the common factor vector F with E(e) =0, and the
covariance matrix D(¢) is a diagonal matrix:

D(e) =

Under the above conditions, the factor analysis model can be expressed as the following equations:

yi=auFi +apF + -+ aimFm + &1
s = anF1 +ank + -+ ayuFm + &2

: (13)
y;‘ =apiF1 +appF + -+ apmFn + &m
Expressing the above system of equations in matrix form:
vy =AF+e¢ (14)

where a;; in the matrix A =(a;),,,, is called the factor loading, and its absolute value indicates the degree of
dependence between the quality component y; and the common factor F;. The matrix A formed by all the factor
loadings is called the factor loading matrix.

From Eq. (14), calculate the covariance matrix of y":
* = D(y*) = D(AF) + D(e) = AD(F)AT + D(e) = AAT + D(e) (15)

On the other hand, by Theorem 2, X is a real symmetric positive definite matrix for which Cholesky decom-
position is performed:

¥* = GGT (16)

where G = (V21e1,+/ 7262, -+, \/Eep), A(i=1,2, ..., p) are the eigenvalues of the covariance matrix X" with
Ai>Ay> .. >, e is the eigenvector corresponding to A,.

Comparing Egs. (15) and (16), it can be seen that if A =G, the error vector £=0 in Eq. (14), the obtained
factor analysis model is accurate, but this means that after standardization, all the quality components in y" will

Scientific Reports |

(2024) 14:13212 | https://doi.org/10.1038/s41598-024-61954-y nature portfolio



www.nature.com/scientificreports/

be grouped into p groups, i.e., the accurate factor analysis model can only be obtained when the correlations
between the quality components in y" are completely ignored. Therefore, considering the general situation, it is
necessary to retain most of the correlations between the quality components, in which case an approximation of
the factor loading matrix A is constructed from the first m (m < p) columns of the matrix G, i.e.:

A~ (Ve Ve o\ mem) (17)

Error analysis
The error vector £ # 0 when building the factor analysis model from the factor loading matrix derived from
Eq. (17), this implies that there must be a certain amount of information loss when grouping the quality com-
ponents in y* based on Eq. (14).

In statistics, the total amount of information contained in a random variable is generally measured by its
variance. In Eq. (14), let A =G, which gives the sum of the variances of the components in ¥ under the exact
decomposition condition:

p p
> DoH =% (18)
i=1 i=1

Equation (18) shows that under the condition of exact decomposition, the sum of the information contained
in all the quality components in y" is equal to the cumulative sum of all the eigenvalues of the covariance matrix
X ofy'.

The factor loading matrix A is then constructed according to Eq. (17), at which point it is given by Eq. (14):

) m P
> DO =D ki+> D) (19)
i=1 i=1 i=1

Comparing Eq. (18) with Eq. (19) shows that grouping the quality components in y* with Eq. (14), under
the condition of ignoring the correlation of the quality components between different groups, the sum of infor-
mation loss is ) i, | | 4;. Therefore, for a specified error f3, the number of quality component group m can be
determined by the following inequality:

Doty i
n==p 5 =18 (20)
iz i
where 7 is the cumulative variance contribution rate of the first m eigenvalues. Empirically, when #>80% ~ 85%,
the number of groupings m can be determined by inequality (20). The value of # can be reasonably adjusted in
combination with specific applications, but the basic principle of adjustment is that it should be conducive to
the reasonable interpretation of the factor analysis model.

Correlation diagnostic algorithm based on grouping theory

The above analysis is founded on the condition that the mean y; and covariance matrix X of the manufacturing
process are given. However, in many applications, these parameters are generally unknown. In this case, the
unbiased estimator of the manufacturing process parameters can be calculated from a set of sample data y;= (y;,,

Yizs > ¥ip) > (i=1,2,..., n) collected while the process is in stable state.
1 n
Mj:;Ey,-j (i=12....p) 21
i=1
1 < s s
o =-—=> j—m) (i=12....p) (22)
i=1
Then the sample data can be standardized as y;' = (v}, 55, - »)’Z,)T, (i=1,2,...,n), where
Yii — K.
y;;:T (i=12....p) (23)

The covariance matrix X" can be calculated by the standardize sample data:

