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Analysis of a fractional-order model
for dengue transmission dynamics
with quarantine and vaccination
measures

Muhammad Usman?, Mujahid Abbas?3, Safeer Hussain Khan*** & Andrew Omame®-*

A comprehensive mathematical model is proposed to study two strains of dengue virus with saturated
incidence rates and quarantine measures. Imperfect dengue vaccination is also assumed in the

model. Existence, uniqueness and stability of the proposed model are proved using the results from
fixed point and degree theory. Additionally, well constructed Lyapunov function candidates are also
applied to prove the global stability of infection-free equilibria. It is also demonstrated that the model
is generalized Ulam-Hyers stable under some appropriate conditions. The model is fitted to the real
data of dengue epidemic taken from the city of Espirito Santo in Brazil. For the approximate solution
of the model, a non-standard finite difference(NSFD) approach is applied. Sensitivity analysis is also
carried out to show the influence of different parameters involved in the model. The behaviour of the
NSFD is also assessed under different denominator functions and it is observed that the choice of the
denominator function could influence the solution trajectories. Different scenario analysis are also
assessed when the reproduction number is below or above one. Furthermore, simulations are also
presented to assess the epidemiological impact of dengue vaccination and quarantine measures for
infected individuals.

Keywo rds Dengue, Strains, Mathematical model, Existence and uniqueness, Stability, Reproduction number,
Nonstandard finite difference scheme

The virus that causes dengue fever is spread mostly by female Aedes mosquitoes, predominantly Aedes aegypti
mosquitoes, and secondarily Aedes albopictus mosquitoes. Through mosquito bites, the dengue virus can infect
humans and cause mild or severe sickness or death in some cases'. The areas with a high Aedes mosquito popu-
lation are most likely to experience a dengue outbreak. The disease is primarily spread when an adult female
Aedes mosquito bites a person carrying the virus, catching it and then passing it on to an uninfected person.
However, there are other less common ways to spread the virus including through breastfeeding and pregnancy
and in extremely rare instances, through organ transplantation?. Four Dengue serotypes (Denguel-4) have spread
quickly inside nations and across continents, resulting in epidemics and severe dengue fever, hyperendemicity
of numerous Dengue serotypes in tropical nations, and autochthonous transmission in Europe and the USA**.
In the past, there was no specific treatments for dengue. The only possibility to control the disease was to control
the vectors, which was very difficult. In 2015, a new vaccine for Dengue virus (Dengvaxia by Sanofi Pasteur)
has been released’. Dengvaxia is a tetravalent vaccine whose efficacy varies by serotypes ( 54.7% for serotype 1,
43.0% for serotype 2, 71.6% for serotype 3 and 76.9% for serotype 4.)°.

Mathematical models using the classical integer-order derivative have been developed in studying the dynam-
ics of infectious diseases”"'%. In particular, Ferguson et al.'* employed a PDE model that takes prior infection
history into account. Using an agent-based dengue model. Hladish et al.'” investigated the effects of several vac-
cine scenarios on dengue transmission dynamics in Yucatan, Mexico. For the purpose of examining the effects
of immunisation against the four dengue serotypes, Coudeville and Garnett'® considered an age-structured
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compartmental model. A similar (age-stratified) model was employed by Rodriguez-Barraquer et al.'” to assess
the effectiveness of a vaccination that is only partially effective against three of the four dengue serotypes. Using
compartmental and agent-based modelling techniques, Chao et al.'® demonstrated that a dengue vaccine with
efficacy ranging from 70% to 90% against all four dengue serotypes has the potential to reduce the frequency
and magnitude of dengue epidemics significantly in the short and medium terms.

These models, due to the integer nature of the derivative constitute certain limitations. Different fractional
operators relying on power-law'?, exponential?®, generalized Mittag-Leffler?! and other forms of kernels have
emerged and their applications to modelling biological processes have gained much attraction in recent times.
The fractional order operators have some advantages over classical order operator such as memory effect and
better performance. Mathematical models using the fractional order operators have been successfully applied in
investigating the dynamics of the infectious diseases***’. In particular, Fatmawati?’ studied the dengue dynamics
with fractal-factional Caputo-Fabrizio operator and employed real statistical data of dengue infection cases of
East Java, Indonesia, from 2018 and parameterized the dengue model.

The Caputo fractional operator with a singular kernel offers advantages in modeling disease transmissions
by providing a more flexible framework that can capture memory effects, non-local behavior, and complex
dynamics. Memory effects means that it accounts for the history of the system. In disease transmission models,
this can be particularly useful for capturing the impact of past infections, immunity, or interventions on the
current state of the population. Unlike classical derivatives, fractional derivatives are non-local operators show-
ing that the behavior of the system does not depend on the neighbourhood of a particular point but depends on
its history over a range of time, which can be crucial for modeling the spread of infectious diseases where past
interactions can influence future outcomes. The non standard finite difference (NSFD) scheme has a couple of
favourable properties. It is explicit and due to its construction it reproduces important properties of the solution,
like the number and location of fixed-points, the positivity, accuracy, stability and certain conservation laws.
It offer valuable tools for numerical simulation and analysis across a wide range of scientific and engineering
disciplines, where accurate and efficient approximation of model solutions is essential for understanding and
predicting complex phenomena.

In this study, based on Caputo fractional operator, a comprehensive model for two strains of dengue is pro-
posed, and validated using data from Brazilian state of Espirito Santo. Given that both vaccines have varying
levels of efficacy, the suggested model also assumes separate immunization for strains-1 and strain-2. We have
also included two co-infection compartments, which have not been considered in the existing models, for pos-
sible disease states, including exposed, asymptomatic, and symptomatic infections. We established the conditions
for existence, uniqueness and stability of the model. In addition, we applied the nonstandard finite difference
(NSFD) scheme to obtain approximate solution of the model. Then impact of different denominator functions
on the approximated solution is also presented. To the best of our knowledge, the proposed model studied in this
paper is novel and appropriate to study the co-circulation of two dengue strains using fractional calculus tools.

The paper is organized as follows: The model is formulated in “Model formulation”. The rigorous analysis of
the sub-model and the full model is given in “Analysis of the sub-models” and “Analysis of the complete model”
Existence and uniqueness are proved in the “Existence, uniqueness and Ulam-Hyers stability of the complete
model”. The Ulam-Hyers stability is presented in “Ulam-Hyers stability”. The model solution is approximated
with the help of non standard finite difference scheme in “Nonstandard finite difference scheme”. The model fit-
ting and the numerical assessments are given in “Model fitting and numerical assessment”. Finally “Conclusion”
contains the concluding remark and some future directions.

