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Unveiling gene regulatory 
networks during cellular state 
transitions without linkage 
across time points
Ruosi Wan 1,5, Yuhao Zhang 2,5, Yongli Peng 1,5, Feng Tian 2, Ge Gao 2,4, Fuchou Tang 2,4, 
Jinzhu Jia 3* & Hao Ge 1,2*

Time-stamped cross-sectional data, which lack linkage across time points, are commonly generated 
in single-cell transcriptional profiling. Many previous methods for inferring gene regulatory networks 
(GRNs) driving cell-state transitions relied on constructing single-cell temporal ordering. Introducing 
COSLIR (COvariance restricted Sparse LInear Regression), we presented a direct approach to 
reconstructing GRNs that govern cell-state transitions, utilizing only the first and second moments 
of samples between two consecutive time points. Simulations validated COSLIR’s perfect accuracy 
in the oracle case and demonstrated its robust performance in real-world scenarios. When applied to 
single-cell RT-PCR and RNAseq datasets in developmental biology, COSLIR competed favorably with 
existing methods. Notably, its running time remained nearly independent of the number of cells. 
Therefore, COSLIR emerges as a promising addition to GRN reconstruction methods under cell-state 
transitions, bypassing the single-cell temporal ordering to enhance accuracy and efficiency in single-
cell transcriptional profiling.

Over the past decade, the development of single-cell omics measurements has been a major breakthrough in 
experimental biotechnology. This innovation has generated an immense amount of data, providing critical 
insights into biological systems and complex diseases1–6. However, the sacrifice of individual cells in each assay 
is an inherent trade-off in single-cell omics experiments. As a result, cells measured at different times or devel-
opmental stages are from independent batches, precluding the acquisition of true longitudinal time series data. 
As shown in Fig. 1A, the current paradigm is limited to the generation of time-stamped cross-sectional data 
(TSCS) rather than comprehensive longitudinal data sets with real-time information7.

Despite extensive efforts over the past two decades, including the application of classical autoregressive mod-
els, differential equations, dynamic Bayesian networks, and various other dynamical models to fit both bulk and 
single-cell gene expression data8–10, challenges remain. Experimentalists have sometimes employed techniques 
such as cell-state synchronization or repeated sampling from larger cell cultures to generate data where trends 
in mean expression over time can be reasonably viewed as a time series8,11,12.

Even with bulk gene expression data, several computational temporal-ordering methods have been 
proposed13–15. And with the increasing of single-cell transcriptomic data, the field of reconstructing temporal 
information is rapidly advancing10,16. However, recent findings highlighted the sensitivity of gene regulatory 
network (GRN) inference methods to the precision of pseudo-time series construction, compromising their 
stability17. Several alternative approaches that do not rely on single-cell temporal ordering have been proposed 
to infer GRNs from time-stamped cross-sectional (TSCS) single-cell expression data18–22. However, most of these 
methods were limited to a single cell stage or time point, and the inferred network primarily represented the 
mechanism that maintains the current cell stage rather than the mechanism that drives the cell state transition 
along the cell lineage.

Furthermore, differential expression gene (DEG) analysis typically captures a plethora of potential upstream 
regulatory genes, resulting in a densely populated gene regulatory network (GRN) responsible for maintaining 
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a single cell state, reflecting the inherent biological complexity. Conversely, GRNs that drive cell state transitions 
are considered sparse23. By identifying this smaller subset of potential upstream regulatory genes and discerning 
the possible regulatory relationships between them, subsequent biological functional analysis becomes more 
straightforward.

Hence, this paper took a direct modeling approach to characterize the Gene Regulatory Network (GRN) gov-
erning the temporal evolution of gene expression. We introduced a novel method, Covariance Restricted Sparse 
Linear Regression (COSLIR), which relies exclusively on the first and second moments of the measured sample 
(Fig. 1). Linear regression models as well as the assumption of sparsity are widely used in statistical modeling 
of time-series data, spanning fields such as economics, Kalman filtering, and systems biology24–36. The COSLIR 
model also employed the linear regression structure, but only used the estimated first two moments of single-cell 
samples at two consecutive time points.