1 n
= vy (24)
i=1

Based on the above analysis, after grouping the quality components in the standardized multivariate pro-
cess quality ¥ using factor analysis method, on the premise of ignoring the correlation of quality components
between different groups, the quality components within the same groups are combined as component pairs,
and the corresponding binary T? control charts are established to form the multivariate process quality correla-
tion diagnostic model. The space complexity of this diagnostic model is approximated as a linear function of
the quality component number p, which can lead to a significant improvement in the efficiency of the diagnosis.
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The multivariate process quality correlation diagnostic model based on grouping technique can be constructed
as follows:

(1) Collect sufficient quality data y,(i=1, 2,..., n) while the manufacturing process is in stable state;

(2) Calculate the manufacturing parameters according to Egs. (21)-(24);

(3) Calculate the eigenvalues of the covariance matrix X" and arrange all the eigenvalues in descending order
asiy > Ay > o0 > Aps

(4) Calculate the eigenvector e; corresponding to the eigenvalue A(i=1, 2, ..., p);

(5) For the given error f, calculate the number m of eigenvectors for constructing the factor loading matrix
according to inequality (20), and then construct the factor loading matrix A from the first m eigenvectors
according to Eq. (17);

(6) Group all the quality components according to Egs. (13), and the grouping results are recorded as Gy, G,,
v G

(7)  For each pair of components (yF, y7) (s#¢) in G, (k=1, 2, ..., m), build the corresponding T? control chart
Kst;

(8) Establish the T? control chart K to monitor the correlation shift of all the quality components.

In the manufacturing process, if the T? statistic of the new sample data exceeds the control limit in the control
chart K, it indicates that the correlation shift of all the quality components is abnormal, and the cause(s) can be
specified by examining the rest binary T? control charts in the diagnostic model.

Case study

Blades are important parts in steam turbines and aviation engines, and their machining quality directly affects
the life and performance of the equipment. The contour method is a commonly used blade quality inspection
technique, and its basic principle is to measure a number of cross-section contour lines of the blade along the
height direction (Z-axis direction) in the way shown in Fig. 1, and then match the actual contour lines meas-
ured in different height directions with their respective theoretical contour lines by translational and rotational
transformations as shown in Fig. 2, so as to decompose the blade profiling error into 4 quality components:
blade contouring error before matching, blade contouring error after matching, blade positional error, and
blade torsion error.

The machining process shows that the 4 quality components are correlated, so it is necessary to monitor the
correlation shift during the manufacturing process and to diagnose the causes of the abnormal correlation. Here,
a T? control chart is used to monitor the correlation shift of the 4 quality components, and the method proposed
in this paper is used to diagnose the causes of the abnormal correlation.

Parameters estimation
The above 4 quality components are expressed in vector form as y=(y;, y», ¥3, ¥4)7. 15 sample data are collected
at the cross-section height Z=25 mm as shown in Table 1, in order to estimate the mean vector and covariance
matrix for the manufacturing process.

Experience shows that the 4 quality components to be monitored generally follow normal distribution. In
order to check the normality of the sample data, set the confidence level o, =0.95, and the Shapiro- Wilk test is
done on the data of the 4 quality components in Table 1, and the results are shown in Table 2. It can be seen that

Figure 1. Contour method of blade inspection.
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Theoretical counter line

Actual contour line

Position before matching

Figure 2. Theoretical and actual contour lines of the blade.

Position after matching

Blade contouring error before | Blade contouring error after
No matching (y,/mm) matching (y,/mm) Blade positional error (y;/mm) | Blade torsion error (y,/’)
1 0.083 0.043 0.098 2.018
2 0.086 0.045 0.099 2.216
3 0.084 0.045 0.098 2.239
4 0.077 0.036 0.093 2.108
5 0.076 0.034 0.091 2.156
6 0.081 0.042 0.095 2.332
7 0.078 0.037 0.093 2.259
8 0.087 0.046 0.101 2.184
9 0.085 0.044 0.099 2.247
10 0.089 0.051 0.105 2.318
11 0.075 0.034 0.089 2.287
12 0.088 0.047 0.104 2.047
13 0.074 0.033 0.086 2.275
14 0.082 0.041 0.098 2.066
15 0.080 0.041 0.093 2.307

Table 1. Sample data used for process parameter estimation.