Preliminaries

Definition 1.1 *The Caputo fractional derivative of a function f of order o € (0, 1)is defined by
1 t
Cno _ n—o—1g(n)
Dyf(t) = t— ap,
P10 = sy [ =9 0
where,n = [0] + 1and I stands for the Gamma function.
Definition 1.2 ' The Riemann-Liouville fractional integral of a function fof order o € (0, 1) is defined by
1 t
R R (O SR} @
['(o) Jo

Lemma 1.1 '° The Laplace transform of Caputo fractional derivative is given by

LICDIf(} =" L) —s"7If(0), 0<0 <1, 3)

where L is the Laplace transform operator.
We now recall the following definitions from?®.

Definition 1.3 The Kuratowski measure of non-compactness u : B — [0, 00) is defined as:
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u(2) = inf{d > 0: Q € B admits a finite cover by sets of diameter < d},

where B denotes the family of all bounded subsets of E.
Recall that the Kuratowski measure i has the property that u(2) = 0iff Q is relatively compact.

Definition 1.4 A continuous and bounded function T : S — E is said to be pu-Lipschitz if there exist k > 0
such that

w(T(0)) < k(o)
for all bounded subsets of S C E.

Definition 1.5 The mapping T is said to be p-condensing if
(T (820)) < n(S20)
for all bounded subset of S.

Lemma 1.2 If A and B are ju-Lipschitz map with constant k and k' respectively then A+B is also u-Lipschitz with
constantk + k .

Lemma 1.3 If T is a compact map, then T is yu-Lipschitz with constant 0.
Lemma 1.4 If T is Lipschitz map with with constant k, then T is jv-Lipschitz map with the same constant.

Theorem 1.1 LetT : E — E be p-condensing and
®={€E:3 A€][0,1] such that = AT¢}.
If® is a bounded set in E, that is there existsr > 0 such that ® C B,(0), then the degree
D( — JT,B,(0),0) =1, ¥ /€[0,1].
Consequently, T has at least one fixed point and the set of the fixed points of T lies in B, (0).

Model formulation
To formulate the model, the human population at a given time ¢ is denoted by N(¢) and is subdivided into fol-
lowing classes: vulnerable or uninfected persons Sy, (t), individuals vaccinated against Dengue V},(¢), individuals
exposed to Dengue strain 1 and strain 2 Ep (¢), Ej2 (t), respectively, individuals exposed for co-infection Ep;5(t),
Individuals infected with strain 1, strain 2 and both disease (Asymptomatic stage) Ap; (¢), Ana (1), Ap12(2), respec-
tively, Individuals infected with strain 1, strain 2 and both disease (Symptomatic stage) I; (), Inz2 (t), In12 (¢),
respectively, quarantine individuals suffering with strain 1, strain 2 and both disease Qp1 (¢), Qua(t), Qui2(t),
respectively, recovered individuals from strain 1, strain 2 and co-infection are Rp; (t), Ry (t), Rp12(t), respec-
tively. The vector population is divided into: Susceptible vectors S, (t), Vectors exposed to strain 1 and strain 2
E,1 (1), E )2 (1), respectively, vectors infected with strain 1 and strain 2 I, (t), I, (t), respectively.

Based on the established knowledge about the epidemiology of dengue serotypes*>!, the proposed model
has the following assumptions:

ﬁ;?,-lvi

v for

® Susceptible individuals can get infections with dengue strain-i from infected vectors at the rate of
i=12 .

e The saturated form of incidence lf’g;’v;vi
parameters o to add some control in the transmission due to the crowding effect and inhabitation effect and
behavioral change by the susceptible individuals. This has been used in some epidemiological models®*~*%.

® Susceptible individuals are vaccinated at the rate ¢?. The dengue vaccine is assumed to have efficacy of ¢

against strain i.

Individuals infected with either strain 1 or strain 2 can get infected with the other strain.

Natural death rate is assumed to be i for all human compartments.

Symptomatic individuals are quarantined at the rate ny.

Removal of vectors from the population is assumed at the rate p9.

The recovered individuals can lose their immunity and return to the susceptible state at the rate ;.

fori = 1,2 is adopted in this model. Basically we are adding the

The model’s parameters are described in Table 1 whereas the system’s equations are presented in (4).
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Parameter Description Value References
14 Transmission rate for dengue Strain 1 4.3892¢-13 day™! Fitted
h1 8 Ly
B Transmission rate for dengue Strain 2 5.1160e — 07 x 10~®day~" | Fitted
h2 g Yy
0, Mortality rates for Asymptomatic Individuals of strain 1 0.0406 day~! Fitted
al Y ymp y
) Mortality rates for Asymptomatic Individuals of strain 2 4.2968e—07 day~! Fitted
a2 Y ymp y
/A Vaccination rate 7.0002e-05 day ™! Fitted
y
o) Recovery rates from Asymptomatic individuals of strain 1 0.0544 day™! Fitted
o) Recovery rates from Asymptomatic individuals of strain 2 3.9726e-07 day ™! Fitted
af,af Saturated incidence rates 0.005 day ™" Assumed
A Human recruitment rate 4000000 day ! »
wy Natural death rates ﬁ day™! 3
8 Immunity loss from individuals recovered from strain 1 0.026 day™! %
80, Immunity loss from individuals recovered from strain 2 0.026 day™! 3
805 Immunity loss from individuals recovered from co-infection 0.026 day™" 3
o7 Vaccine efficacy against Strain 1 [0.81,0.88] day’l 37
o5 Vaccine efficacy against Strain 2 [0.81,0.88] day ™! 7
£9,65,6%, Progression rates from exposed to asymptomatic 0.1 day™! 3
£%,€5,€5, Progression rates from asymptomatic to symptomatic 0.1 day™! *
91D Recovery rates from Asymptomatic individuals of co-infection [0.11,0.15] day™! 7
38588, Recovery rates from Symptomatic individuals [0.11,0.15] day™! 7
8 i Recovery rates from Quarantine individuals [0.11,0.15] day™" 37
0715 Mortality rates for Asymptomatic Individuals of co-infection 0.001 day™! 7
0,65,67, Mortality rates for Symptomatic individuals 0.001 day! 7
0075508 Mortality rates for Quarantine individuals 0.001 day™' 37
0 N5 12 Rates for which people are quarantine 0.05 day ™' Assumed
Ag Mosquitos recruitment rate 20, 000 day ! Assumed
2 Transmission rate from human to vectors for dengue strain-1 [0.60, 0.75] da)f1 37
A Transmission rate from human to vectors for dengue strain-2 [0.60, 0.75] day™" 7
us Rate of removal of vectors (% — 1)day! 7
v.vs,vs,vs | Saturated incidence rates for vectors 0.0005 Assumed
o Progression rates for vectors from Expose to infected with strain 1 | 0.1 day™! 3
f, Progression rates for vectors from Expose to infected with strain 2 | 0.1 day™' 3
0% Mortality of infected vectors with strain 1 negligible day™" *
P9 Mortality of infected vectors with strain 2 negligible day~! *
Table 1. Model (4) parameters’ description.
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ﬁﬁ]lvl Sh _ ﬂgzlvz
1+0t(17 vl 1+a(271v2