COSLIR yielded a directed GRN, providing both signs and weights for each gene-gene interaction (Fig. 1D). 
The optimization problem was addressed using the alternative direction method of multipliers algorithm 
(ADMM37) (Fig. 1C). To refine the precision and stability of the estimator, bootstrapping38 and clipping thresh-
olding techniques were implemented to select significant gene-gene interactions. The evaluation of COSLIR 
utilized published single-cell RT-PCR and RNA-seq gene expression datasets. Remarkably, COSLIR demonstrated 
performance on par with the best previous methods but with fewer assumptions and requirements. Furthermore, 
COSLIR’s running time remained nearly independent of the number of cells, ensuring its adaptability to large, 
recently generated datasets.

Methods
Models and assumptions
Let Xt and Xt+1 denote two p-dimensional vectors representing the expression values of p genes within the same 
single cell at stages t and t + 1 , respectively. To model the dynamic evolution from Xt to Xt+1 , we introduced 
a p× p matrix At , where the element (At)ij in the i-th row and j-th column represents the regulatory strength 
from gene j to gene i.

Figure 1.   Overview of the COSLIR method for reconstructing Gene Regulatory Networks (GRNs) using 
time-stamped cross-sectional single-cell expression data. (A) Depiction of time-stamped cross-sectional data 
generated in single-cell experiments. Only data within the solid red rectangles were measured. (B) Estimation 
of sample mean and covariance matrix. (C) Solving the optimization problem in COSLIR using ADMM. (D) 
Inferred gene regulatory network among the genes represented by the estimator Â.
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For simplicity, we used the following linear regression model, where the dependent variable is the difference 
between Xt+1 and Xt , and the explanatory variable is Xt:

where the noise term εt is a p-dimensional random vector, independent of Xt , with mean lt and finite covariance 
matrix Dt . Here, lt represents some deterministic influence induced by the environment.

However, as pointed out in the introduction, the challenge arises from the fact that once we measure Xt or 
Xt+1 , the other becomes inaccessible. There is no correspondence between the cross-sectional single-cell data 
collected at stages t and t + 1 , rendering traditional least-squares approaches ineffective. Even with an infinite 
sample size, the ultimate information obtainable remains limited to the exact distributions of Xt and Xt+1 , without 
providing any temporal information.

In COSLIR, the estimation of At relies solely on the first and second moments of Xt and Xt+1 , and the sam-
ples are not constrained to follow a normal distribution. Let µt and �t denote the mean and covariance of the 
p-dimensional random vector Xt . The following equations can be derived from (1):

where I is the identity matrix.
Although the general methods of moments to infer parameters have been widely used in statistics, one always 

needs the covariance between the predictor and response when estimating parameters in linear regression model, 
which is absent in time-stamped cross-sectional data. Therefore, we only had equation (2) , which is underdeter-
mined with respect to At , implying infinitely many solutions for At even when �· , µ· , l· , and D· are known. Then 
we assumed sparsity in At , and small values for both lt and Dt , indicating a dominance of linear relationships in 
this scenario. Sparsity is a common assumption in statistical learning24,25,27, aligning with observations in single-
cell biology23. Following the principles of compressed sensing with nonlinear observations28 and applying the 
penalty method, we obtained the sparse matrix At by solving the non-convex optimization problem outlined in 
(3) (Fig. 1C, Supplementary Material and Methods):

where �̂· and µ̂· are the estimates of the covariance and mean of X (Fig. 1B). || · ||F denotes the Frobenius norm, 
and || · ||1 denotes the sum of the absolute values of all elements in a matrix.

In practical scenarios, we utilized the estimators µ̂ and �̂ when the exact mean and covariance are unknown. 
For relatively large sample sizes, the naive sample mean and covariance estimators are recommended. However, 
in cases where the sample size is small compared to the number of components, resulting in potentially high 
variance, the sample mean and covariance may yield inaccurate estimators for At . In such situations, the use of 
high-dimensional techniques39–42 was recommended to obtain more accurate estimates of mean and covariance. 
In the context of single-cell RNA-seq data, preliminary imputation techniques can be used to remove technical 
noise, such as dropout or batch effects43, before estimating the mean and covariance.