Quality components W statistics | Critical value W(15,0.05)
N 0.9551 0.881

¥ 0.9476

75 0.9707

Va 0.9182

Table 2. Results of normality test for sample data.

the W statistics of the four components are all greater than the critical value W(15,0.05) =0.881, indicating that
the sample data in Table 1 follow normal distribution.

The sample data used to estimate the process parameters must be collected while the manufacturing process
is in stable state, therefore, for the sample data in Table 1, the probability of false alarm a=0.0027 is set for each
quality component with reference to the 3¢ principle of the Shewhart control chart. According to Bonferroni
inequality and 4 distribution, take the false alarm probability a,=0.025 of the correlation shift, and establish
Shewhart control charts for the 4 quality components and T? control chart to monitor the correlation shift, as
shown in Figs. 3,4, 5, 6 and 7.
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Figure 7. T2 control chart for sample data.

Figures 3, 4, 5, 6 and 7 show that all the 5 control charts are in normal level, indicating that the sample data
in Table 1 are obtained while the blade manufacturing process is in stable state, and can be used for process
parameter estimation. The calculated mean vector and standard deviation are:

n = (0.0817,0.0413,0.0961, 2.2039)7
o = (0.0029,0.0054, 0.0054, 0.1029) "

The sample data in Table 1 are standardized and the results are shown in Table 3.
Calculate the covariance matrix from the data in Table 3, we get:

1 0.9814 0.9747 —0.1590
0.9814 1 0.9510 —0.0490
0.9747  0.9510 1 —0.2730

—0.1590 —0.0490 —0.2730 1

3 * =

Establishment of diagnostic model
Calculate the eigenvalues and eigenvectors of the covariance matrix X" and sort all the eigenvalues and eigenvec-
tors in descending order of the eigenvalues, as shown in the second and third columns in Table 4. On this basis,
calculate the cumulative contribution rate of the variance of the first 1 to 4 eigenvalues, as shown in the fourth
column in Table 4.

As can be seen from Table 4, the first two eigenvalues of the covariance matrix, which have a cumulative
contribution rate of variance of 99.11%, are already much higher than the empirical threshold of 80-85%, so let
m =2 to construct an approximation of the factor loading matrix A from the first two eigenvectors.

No |y ¥ s bl

1 0.2733 0.3207 0.3485 | —1.8061
2 0.8881 0.6908 0.5351 | 0.1172

3 0.4782 0.6908 0.3485 | 0.3406

4 -0.9564 |-0.9745 |-0.5849 |-0.9319
5 -1.1613 | -1.3445 | -0.9583 |-0.4656
6 —-0.1366 0.1357 | -0.2116 | 1.2440
7 -0.7514 | -0.7895 |-0.5849 |0.5349
8 1.0930 0.8758 0.9085 | -0.1936
9 0.6831 0.5057 0.5351 | 0.4183
10 1.5029 1.8009 1.6552 | 1.1080
11 -1.3633 | —-1.3445 | -1.3316 |0.8069
12 1.2979 1.0608 1.4685 | —1.5244
13 -1.5712 | -1.5296 | -1.8917 |0.6903
14 0.0683 | —0.0493 0.3485 | —1.3399
15 —0.3416 | -0.0493 |-0.5849 |1.0012

Table 3. Sample data after standardization.
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No | Eigenvalues | Eigenvectors Cumulative contribution rate of variance
1 2.9772 (-0.5751, —0.5653, —0.5747, 0.1396)" | 74.43%

2 0.9873 (0.0835, 0.1953, —0.0384, 0.9764)" 99.11%

3 0.0236 (-0.2351, -0.5326, 0.7976, 0.1580) " 99.70%

4 0.0118 (0.7791, —0.5989, —0.1793, 0.0461)" 100%

Table 4. Eigenvalues, eigenvectors of the covariance matrix and cumulative contribution of variance.

—0.9923 0.0829

—0.9754 0.1941

—0.9916 —0.0382
0.2409 0.9702

¥§ = —0.9923F; + 0.0829F,
¥3 = —0.9754F + 0.1941F,
¥5 = —0.9916F; — 0.0382F,
¥4 = 0.2409F; 4 0.9702F,

A=

It can be seen that there is a large degree of dependence between components y},y3,y3 and factor F, and
a smaller degree of dependence with factor F,, so these 3 quality components are grouped together; y} is only
correlated with factor F, to a large extent, and therefore will be divided into a group alone. The final result of the
grouping is G, = {y},y3.y3}, G,={y3}.