CDISu(t) = AY — Sp— (e +¥)Sh + 85 Rut + 855 Rnz + 871, Rnna,

DG Vi) = ¥ — (1 — ¢G)MV - (1- ¢G)MV — 1V
o+ h 1 1+‘1f1v1 h 2 1+a§’IV2 h h Vh
Bl Bl
CDR-Bia (1) = 7o 190 (L= @D Vil = (i + 6B — 73220,
- ﬂg I, 130 In
“DF B (t) = #g”lvz[sh + (1= ¢ Vil — (1], +E2)Ep — #gﬂﬁhz,
o a
Cno ﬁhZI"z ﬁhlI"1 o o
Di+Ena(t) = En + Eyp — + Epi,s
0+ En12(t) 1+l h1 [ +atl, h2 — (U + &) Enia
Cmro o o o o o ﬂZZIVZ
Dy A (t) = EQEp — (1 + &1 + S + 651 Am — T+alL, M
24v2
Cno o a o a o ﬁ]/{lrll‘/1
Do+ An(t) = ELEm — (1 + &5 + 8ay +0)An — T ao L 2
+0[1 vl
Byl BiIn
DGy Ao () = 0,Emz — (15 + E015 + £ + 0%2) Anz + 1+th; Am + 1 e An,
2 1v2 +ot1 vl
CDUI ) =E% A — (u® o4 g9 Ny — /31{17211/2 I
o+ In (1) = &1 Am — (up + &1 + 03 + ) Im 1+acl, m
a5 1y2
Cyo o o o o o ﬂZLIVl
D Ina(t) = §Am — Uy + 85 + 05 + ni) i — 1+ao, M2
ay lyl
o o
Cryo o o o o o ﬂhZIVZ ﬁhIIVI
D3Iy (t) = Apn — ; 0; ] I s
o+ In2(t) = E1pAnz — (wyy + &p + 072 + ni2) I + T+alls 1+ T+a7l, h2

DS Qui(t) = nf I — (1§ + &) + 07 Qur,
“DE Qua(t) = Bl — (1§, + & + 07) Qnas
EDE: Qua(®) = nfipdnia — (5, + &85 + 6512) Quizs
CDF, Ryt (1) = £ AR + &5 Tn + 45, Quu — (1 + 87 Ryt
CD&ha(t) =CHAR + S5 I + §HQue — (1), + 85,) R
CDF Rtz (t) = E50An12 + &oIn + 61, Quiz — (1§, + 8712) Rinas
B (A + Iy + Apa + Inz) Az + Ino + Atz + Iniz)

CD8+ Sy(t) = A(v; - o o o o v o o o o
L+ Am + vy Im + 73 Anz + ¥4 Iz L+ 97 A +v3 Ine + v3 Ama + vi Iniz

B (A + Ini + Apz + Inia)
1+ v Apt + 5 Int + v5 Anz + ¥4 Iniz
B (Apa + Iny + Apz + Inia)
1+ v An + v5 Iz + v5 Anz + v4 Iniz
“D§i L (1) = o B — (1§ + p) s
“D§iLa(t) = 0 En — (1 + pf)la.

CDgLEn (1) = Sy — (U + @)Ey,

“DEn(t) =

Sy — (M(yy + a)gz)Evzr

The model can be written in compact form as:

DY (1) = K(t, D (1)),
@(0) = @y,

The diagram of the model (4) is given in the Fig. 1.

Analysis of the sub-models

Sv - /’Lg Sv;

The completel model has 22 equations, which is quite complex to analyze qualitatively. We will therefore, consider
the strain 1 and strain 2 sub-models for local and global stability analyses. The sub-models analyses results will

help to examine the stability of the complete model.

Analysis of the strain 1 only sub-model
The strain 1-only sub-model is obtained by setting the

class

€S

Epp = Epiz = Apa = Apiz = Ina = Iz = Quz = Quiz = Riz = Rp1a = Ey2 = Iz equal to 0. The model is

given by:
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o ag

py, + 00 py, + 07 wy + 07,

Figure 1. Schematic diagram of the model (4) where /; = AL dp = Biplve

1+a 1, 1+af L’
DI Su(t) = Aj — msh — (1§ + ¥)Sh + 85, R
ot h 1+ 01(1711/1 h hl >
CDE V() = Yo — (1 — g0y LIy ey,
ot ! 14+ a‘f vl h ’
Cpyo ﬂl(;ll"l o o o
DS Ep(t) = — 12— [S), + (1 — ¢7) V3] — (5, + EQ)En,
1+ oy Iy
DY Api (t) = EQEpm — (1 + E3 + ¢4 + 02D A,
“DEelin (1) = §QAm — (1], + 7 + 67 + DI, ©6)

D Qu () = 0l — (1, + & + 67 Qu,

“DF Ryt (t) = £3 AR + ¢ In + €, Qut — (145, + 87 Rt
o (Anr + In1)
1+ v Am + v5 In
By (Am + In1)
L+ vV A+ v I
CDngIvl(t) = wglEvl - (Mz + 931)1v1~

“DF. Sy (t) = A — Sy — uJ Sy,

DY En(t) = Sy = Uy + @yDEn,

The strain-1 only infection-free equilibrium is given by:

A9 o AT A
Doy = <(,7’1,%(%)o,o,o,o,o,o,o,—”,o)
my Y0 up \pp +9° v

The matrix of new infection is given as:

0 0 0 00BA}
(] 0 00 O
0 0 0O 00 O
F=1lo 0 0 00 o | )
0 B5A BGAS 00 0
0 0 0 00 O
where AT = (S} + (1 — ¢7)V}), A5 = S5.
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The matrix for transfer of infection by all other means is given as:

Kk 0 0 0 0 0

£ K, 0 0 0 0

1o~ ks 0 0 o
V=10 0" —pak 0o o0} (8)