For simplicity, in the subsequent numerical experiments, we exclusively utilized the sample estimators µ̂ and 
�̂ . However, a correction was applied to the covariance matrix using

where I is an identity matrix, and α = 0.01 ensures positive definiteness.
Two tuning parameters, η and � , play crucial roles. The first two terms in (3) regulate the quantitative relation-

ships between the mean and covariance of Xt and Xt+1 based on (1), while � controls the sparsity of At.
It is important to note that COSLIR should be applied to each pair of consecutive cell stages or time points 

and does not presuppose the gene regulatory network to be invariant with respect to time t.

Solving the optimization problem using ADMM
We employed an efficient numerical algorithm, the Alternating Direction Method of Multipliers (ADMM37), 
to solve (3). Initially, we introduced two constraints, A+ I = (B+ C)/2 and B = C , and subsequently, we par-
titioned the variables into three components for the application of ADMM. Introducing B and C is a common 
technique that significantly simplifies each substep in the ADMM algorithm.

The optimization problem can then be reformulated as follows:

(1)Xt+1 − Xt = AtXt + εt ,

(2)
�t+1 =(At + I)�t(At + I)T + Dt;

µt+1 =(At + I)µt + lt ,

(3)min
A∈Rp×p

||�̂t+1 − (A+ I)�̂t(A+ I)T ||2F

||�̂t+1 − �̂t ||
2
F

+ η
||µ̂t+1 − (A+ I)µ̂t ||

2
2

||µ̂t+1 − µ̂t ||
2
2

+ �||A||1,

(4)�̃ = (1− α)�̂ + αI ,
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In each iteration using ADMM, we simply minimised and updated A, B, C separately. Such an iteration will lead 
to a reasonably converged state (with an adaptively tuned step size). More explicitly, the algorithm is written in 
Algorithm (1).

Algorithm 1.   ADMM for COSLIR
Importantly, for the subproblems involving the update of A, B, C, the objective function is at most quadratic 

(and hence convex) when focusing on a single variable. This characteristic implies that, under the optimality 
condition for each subproblem, we only need to solve linear equations and can consistently obtain closed-form 
solutions. This property significantly contributes to the efficiency of our algorithm.

Furthermore, we have incorporated optimization techniques into our published code to accelerate the con-
vergence rate of ADMM. These techniques, proven to be effective in both simulation studies and real data 
experiments44,45, enhance the performance of the algorithm.

Upon solving the optimization problem, the non-zero elements in At denote the regulatory relationships 
between genes (Fig. 1D). It is noteworthy that (3) constitutes a non-convex optimization problem, potentially 
leading to multiple local optima. However, we observed that initiating the ADMM algorithm with a zero matrix 
consistently yields a reasonable solution.

Bootstrapping and clipping thresholding
Estimating the mean and covariance introduces potential imprecision in predicting At . To enhance both robust-
ness and precision-of greater interest to experimentalists17-we employed the nonparametric bootstrapping 
technique46. In essence, we repeated the following procedure multiple times and aggregate all assembled esti-
mators for At into an ensemble: initially, perform random sampling with replacement from the two collections 
of samples at different stages or times, forming two new collections of observations; subsequently, apply COSLIR 
to the new sample collections to acquire a fresh estimator for At . Finally, only those non-zero elements with 
a confidence level (repetition ratio with the same sign) surpassing a specified threshold were retained in the 
ultimate estimator of the interaction matrix At.

Furthermore, in practical scenarios, we implemented an additional clipping thresholding procedure on the 
output to discard non-zero entries with very small absolute values below a certain threshold (entries with neg-
ligible values in Ât are likely due to noise). Following clipping thresholding and bootstrapping, we regarded the 
remaining non-zero entries as statistically significant, with their mean constituting the final estimator.

Model selection and evaluation
There are four hyperparameters to determine in the aforementioned process: two ( � and η ) in the optimization 
problem and two (confidence threshold and clipping threshold) in the bootstrapping process.