For group G, T? control charts K12, K13 and K23 are built to monitor the binary correlations shift of compo-
nent pairs (y5,y3), (¥1>y3) and (y3,y3); Since there is only one quality component in G,, there is no need to create
a T2 control chart; Finally, T? control chart K that monitors the correlation shift of all the quality components is
established, and the 4 control charts are used to form a diagnostic model of the correlation between the 4 quality
components in blade processing.

Manufacturing process diagnosis
In subsequent manufacturing, 5 quality data at different moments are collected, as shown in Table 5, and the
results after standardization are shown in Table 6. The T? statistics for the 5 data were calculated and plotted in
the T control chart K, as shown in Fig. 8. It can be seen that in the last three samples, the correlations of all the
quality components are abnormal.

In order to diagnose the cause(s) of the abnormal control chart K, 3 control charts monitoring the binary
correlation shift of the 3 component pairs shown from Figs. 9, 10 and 11 were analyzed, and the diagnostic
results are shown in Table 7.

Validity analysis of diagnostic conclusions

In order to judge the accuracy of the diagnostic results in Table 7, another diagnostic model using the CCBD
method is built, which contains a total of Ci + Ci = 10 T? control charts, as shown in Figs. 12, 13, 14, 15, 16,
17,18, 19,20 and 21.

Blade contouring error before | Blade contouring error after
No | matching (y,/mm) matching (y,/mm) Blade positional error (y;/mm) | Blade torsion error (y,/’)
1 0.085 0.046 0.098 2.176
2 0.077 0.037 0.092 2.148
3 0.082 0.040 0.103 2.068
4 0.085 0.042 0.095 2.312
5 0.074 0.036 0.086 2.277

Table 5. Test data collected in subsequent manufacturing.

No |y% V) ¥ bl

1 0.6831 0.8758 0.3485 | -0.2713
2 -0.9564 |-0.7895 |-0.7716 |-0.5433
3 0.0683 | —0.2344 1.2819 | -1.3204
4 0.6831 0.1357 | -0.2116 | 1.0497
5 -1.5712 | -0.9745 |-1.8917 |0.7098

Table 6. Test data after standardization.
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No | Diagnostic conclusions

Normal

Normal

Anomalous correlations of component pairs (y*}, y*%), (%, ¥*;)

Anomalous correlations of component pairs (y*, %), (%, ¥%3)

(& I N O S

Anomalous correlations of component pairs (y*;, y*,), (%5, %)

Table 7. Diagnostic results.
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Figure 13. Diagnostic model using CCBD method: T2 control chart KC,; for (3}, y'3).
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Figure 14. Diagnostic model using CCBD method: T? control chart KCy4 for (¥, y'y).

In order to compare the diagnostic conclusions derived from the two different diagnostic models, they are
placed in Table 8. It can be seen that there are differences in the diagnostic conclusions of the last 3 points. Taking
point 3 as an example, further analysis of the diagnostic results using the CCBD method reveals that since the
correlations of component pairs (¥, ¥'3), (¥ ') are anomalous, the correlations of other component combina-
tions containing (y}, ¥'3) or (¥, y;) are bound to be in anomalous states, and thus the diagnostic results that the
correlation abnormalities of component combinations (¥, ¥, ¥'s), (' 1, ¥'5 ¥'s) and (¥'5, ¥, ¥',) are redundant
diagnostic information. After removing the redundant diagnostic information, the diagnostic results of both
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No | Grouping-based diagnostic model Diagnostic model using CCBD method
1 Normal Normal
2 Normal Normal
1, Q 1 1 * * * ¥ Pt P P * * * *
3 Anomalous correlations of component pairs (y*, y*), (¥, y%) Jz;\*no}rlila)lous correlations of component combinations (y*1, y*3), (*» ¥*3), 7 2 ¥*3), 071 75 ¥4, 70
3 4
: : : * ok * ok gk ak ok ak *
4 Anomalous correlations of component pairs (y*, y*)), (%, %) J/;\*no;:a)lous correlations of component combinations (y*1, *2), (1, *3), 71 Y2 ¥*3), 7 y'2 ¥4, 71
3 4
: : : * ok * ok gk b gk *
5 | Anomalous correlations of component pairs (%, y2), (v y) ;nOJTei)lous correlations of component combinations (v, y*2), (2 75, (7', 72 ¥*3), 07 ¥ ¥4 0
3 4