O 0 0 0 Ks 0

0 0 0 0 —of K

where Ky = (1], + &), Ko = (uf, + &7 + ¢ +05), Kz = (uj + ¢ + 07 +nj)
Ky = (Mh + Chl + 9},1) Ks = (u) + wy)), K = (Mv + 0o57)-
The reproduction number R for strain-1 is given as:

Rt ¢ B B ATATER 0 (o +E5)

K1K>K3K5Kg
This can be written as:

Ro1 = VRigRiv.

where R ﬂhl 109 and R BRAES + ATENED
IV = TKKs H = "KK, KiKKs

The term R v is the average number of new dengue strain-1 infections generated by one infected vector

who progresses through the stages £,1 — Z,, in the susceptible human population.The term “I)él accounts for
the average duration of infection in vectors in the exposed class while K% accounts for the average duration of

infection in vectors in the infected stage. The term is product of the transmission rate of susceptible human by

dengue infected mosquitoes (8, ) and the mean duration of infection in the mosquitoes

K e
The term R is the average number of new dengue strain-1 infections in vectors generated by one infected

M is the product

of transmission rate in mosquitoes by a typical infected human 87, and the mean duration of 1nfect10n in human

o i gen
e The explanation of the the term I - 1s given as

individual who progresses through the stages &,; — Apjor &y — App — Ijy;. The term

o
® 3 accounts for the duration of infection in human in the exposed class.

a
e & accounts for the duration of infection in human in the asymptomatic class.

o K% accounts for the duration of infection in human in the infected (symptomatic) class.

Consider the Lyapunov function:

L= A3BnoniEa _|_A; nOnéaba By + A3Broh +A§ @ 6an An
K1 K>K5Kg K1 K3 K3Ks5Ke K>K5Ks K>K3K5Ks

)
A*ﬁﬂwu wU1R01 ROl
——== ] X |E L.
* ( K3K5Ke m Ks5Ke n K )"

The time derivative of fractional order o is given by:

A* o A* o ag 0 &0 A* g o A* ag a ag
CD(‘)’+£1 _ ( 3B wnEd 2/3v1wv15e1‘§a1) D Ej + ( 2B w0 + 2’3v1wv15u1) D A
Ki1K>K5Ks Ki1K>K3Ks5Kg K>Ks5Ks K>K3K5Kg

A3Bo ®f Ro1 Ro1
+ v1™yl CDO' I + vl CD B, + CD LI
( K3K5K6 o+1hl K5K6 vl K6 vl.

Substituting the values of the fractional derivatives for each compartments gives:

CDG+£1 — (A;ﬁvlwvlsgl + Aﬁﬂvlwvlseal 5(171) ( /35111/1
0 K1K,K5Kg K1K>K3K5Kg 1+afI,

ATBhoyy | ASBLioniEn o A3 B w8,
E, — KA _elrvlivl A — Kal
" < K3Ks5Ks * K>;K3Ks5Kg Serbm 24 | + K;3KsKs Ea14m 3lp | (11)

0 R S (Ap + 1 R
+ ( 2 01) < aln thn) g K5Evl) + (ﬂ) (w‘;lEvl - Kdvl),
K5Ks L+ v Am +v7 Im Ks

which can also be written thus:

(10)

[Sn+ A —¢]) Vil - KlEhl)
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o A* o (o} O &0
CD8+£1 < Zﬁvlw Sel + Zﬂvlwvlsel al ﬂgllvl (AT) _ KlEhl
K1K>K5Ks K1K>K3Ks5Ks

A*ﬂvlw A*ﬂvlwvlsgl o Aﬁﬁ wy
En — KA 2ol vl o A — Ks,
+ ( K,KsKe + KoK>KoKe §1Em 2Am | + K;KsKe §1Am 3l ) (12)

o Ro1 Ro1
+ (ﬁ) (/3;’1 (Am + In) A5 — KSEv1> + (?6 ) Ey1 — K¢l |,

which on simplification gives:

O A%
Cno vlﬁ A 1/1'31/1 2
D3 Ly <Roi| Ror— 1|1 Roir—1)A Ro1 — 1 ) In.
o+ L£1 = 01( 01 ) vl + KKe ( 01 ) m+ KKe ( 01 ) h (13)

Clearly Ro; < 1is satisfied since the above inequality with positive parameters shows that DY £, is negative
semi definite. It follows from the results in**° that the disease free equilibrium is globally asymptotically stable
if Rg1 < 1and unstable if Rg; > 1.

Local stability for sub-model of strain-1
The stability of system (6) in the neighborhood of the DFE is analyzed by Jacobian of system (6) evaluated at
DEFE Dy, which is given as:

—Kp 0 0 0 0 0o &, 0 0 —BSE
Yy —wuy 0 0 0 0 0 0 0 —A-¢)B Vi
0 0 —-Ki 0 0 o 0 0 0 BE A%
0 0 ] - K3 0 0 0 0 0 0
0 0 0 o -Ks 0 0 0 0 0
0o 0 0 0 n, —K4 0 0 0 0 - (19
0 0 0 o et g —Kiz 0 0 0
0 0 0 —pBLAS —BoAS O 0 —ng 0 0
0 0 0 BRAY BRAST 0 0 0 —Ks 0
Lo o o0 0 0 0 0 0 o — K |
where
Ko = pj, +¥7,Kiz = puj + 8,
The “characteristic polynomial” is given by:
(A + Ko) (A + K) (A + K13) (A + ui) (4 + uy) ((/l + KD+ K) (4
(15)
+ K3)(A+ Ks)(A+ Kg) — ATAS B BLES (A + Ks + 5;’1)6031) =0.
This can be written as:
(A4 Ko)(A+Ke)(A+ Kiz3) A+ ujy) (A4 ud) (/15 + a1t + api’
(16)

+ ai3A% + a4l + K1 KuK3K5Kg (1 - R?n)) =0,

where

ann =K1 + K + K3 + Ks + Ks

a;; = Ki1K; + K1K3 + K2K3 + K1 Ks + KoKs + K3Ks + K1 Kg + K2 Ks + K3Ks + Ks5Kg

a;3 = KiKaK; + K1K2Ks + K1 K3Ks + KR K3Ks + K K Ke (17)
+ K1K3Ks + K3 K3Ks + K1K5Kg + K3 K5Kg + K3K5Kg

a4 = K1KaK3Ks + K1 K3 K3Kg + K1 KxKsKg + K1 K3KsK + Ko KsKsKe — ATAS B B 65 007,

The eigenvalues are given by:
=—ny, A=-Ko A3=-Ksy M=-puj 7i5=—Kp,

and the solution of the equations is given by
()»5 + a11),4 + a12/13 + a13)»2 + apt + K1K,K3K5Kg (1 — Rél))‘ (18)

From the Routh-Hurwitz criterion, the Eq. (18) has roots with negative real parts if and only if Ro; < 1. Hence,
the DFE is locally asymptotically stable if Ro1 < 1.
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Similar results can also be established for the Strain 2 only sub-model.