� controls the sparsity of At , while η governs the noise term in (3). As our model is unsupervised due to the 
absence of simultaneously measured Xt and Xt+1 , cross-validation is impractical. To address this challenge, we 
empirically relied on three indices as criteria for model selection:

minA,B,CL (A,B,C,�1,�2)

s.t. A+ I =
B+ C

2
,B = C, where

L (A,B,C,�1,�2) =
||�̂t+1 − B�̂tC

T ||2F

||�̂t+1 − �̂t ||
2
F

+ η
||µ̂t+1 −

B+C
2

µ̂t ||
2
2

||µ̂t+1 − µ̂t ||
2
2

+ �||A||1 + �B− C,�1� +
ρ

2
||B− C||2F

+ �A+ I −
B+ C

2
,�2� +

ρ

2
||A+ I −

B+ C

2
||2F .
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Here, e� and eµ quantify the small noise terms in (2), while s0(Â) gauges the sparsity of Ât . We selected the model 
with all three indices minimized, indicating the sparsest matrix At with e� and eµ below a reasonable level. Our 
simulation study demonstrated the effectiveness of this proposed criterion (see Supplementary Results, Supple-
mentary Fig. S2, S3, Supplementary Tables S2, S3). To simplify the process, during bootstrapping, we initially 
determined the hyperparameters � and η using the entire sample and then used only these determined values 
for subsequent analyses. Throughout the paper, we typically set � = 10−6 and η = 5.

In the oracle case of the simulation study, a substantial gap always exists between the values of the non-zero 
elements, making the determination of the clipping threshold straightforward. However, in the sample case, it 
is less clear which value of the clipping threshold to choose. We proposed determining the clipping threshold 
based on the trade-off between the three indices of the criterion in (7). Specifically, we let Ât(ε) be the adjusted 
estimator after taking ε as the clipping threshold. We determined the threshold ε by choosing the sparsest Ât(ε) 
with e�(Ât(ε))+ ηeµ(Ât(ε)) below a reasonable level. Similar to the � and η hyperparameters, this threshold 
was determined before bootstrapping on the full sample.

For the confidence threshold, it can be tuned, but we additionally required it to be greater than 0.5 for it to 
make sense.

In the simulation studies, we consider the non-zero elements with the correct sign as correctly recovered. To 
evaluate performance, we adopted the commonly used criteria precision and recall, i.e.,

In real datasets, when comparing COSLIR with other methods, instead of using the previous precision and recall, 
we used a slightly modified Early Precision from BEELINE17 for evaluation. Early precision is the number of true 
positives in the most significant k edges (which is also the precision of this top-k network).

Simulation settings
In the simulation studies, we first generated the mean and covariance of Xt , the ground-truth interacting matrix 
A, as well as the mean and covariance of the noise term. Subsequently, using (2), we calculated the mean and 
covariance of Xt+1 . The sample data was then generated from the normal distribution based solely on the mean 
and covariance of Xt and Xt+1 . Furthermore, in the oracle case, we only input the mean and covariance at the 
two stages into our algorithm. In contrast, in the sample case, we provided the algorithm with different samples 
at the two stages without any time-series correspondence.

In order to make sure the generated covariance matrix �t of Xt is positive-definite, we used the formula 
�t = P�PT , where � ∈ R

p×p is a diagonal matrix with �ii = exp
(

i
p

)

 , i = 1, 2, · · · , p , and P = I + R , where I 
is the identity matrix. For each round of simulation, the elements of R were sampled independently from standard 
normal distributions. The true interacting matrix At ∈ R

p×p is a sparse matrix, where only 10% of the elements 
were non-zero and randomly generated from N (0, 1) independently. The elements of the mean µt ∈ R

p of Xt 
were independently generated from N (0, 100) . The mean of each element of the noise term εt ∈ R

p was set to 
0.1, and the covariance matrix Dt of εt was set to be a diagonal matrix with (Dt)ii = 0.01 for each i. Subsequently, 
µt+1 and �t+1 were calculated using (2).

The numerical experiments were repeated 100 times in the oracle case and 50 times in the sample case. The 
bootstrapping procedure was repeated 50 times in each sample experiment. The obtained values of η , � , and the 
clipping threshold were summarized in Supplementary Table S1.