Table 8. Comparison of the diagnostic results of the two diagnostic models.

diagnostic models for the causes of the anomaly in point 3 are identical. A similar analysis of the diagnostic results
for points 4 and 5 leads to the same conclusions, as shown in Table 9. Therefore, the accuracy of the diagnostic
method of multivariate process quality correlation based on the grouping technique can be guaranteed.
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No | Grouping-based diagnostic model Diagnostic model using CCBD method

1 Normal Normal

2 Normal Normal

3 Anomalous correlations of component pairs (y*}, ¥%3), (#*,, ¥%;) | Anomalous correlations of component pairs (y*, ¥*;), (y*,, y%3)
4 Anomalous correlations of component pairs (y*, y*,), (y*, ¥*;) | Anomalous correlations of component pairs (y*}, y%), (y*1, ¥*3)
5 Anomalous correlations of component pairs (y*}, y*,), (%, ¥*;) | Anomalous correlations of component pairs (y*), y%), (%, y%)

Table 9. Comparison of the two diagnostic systems after redundant diagnostic results are removed.

Discussion and conclusion

For the problem of correlation diagnosis in multivariate process quality management, this paper proposed a
grouping technique based correlation diagnosis method. Compared with the present diagnostic methods, the
method proposed in this paper has the following advantages:

1.1. The diagnosis is more efficient

The space complexity of the multivariate process quality correlation diagnostic method based on grouping
technique is approximately O(p), while the space complexity of the diagnostic algorithm based on the CCBD
method, principal component analysis method and the orthogonal decomposition of the T? statistic are O(2?),
O(p?), and O(p!), respectively. Therefore, the proposed method in this paper has higher diagnostic efficiency.

2.2. 'The diagnostic results are more accurate

The grouping technique based multivariate process quality correlation diagnosis method takes the correlation
of component pairs as the diagnostic unit. Because component pairs are the minimum combination of quality
components, the disadvantage of redundant diagnostic information in diagnostic algorithms based on the CCBD
method, the principal component analysis method and the orthogonal decomposition of T? statistics can be
avoided to provide more accurate diagnostic results for manufacturing processes.

3.3.  Better generality

Compared with the diagnostic methods based on artificial intelligence technology, the diagnostic method
proposed in this paper is based on strict mathematical analysis as the theoretical foundation, avoids the defect
of intelligent diagnostic methods in which the network structure and parameters are oriented to specific appli-
cation. Therefore, the proposed method can be used as a general theoretical model for the multivariate process
quality correlation diagnosis.

The multivariate process quality diagnostic model based on grouping technique has the following two issues
for further discussion in its application.

(1) Judgment of the difference degree in correlations between quality components

The difference degree in correlations between quality components can be judged by the covariance matrix £
obtained after standardizing the quality data collected in stable state. In general, if there exists at least one row
of elements in X" such that the ratio of the maximum value to the minimum value, except for the main diagonal
element, is not less than 2, it can be tentatively determined that there is a large difference in the correlations
between different quality components.

(2) Basis for grouping quality components

The maximum value of each row elements in the factor loading matrix A can be used as a basis for grouping
the quality components. The quality component ;" can be assigned to group G; represented by the common factor
F, if a; is the element with the largest absolute value in the ith row of A. Experience has shown that grouping is
more desirable when a; > 0.7. When the difference between the absolute values of the elements of a row in A is
small, it indicates that the corresponding quality component has an approximately equal degree of dependence
on all the common factors, and at this point, the group where the corresponding quality component is located
can be rationally determined in conjunction with the actual interpretation of the factor analysis model. If the
absolute values between the elements of any row in A are all approximately equal, it indicates that the degree
of dependence of all quality components on all common factors is approximately equal, at this time, all quality
components are located within a same group, and the diagnostic model is degraded to the diagnostic method
based on the correlation decomposition. We will study this issue in depth in our later work.
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