Analysis of the complete model
Invariant domain

Theorem 4.1 The closed set D = D;, x D,, where

Dy = {(sh(f)) Vi(®), En (£), Epa (1), B2 (6, Apn (0, Ao (8), A2 (0, Iny (0, In2 (8), In2 (0, Qui (), Quz (), Qui2 (1),

Rp1 (£), Rpa (), Rz (1)) € RY
Sn(t) + Vin(t) + Eni (t) + Ena(t) + Epz () + A () + Ao () + Apia (8 + Iy (8) + I (8) + Ina (D +

AU
Qn1(8) + Qua(t) + Qp12(f) + Ru1 () + Ripp(8) + Rppa () < Tg },
h
D, = {(Sv(t):Evl(t)>Ev2(t))Ivl(t);IVZ(t)) €M
AU
Sv(t) + Evl(t) + EvZ(t) + Ivl (t) + Ivl(t) = 7; },

is positively invariant in relation to the system (4).

Proof Adding all the human components of the system (4), we have

SDENyp = A — uNu(t) — (05 Am + 0% An + 0512 An12 + 051

(19)
+ 03102 + 075In12 + 05 Qu1 + 015, Quz + 051, Quiz .
From (19), we have
SDIN < AG — ugNy. (20)
Applying Laplace transform on both sides of the inequality (20), we obtain that
AG'
STLINKD) = STTINO) < = — uf LN (D),
s
which further implies that
AF 571
LIN,(D)} < ——— + Ny(0)——.. 21
N0) = s N0 s 21)
By partial fraction, the above expression reduces to
A§ (1 A 71
L{Ny(t <—h<7>—(—h—N 0)7. 22
{h()}_ﬂz S o h()5°+MZ (22)
The inverse Laplace transform gives
A9 A7
Np(H) < =L — <—f; - Nh(O))Eo(—Mz t7). (23)
Hp Hh

Since the “Mittag-Leffler function” has asymptotic behaviour, we have
Ag . o . 4
Niu(t) < ﬁ ast — 00. Following the arguments similar to those given above, we have N, (t) < ﬁ—g ast — oo.
Therefore, system (4) has solutions in D and hence is positively invariant.

The basic reproduction number of the model
The disease free equilibrium (DFE) of the model (4) is:

% Y7k ok * s * * * * ok 7k * * * * * * * ok % 7k 7k
Do = (Si» Vis> Eip> Eigs s Al A Ao T Tias Tinos Q> Qs Qs Ry Ris Rivyas o Exys Evos Iy 1)

AL YT A Ay
=(— — | —5—"-%],0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, —*,0,0,0,0 ).
My TY7 pp \up + ¢ uy

Following the approach from*!,

the “basic reproduction number” of the model (4), is given by

Ro = max{Ro1, Ro2}, where Ro; and R, are the associated “reproduction numbers” for dengue strain-1
and dengue strain-2, respectively are given by
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o= [PREAASER G K v 8 o [ BnASAS R + 6
K1 K>K3K5Ks K7KgK9K71K12

Also, the following result can be established for the full model:

Local asymptotic stability of the disease free equilibrium (DFE) of the model

Theorem 4.2 The system’s DFE, Dy, is “locally asymptotically stable” (LAS) if R, < 1, and
unstableif Ry > 1.

Existence, uniqueness and Ulam-Hyers stability of the complete model
Existence
In this section, following the approach of?%, we study the necessary conditions for existence of solution of the
proposed model (4).
Consider a Banach space E = C[J, R*?]equipped with the norm:

121 =}, |@(1)], where, | @ ()] = [@1()] + [D2(t)] + |B3(1)] + - - + [ P21 ()] + | P2 (D).

The norm on C([7, R??]) or C([.7, R]) will be clear from its context. System (4) can be written in form of the
Volterra integral equation given by

K(t)—K(O)+m / (t — 9)° 'K, K(9))dp. (24)

Consider B, = {® € E : | @] < n}, wheren > |®g| + Q[ W], Pp € R¥ZandQ = WT{;I) Obviously B, is closed
convex and bounded subset of E.
Define operators Py, P, : B, — E by

1 t
)0 = 5 [ - o K0 Ve,
I'(o) Jo
(P2P)(1) =Py, Vie T,

respectively.
Lemma 5.1 The operator (P,®) is jt—Lipschitz with constant k € (0, 1).

Proof Since operator (P,®)(t) is constant so it is Lipschitz with Lipschitz constant k € (0, 1). By lemma(1.4)
(P,®)(t) is u—Lipschitz with constant k € (0, 1).

Lemma 5.2 If |[K(t®®)| <|¥®)|, forall (t,P(t) € J x R? and for some W € C(J,Ry) with
[Vl = sup,c 7 |W(t)|. Then the operator (P1®) is u—Lipschitz with constant zero.

Proof As the function /C is continuous, so the operator P; is also continuous.
Now, for any @ € B,, we have

o] =

P1<D(t)‘

_sup _ o-1

=7 ’F(a) / (t—g) K(p,é(@))d@‘
suj 1 t o—

<o o (t—p)° ! ‘I/(@)‘d&o

o—1
toyzp [ o

“rorolY|
“TI'(c+1)

| /\

~alv

E

Thus, P1(B;) C By. As P1(B,) is bounded and closed. To apply the Arzela Ascoli theorem, we now prove that
P1(B,) is equicontinuous.
For any @ € B,, consider
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t

P12)(82) — (P1P)(t1) (2 — )7 ' K(p, @ (p))dgp

T ) Jo
1 . o—1
- @/0 (t— ) K(@,@(p))d@‘
= L/ o-1 o—1
T T | /0 (=)™ = (= )" '] K(p, @(9))dp

7]

+ [ (- 'Kp, ¢(so))d@H

t

v
*To+D {(tg B tf)]'

Clearly, the right hand side of the above inequality vanishes as t, — t;. Thus, P1B,; is equicontinuous and so it

P1(B,). Hence, P;(B,;)) being closed, bounded and equicontinuous is compact which gives that P; is a compact
operator. Thus by lemma (1.3) P; is u—Lipschitz with constant 0.