Real datasets
The RT-PCR dataset47 included 442 single cells selectively collected from early mouse embryonic development. 
The dataset comprised mRNA expression levels of 48 genes, including 27 transcription factors, 19 known marker 
genes, and 2 housekeeping genes for normalization.

We used two experimental single-cell RNA sequencing (scRNA-seq) datasets: one involving human embry-
onic stem cell (hESC) differentiation to definitive endoderm48, and the other focused on mouse embryonic stem 
cell (mESC) differentiation to primitive endoderm49. Genes within the RNA-seq datasets were selected following 
the same strategy employed in BEELINE17. For the mESC datasets, we identified 970 genes, respectively. The 
datasets comprised 90 (0h), 68 (12h), 90 (24h), 82 (48h), and 91 (72h) cells across 5 time points. In the case of 
hESC datasets, with 814 genes, respectively, the dataset consisted of 92 (0h), 102 (12h), 66 (24h), 172 (36h), 138 
(72h), and 188 (96h) cells spanning 6 time points. It’s essential to note that data from BEELINE were already 
normalized; thus, we utilized it post gene selection. The COSLIR bootstrapping procedure was repeated 50 times.

The single-cell human blood atlas dataset was from the official Peripheral Blood Mononuclear Cell Multiome 
dataset50. Wo focused on the three lineages of HSPC cells: HSPC→ B, HSPC→Erythrocyte and HSPC→Monocyte. 

(7)

e�(Â) = ||�̂t+1 − (Ât + I)�̂t(Â+ I)T ||F/||�̂t+1 − �̂t ||F

eµ(Â) = ||µ̂t+1 − (Ât + I)µ̂t ||2/||µ̂t+1 − µ̂t ||2

s0(Â) =
# {non-zero elements of Â}

p2
.

(8)precision =
#{correctly recovered non-zero elements}

#{non-zero elements inÂt}
;

(9)recall =
#{non-zero elements recovered correctly}

#{non-zero elements in trueAt}
.
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There were 6044 cells in total, with 1909 HSPC cells, 1448 B cells, 1747 Erythrocyte cells and 940 Monocyte 
cells. For gene selection, we first selected top 2000 high variable genes. Then for each developmental lineage we 
determined DEGs using Seurat with default parameter. Finally we selected 623 genes during HSPC→ B, 893 genes 
in HSPC→Erythrocyte and 949 genes in HSPC→Monocyte. We took the union of them, 1475 genes in total.

We did not have any human or animal involved in this study.

Re‑scaled values for selecting the most influential regulatory interactions
We recommended an additional processing step for real data analysis using COSLIR. In the analysis of single-cell 
expression data, one might be particularly interested in interactions that contribute more to changes in mean 
expression, i.e., differentially expressed genes (DEGs). Therefore, we introduced a rescaled value

to select the most influential regulatory gene-gene interactions. This technique was applied solely to the final 
estimator obtained after the bootstrapping procedure.

Results
Simulation study
In this study, we evaluated the performance of COSLIR through simulation studies, examining both the oracle 
and sample cases. The oracle case assumes knowledge of the true mean and covariance matrix, while the sample 
case involves working with random samples only (see simulation settings in Methods).

We did not intend to evaluate COSLIR on simulated single-cell expression data. What we really want to 
validate here is the optimization algorithm (3). Even when the data is generated by the linear model (1), there is 
no theoretical guarantee that the solution of the optimization algorithm (3) recovers the ground-truth matrix A 
in the absence of the cross-talk between the data at time t and time t + 1.

Simulation results
In the oracle cases, we evaluated three indices proposed in Eq. (7) across different values of � and η , including 
e�(Â) for the error of estimated covariance matrix, eµ(Â) for the error of estimated mean, and s0(Â) for sparsity. 
The results exhibited robustness to variations in η , and our criteria effectively guided the determination of optimal 
or suboptimal values for � (see Supplementary Figures S1, S3, Table S1, S3).

Fig. 2A vividly demonstrated the almost exact recovery of the estimator obtained by COSLIR in oracle cases. 
This was true even when the data dimension reaches 500 and the number of gene-gene interactions in At to be 
inferred increases to 2.5 × 105 . Notably, the precision, recall and exact values of the estimator closely mirrored the 
ground truth values (see Supplementary Table S2). This robust performance provided confidence in the applica-
bility of the method to simulated sample data, where separate estimation of �t , �t+1 , µt and µt+1 is mandatory.

Fig. 2B-D illustrated how COSLIR’s performance varied with the number of genes, cells and confidence 
threshold in the sample cases. Even with a large number of genes, high precision can be achieved by setting a 
sufficiently high bootstrapping confidence threshold (Fig. 2B,D). Although this comes at the cost of a lower recall 
compared to the scenario with a smaller number of genes (already lower than in the oracle case), as shown in 
Fig. 2B, it’s crucial to recognise that the matrix At contains an exceptionally high number of gene-gene interac-
tions (square of the dimension). Despite the reduced recall, the actual number of successfully recovered gene 
interactions remained substantial.

Sample size significantly influenced COSLIR’s performance, with increasing precision and recall as sample size 
grows (Fig. 2C). The precision-recall trade-off when tuning the bootstrapping confidence threshold (Fig. 2D, Sup-
plementary Fig. S4) can be tailored to specific needs in real applications. Generally, a higher confidence threshold 
is recommended for precision-focused studies, typical in most experimental science studies. In addition, the 
sparser the true matrix At , the better the performance, as fewer samples are required (Supplementary Fig. S3).

We compared COSLIR with four established regression-based algorithms for Gene Regulatory Network 
(GRN) reconstruction: SINCERITIES, SCODE, SCRIBE, and SINGE, as summarized in BEELINE17. The preci-
sion and AUC of precision-recall curve of COSLIR was much higher than those of the four existing algorithms 
(Fig.2E, F, Supplementary Figure S5). It was not surprising, since the simulation data was generated based on 
Eq. 1. Although the four other algorithms are all based on similar regression models, the detailed assumptions 
and expressions are not the same.

Results on real datasets during early embryo development
Revealing gene expression patterns in early embryos is crucial for understanding cellular developmental 
processes47,51–54. However, due to the limitations of real-time experimental measurements, the detailed regula-
tory mechanisms that control this nascent stage of life remain unknown. In this study, we used COSLIR to infer 
the gene regulatory networks that govern cell fate decisions.

Single‑cell RT‑PCR dataset
We began our analysis by examining a dataset of published single-cell gene expression data during mouse embry-
onic development, obtained using the RT-PCR technique47. This dataset included 442 single cells selectively col-
lected from early mouse embryonic development, spanning 7 developmental stages: Zygote, 2-cell stage, 4-cell 
stage, 8-cell stage, 16-cell stage, morula stage, and blastocyst stage. Of particular note is the blastocyst stage, 
where embryos manifest three distinct cell types-trophectoderm (TE), primitive endoderm (PE), and epiblast 

(Ã)ij =
(|Â|)ij|µ̂1|j

|(µ̂1)i − (µ̂2)i|
, i, j = 1, 2, ...p,
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(EPI)-each characterized by unique gene markers and expression patterns55. In our analysis of the data from the 
8-cell stage to the blastocyst stage (Fig. 3A and B, Supplementary Table S5), we used the non-linear dimension 
reduction method ISOmap56 instead of the linear dimension reduction method PCA used in Guo et al.47. This 
approach revealed two crucial cell fate decisions in the dataset: (1) the segregation of inner and outer cells at the 
16-cell stage, leading to the formation of inner cell mass (ICM) and trophectoderm (TE), and (2) the subsequent 
differentiation of the ICM into primitive endoderm and epiblast.