Theorem 5.1 Assume that the conditions of the lemmas (5.1) and (5.2) hold. Then the integral equation has at least
one solution in E Moreover, the set of solutions of (24) is bounded in E.

Proof : By Lemma 5.1, P, is p-Lipschitz with constant k, and by Lemma 5.2, P; is u-Lipschitz with constant 0 .
Hence P = P; + P is u-Lipschitz with constant k and hence Py + P, is jt-condensing. Define

G ={¢ € E: he[0,1] such that ¢ = hP(¢)}
Let ¢ € E, then we have

- _ _ e o1 N
191 = IEP@)]| = hIP@)] = KIK(©) + /0 (t =)t pO)ds]) < higo + £ =

Thus G € B, and hence bounded and contained in B, (0). By Theorem (1.1), an operator P has atleast one solution.
Uniqueness

Theorem 5.2 Suppose that the function K € C([.7,R*]) satisfy the Lipschitz condition
It 1(1) — K(t, D2(1))] < Lic|D1(t) — D2(1)], (25)

forallt € J and each @1, P, € E, Lic > 0. Then system (4), or its equivalent form (24) has unique solution
whenever QL < 1.

Proof Consider the operator P : E — E defined by

1 t
(PO (1) = By + —— / K, ®(1))(t — 9)°\dp.
@) Jo

Now for any @1, @, € E, we get
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H(P<P1)— (P®y)|| < sup H¢o+ T /(t—@)(r K, @1(0))dp
teJ ( )
—( 0+m/( )GilK(@:(pz(@)d@))H
t— ) HK(p, D1
= swp )/( 27 K, 1)

- K(p, %(p))‘d@

‘CK: ! o—1
< sup (t—)° | P1(p) — DPa2lp) |dp
teJ (o) Jo
CIC‘ D — D, ¢
<————su (t— ) 'dp
) teﬁ/o
o
—Li||P — P
=< To+D) KI||P1 2

= Qﬁ)Cqul(t) - CDzU)H-

This implies that P is a contraction.
As P(®)(t) = P1(P)(t) + P2(P)(t), so PB,, C B, Since the set B, is closed, it follows from Banach contrac-
tion principle that the proposed model possess a unique solution.

Ulam-Hyers stability
The stability result for the fractional system is now studied in the frame-work of Ulam-Hyers (UH) stability*>*.

Let E = C(J,R??) be space of “continuous functions” from 7 to R?? coupled with the norm || ® || =i2"} |D(1)],
where J = [0, b].

Definition 6.1 The model (4) or its transformed version given by

CDgo(t) = K(t, (1)),
{ q>(6) = &y, 26

is UH stable if 3k > 0 such that for any ¢ > 0 and the given solution of (26) satisfying the following inequality
D& (1) — K(t, D) <&, t €T, e =max(e)’, i =1,2,...22. (27)
Junique solution @ € E of system (26) in such a way that
IP(t) — D) < ke, t € T, k=max(k)T, j=1,2,...22.

Definition 6.2 System (26) is “generalized UH stable” if 3 a continuous function ¢ : RT — RT with ¢(0) =0

such that for any other solution @ € E of the inequality (27), there exists a unique solution @ € E satisfying
the following:

I1B() — D@ < p(e), t € T, ¢ = max(ey”, j = 1,2,...22.

Remark 6.1 A function @ € E satisfies the inequality (27) if and only if there exists a function & € E having the
following properties:

i |kl <e ted.
ii. CD°P() =K@t P0W) +h®), teT.

Lemma 6.1 If®  E holds for system (27), then ® also holds for the following:

‘Q_W) - (450 + 7/ (t—)7" 1K(@»¢(@))dp> = Qe (28)

(o)

Proof Using (ii.) of the Remark 6.1, we have CDo@ (1) = K(t, D (1)) + h(t), t € J,whichon applying Caputo
integral gives that
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t
o—1 _ o—1
D) = Dy + 71‘( ) / t — ) Kp, (p))dp + 71“( ) / (t — )’ " hip)dp (29)

Re-arranging and taking the norm on the both sides and applying the item (i.) of Remark 6.1, we obtain that

‘@(t) - (fl’o + m/ t—9)7" IIC(@,CP(@))d@)‘

1 ! o—1
Sﬁ/o (t — )" h(e)ldp

< (L>e < Qe.
I'o+1)

Theorem 6.1 Forall®d € E and the Lipschitz mapping K : J x R?? — R with Lipschitz constant Lc > 0 and
1—QLx > 0, whereQ = r(a+1)’ the model (26) is generalized UH stable.

Proof If® € E satisfies the inequality given by (27) and @ € E is a unique solution of (26). ThenVe > 0, t € J
together with Lemma 6.1, we have

@) — )| = & | Po

o—1 _ o—1
+ s [ =9 K. Bonds + s [ - s
o—1
( o+m/( ) IC(so,qﬁ(p))d@)’

< |y — ¢o|+f‘;f’j{|h<t>|(m/ (f—p)"_ldga)}

D )/ (t — )7 |t B (1) — K(t, D (1) |dgp
Lx||® — @ w .
SQS-F%E{}/O t—) ld@

[ -

= Qe+ QLk||[ @) — D).

Thus, we have

| — @| < ke, (30)
where, k = L
Thus, if we take ¢ (¢) = ke, then ¢ (0) = 0 and hence the system (26) is both Ulam Hyers (UH) and general-
ized UH stable.

Nonstandard finite difference scheme
In order to analyze the disease’s spread, we applied a nonstandard finite difference (NSFD) scheme** for the model
that can ensure the solution’s positivity and displays the right asymptotic behavior. Consider the Caputo derivative

DY, f(t) = / £ @)t —0)~" do.

The discretization of the domain [0, T] is given by t; = jp, j = 0,1,2,- - -, N, where p is the step size p = Iand
T is the final time. The equation becomes for t = ;1

1 J b1,
D Oimss = 1o O / £ O 51— 6)~ db. G1)
k=0
The approximation of f (6) is given as
df(@) fk+1 fk
0 ,
=f = )

where denominator function W (p) is defined as

P77 = Es (—=(ufp)?))

‘Jj = >
) = T @ — o
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so that equation (31) becomes

J fk+1 _fk tet1
‘D f Olt=ty,, = / (t1 — 0)"74d0, (32)
0+ i1 F(l _ U) prd \Ij(p) " ]
which further gives
I pk+1 _ gk
D Y
CDG f(t)|t:l"+1 = Ag’]‘) (33)
4 re-—o) = W (p)

whereAk P~ "((] K+ —(G—ki°
Now followmg the** and using (33), the NSFD scheme for the model 4 is given by the following equations:

gt — PO, T2 = )W () (AT + 57 Ry + 67, R), + 871, Rj) — Yo (S5 = Shak,
h

R TN IS L R R )
P 1+afl,

g PTIVHTR - mST - S (Vi - VaY,
h

>

pl—o' +\I/(p)1"(2_o-)((1 _¢1 ﬁhl vl +(1 d)z 'BhZ v2 +H’h)

I4a YI{/I I4a gl{/l
1 1
" PIUEL + T2 — o)W (p)( ﬂhllvl 1S + =) Vi — S EN - EfDAE
B, = >
P+ W@ — o) +5) + Lata
1+aS I,
—_ 1 j+1
o P TER T 0v ﬁhzgv;z[s’+ + A=V = oo Bl - Efpak
By = - >
Pl THYOIC -0 45+ ft
oy Ly
Bl i+l | BLDy i+l £k
o P TEn AT 0w B T — S B Al
E;ﬂZ = ’ >
P I 0)((MZ +E5,))
— j 1
gn P TTAL A TQ—0weERE - ol - Afpay,
hl T
P WINQ — o) 87+ 5 + 65 + Hala
) Lo
1
P P A, TR - )W (ELES) — i, (A — Afy)ak
h2 —
P WOIT @ = o) (U] + 55 + 5 +65) + jﬂ;;, )
1 BLL, 1 BRI, k
jH1 Pl aA]hlz"'F(z U)‘I’(P)(Eglejmz +}Z§’IZJZA]M + 1+h1<’11’ A] )_Z AhTZI AﬁlZ)AI;J
A = i R
e P+ Y2 - 0)(/‘2 + 802 + 80 +05)
—_ 1
et P TR )V ERALD - s 0 - TiAs;

P WETQ@ = o) (] + 5 + 07 +17) + ihzﬂvff )
@ L

I]-H_p‘*“ﬂ +TC— )W PIERA,) — Sty — 1h)4%,

PI + WPIT Q@ — o) (uf, + 63 + 63+ + Ly

It+a {17[{/1
l—o i UL Bpla gl B gl §SL kL gk gk
i+ P L, + T2 =)V ET AL, + +h25[2j Iy + thalb 1A ED O(Ihlz —Ip)As
I =
h12 ,

pl T+ Y (P2 — U)((Mh + &, + 605 +1710))
w1 PTOQ +TQ - W@ — Yhly @ - afpak
n P W (OT 2 — o) (], + L) + e,ﬂ»
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PO TR VR — Thl @ — 4k,

= P+ W(PT Q2 — o) (1] + &5 +67)) ’

i+1 p1*0Q§ll2 +I'@2- G)‘P(P)(’ii‘rlzlﬂzl) - Zjl;;lo(Qllz?—zl - Q}ﬁlz)Alfr,j

2 = POV ITQ2—0o)(uf + &7, +605,) ’
R PR +TQ - )V OICEAR + ST + G Q) — SR ~ RipAT;

P+ W(PIT(Q2 — o) (uf +87)
R PR, +TQ = )W) G, + 3T, +6hQs ) — ko (RRy — Ri,AS
h2 PIT WL 2 — 0)(1f +57,) ’

Copi j+1 j+1 j+1 i—1 ok
_r Rz + T @ = WP AL, + Sl + 5naQn) = ZieoRity — RpA;

Rj+1 — )
e PO+ W(PIT 2 — o) (1] +57),) ’
_ j i—1
gt PIISLH TR = )W (P)(AY) — Yy Sk — skyak
v = o i+1 J+1 j+1 J+1 o j+1 J+1 j+1 J+1 ’
_ A DT A 4B B (AL +I, +A L +ET)
1 o+\p( )F(Z—o)( vl h1 hl h12 T h12) v2 2 Toh h12 " hi2/ +M0)
P p L A S By S AL v T, T Al s D s A B Y
o i AR A e AR MIAR =1kl ko 4k
E.4+TQ-0)¥ My T maThi2) g _ ~(E — Bk AR .
O A AT T ey e R
v1 Pl + W)L Q2 — o) (g + wly)
-0l o (A I AL ) jt1 J—1 k41 k \ 4k
E,+TQ-0)¥ . ; : gty — SYTH(ERFL _ pR Ak
B e G VO st )~ 2k B~ B,
vz POV (PIrQ2—o)(ug + w)
_ j j+1 i—1
7 _P1 L+ T2 =)W EL ) — S iU —IIDAY;
" PIT WP Q2 — o) (ug + o) ’
—o j+1 j—1
e PLy + T2~ )W) (@)E; ) — Z]lczo(lx]f;rl _Ifz)Alé,j
& PO+ V(N2 — o) (g + p%) '

(35)

Model fitting and numerical assessment

Demographic data related to Brazil have been used for the simulations. The initial conditions are set as:
S,(0) = 3,600,000, V;,(0) = 400,000, Ej; (0) = 125, Ejp(0) = 1,26, Ep2(0) = 0, Ay (0) = 500, Apa(0) = 500,
Ap12(0) = 0, I41(0) = 500, Iy (0) = 500, I512(0) = 0, Qp1(0) = 500, Qp2(0) = 600,Q12(0) = 0, Rp,1 (0) = 500,
Ry (0) = 500, Ry (0) = 0, S,(0) = 48,000, Ey; (0) = 600, Ey3(0) = 600, I,1(0) = 1000, I,,(0) = 1000. For the
fitting of model to data available records for reported Dengue cases in Espirito Santo Brazil for 36 weeks*, the
fractional model is fitted to real data. The fitting, which is shown in Fig. 2 reveals that our model behaves very
well to data when the order of the Caputo derivative is taken as: 0 = 0.975.

Sensitivity analysis of reproduction numbers

Sensitivity analysis is carried out in this section to analyse the influence of the different parameters involved
in the reproduction numbers of model 4. We employed the PRCC techniques separately for both reproduction
number to show the role of the parameters in the reproduction number. It can be observed from Fig. 3a,b, that
transmission rates for human as well as vectors, vaccination rates and vaccine efficacy are very sensitive to the
reproduction number. To be more specific transmission rates are positively correlated with the reproduction
numbers. It is observed in the Fig. 4a-h that, with the increment in the transmission rates from vectors to
human, the reproduction number is also increased. Vaccine efficacy is negatively correlated with respect to
the reproduction number. In the Fig. 4b,f, it can be seen easily that increment in the vaccine efficacy lower the
reproduction number which means we can control the disease by introducing the vaccines that have stronger
efficacy. The Fig. 4c,g describe the behaviour of reproduction numbers for both of the disease depending upon
the transmission rate and removal of vectors. It is shown that we can also control the reproduction number and
hence the disease by removing the more vectors from the environment. On the similar fashion, the Fig. 4a,e
describes the dependence of reproduction numbers upon the transmission rate and progression rates. It can be
seen that progression rate is positively correlated with respect to the reproduction number. Similarly, the other
parameters involved in reproduction number like progression rates, recovery rates and quarantine measures
have also great impact on reproduction numbers. We also presented the pie charts for both of the reproduction
numbers in Fig. 3c,d that gives the percentage influence of all the parameters.

Numerical assessment
To obtain the correct long-time behaviour of the model with NSFD, some denominator functions available in

the literature were explored. The impact of these denominator functions for all the compartments of the model
R (1=Es (= (13 p)°))
Eg (—(upp)°NT 2—0)ufy>

is shown in the Fig. 5a-f. The different denominator functions are ®; = h?, &, = C
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Figure 2. Fitting the model to data.
= e}lz

L are used for the simulations. The reproduction number is the quantity that plays an important role

h
for the disease to die out or spread. Different scenarios for the reproduction number of both diseases are listed
below and for these scenarios different simulations are carried out shown in the Fig. 8a-d. These simulations are
showing that when reproduction number is greater than 1 the disease is spreading and when reproduction
number is less than 1 the disease eventually die out.

Different scenarios are considered: Scenario-1: Rg; > 1, Rz > 1, Scenario-2: Rg; < 1, Rz > 1, Scenario-3:
Ro1 > 1,Rg» < land Scenario-4: Ro1 < 1,Rox < L

In Fig. 9a-d, the epidemiological affect of quarantine measure is assessed. It can be observed that the quaran-
tine measure has great impact in averting new dengue strains infections, Specifically, maximum number of cases
averted is recorded when quarantine rates are as much as n;; = 0.05,7;; = 0.10 and n;; = 0.20.

In Fig. 10a—c, simulations of the infected compartments are presented when vaccine parameters i and ¢, are
varied. It is interesting that maximum number in the dengue strain-1 infection averted is recorded when ¢ = 0.20
and ¢; = 0.85. Similar conclusion can be reached for strain-2 for maximum number dengue strain-2 infection
averted and this accounts when ¢y = 0.20 and ¢, = 0.85in Fig. 10d-f. Hence to keep the co-circulation of both
dengue strain as low as possible vaccination rate must be stepped up to 0.20 per day while keeping effectiveness
of vaccine against strain-1 and strain-2 infections at 0.85.

PRCC Values when Ro1 is used as Response function PRCC Values when R02 is used as Response function
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0.4} 1
» o 02
(] (]
3 ERN
3 §
o Q
o -0.2
E g
& & 04

-0.6

o8 R B T T e _0.8 S S S S——
Boa Bur Ger O V0 Gy Oy My Sy Gy Oy Yy Bio Bp B ©p W 0, Gy By My &y Ly, 0y, Py
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Figure 3. Illustration of the influence of parameters on reproduction number through PRCC and Pie Chart.
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(e) Impact of transmission rate and progression rate for vectors on Ro2 (f) Impact of transmission rate and vaccine efficacy on Ro2

|

(g) Impact of transmission rate and removal rate for vectors on Ro2 (h) Impact of transmission rate and recovery rate on Ro2

Figure 4. Surface plots to show the impact of different parameters involved in reproduction numbers.

The phase portraits of the exposed, Asymptomatic infected and Symptomatic infected at different initial
conditions and for different cases of reproduction numbers are presented in Fig. 11a—f, respectively. In Fig. 11a-c
it can be observed that the solution paths for all the infected classes (Exposed, Asymptomatic and Symptomatic
infected) tend towards the infection free equilibrium when reproduction number is less than 1 irrespective of
the initial conditions and order of the derivative. Similarly it can also be observed in Fig. 11d-f that the solution
paths for all the infected classes tend towards the endemic equilibrium when reproduction number is greater
than 1 irrespective of the initial conditions and order of the derivative.

Conclusion

In this paper, a comprehensive mathematical model is proposed for two strains of dengue virus with saturated
incidence rates and quarantine measures. Imperfect dengue vaccination is also assumed in the model. Existence,
uniqueness and stability of the new model are established using some results from fixed point, measure theory
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Figure 5. Comparison of all classes for different denominator functions.

and degree theory. Additionally, well constructed Lyapunov function candidates are also applied to prove the
global stability of infection-free and endemic equilibria. It is also demonstrated that the model system is gener-
alized Ulam-Hyers stable under certain appropriate conditions. The model is fitted to the real data for dengue
epidemic for the city of Espirito Santo in Brazil. For the approximate solution of the model, a non-standard finite
difference(NSFD) approach is applied. The behaviour of the NSFD is also assessed under different denominator
functions and it is observed that the choice of the denominator function could influence the solution trajectories.
Different scenario analysis are also assessed when the reproduction number is below or above one. Furthermore,
simulations are also presented to assess the epidemiological impact of dengue vaccination and quarantine meas-
ures for infected individuals.Some of the major highlights of the qualitative analysis are as follows:
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The strain 1 and strain 2 sub-models are qualitatively analyzed, investigating the stability in the sense of

Lyapunov which are presented in “Analysis of the sub-models”

The full model’s infection-free equilibrium is proved to be locally stable, as presented in Theorem 4.2.
Existence, uniqueness and stability of the complete model are presented in “Existence, uniqueness and
Ulam-Hyers stability of the complete model” with the help of results from fixed point theory and degree

theory.

The major highlights of the numerical analysis which are carried out using the non-standard finite difference
scheme and are given in “Nonstandard finite difference scheme” are presented below:
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parameters and the result is shown with the help of pie chart,
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The model is fitted to the real data for the city of Espirito Santo in Brazil.
The choice of the denominator function influences the behaviour of the solution under consideration.
Sensitivity analysis of the reproduction number for both strains are carried out to show the sensitive

The solution profiles when the reproduction numbers of both strains are either below or greater than one

as well as when one reproduction number dominates the other, are also investigated.

)

Different scenario analyses to investigate the epidemiological impact of dengue vaccination and quarantine

for infected individuals shows that these two measures could greatly reduce the co-spread of both strains
within a population.

The research in this paper can be extended in the following ways: One could consider stochastic equivalence as
well as fractal fractional form of the current model for a possible research problem. Approximate solution of the
model using some other novel numerical schemes that can yield the better results can also be considered. Moreo-
ver, one could also establish the existence, uniqueness and stability results using some novel fixed point theorems
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