The dataset comprised mRNA expression levels of 48 genes, including 27 transcription factors, 19 known 
marker genes, and 2 housekeeping genes for normalization, during the first two cell fate decisions of the early 
mouse embryo. Our analysis focused on the data of 46 non-housekeeping genes, and the raw data were rescaled 

Figure 2.   The performance of COSLIR is rigorously evaluated through a simulation study that includes both 
oracle cases (A) with known true mean and covariance matrix, and sample cases (B–D) where only random 
samples are available. In the oracle case, precision and recall were shown (A). In the sample case, precision and 
recall vary with the number of genes (B), the number of cells (C) and the confidence threshold (D). The number 
of cells in (B, D) is 5000. The number of genes in (C, D) is 100. The precision of COSLIR is compared to four 
existing algorithms and random guess (E, F). The confidence threshold is set to 0.9 in (B, C, E, F).The clipping 
threshold is always 0.01. More detailed results can be found in Supplementary Figs. S2–S4 and Tables S1–S5.
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Figure 3.   Overview of the analysis of real single-cell RT-PCR expression data using COSLIR. (A) 
Developmental lineage tree representing early mouse embryonic development. (B) Data visualization using 
Isomap. (C) Inferred gene regulatory networks (GRNs) directing ICM cells towards the EPI fate, accompanied 
by a corresponding sketch map. (D) Inferred GRNs directing ICM cells to the fate of PE, accompanied by 
its sketch map. (E, F) Early precision comparison of COSLIR with four existing algorithms during the two 
cell lineages: ICM cells towards the EPI fate (E) and the PE fate (F). Here, the clipping threshold is 0.01, the 
confidence threshold is 0.8, and the threshold of the rescaled values we chose is 0.25 for ICM to EPI and 0.1 for 
ICM to PE. More details can be found in Supplementary Figures S6–S7 and Table S5.
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through log transformation. Due to the prevailing dominance of maternal gene degradation in gene expression 
variation during the initial cell fate decision, in contravention of COSLIR’s requirement, our analysis using 
COSLIR was limited to the second cell fate decision.

Fig. 3C,D provided an overview of the two inferred gene regulatory networks (GRNs) using Cytoscape57. 
Using COSLIR, we inferred a set of directed gene regulatory relationships corresponding to the positive or nega-
tive elements in the At matrices, indicating activated or inhibited regulatory links between genes. The identified 
upstream regulatory genes and major regulatory relationships were consistent with existing knowledge about 
the second cell fate decision during early embryonic development51,58–60. Key upstream regulators such as Sall4, 
Sox2, Pou5f1, Gata6, and Tcfap2c played critical roles in the inferred GRN, driving ICM cells toward the EPI 
fate, activating EPI markers and inhibiting PE markers (Fig. 3C). Similarly, in the inferred network that directs 
ICM cells toward the PE fate, key upstream regulators such as Sall4, Sox2, Pou5f1, Gata4, Tcfap2c, and Nanog 
acted to inhibit EPI and activate PE markers (Fig. 3D). All identified upstream regulatory genes and their target 
markers were well established for their roles in early embryonic development47,61. In addition, through literature 
and database searches (ChIP-atlas(ESC), BioGRID, and TRRUST), we found that nearly half of the inferred 
regulatory relationships were reported experimentally (Supplementary Figures S6, S7), with many validated by 
multiple databases.

Early precision serves as the metric for evaluating these algorithms, quantified as the count of correctly 
inferred gene regulatory relationships among the top k relationships with the highest weights. For COSLIR, we 
utilized rescaled values, indicative of the significance of each inferred gene regulatory relationship for the dif-
ferential expression of the target gene (refer to Methods for detailed information). Fig. 3E-F compared COSLIR 
with the four existing algorithms, using early precision. It illustrates that COSLIR competed favorably with 
existing methods using pseudo-time construction. The p-values were calculated by Wilcoxon signed rank test, 
using all the early precision at each k = 1, 2, · · · , 40.

The inferred regulatory relationships not cataloged in the three databases may still be accurate predictions 
(Supplementary Figure S7). For example, the regulatory link from Sox17 to Gata6 reported by Niakan et al.62 was 
not included in the three databases, but was successfully predicted by COSLIR. It’s important to note that we used 
only the ICM and EPI or ICM and PE datasets to infer the gene regulatory networks independently. For example, 
despite the modest fold change of Gata6 from the ICM stage to the PE stage (only 1.03), it was recognized as a 
crucial marker gene for the PE stage compared to its expression in the EPI stage. Remarkably, COSLIR accurately 
inferred this relationship without reference to gene expression data from the EPI stage, underscoring the robust 
and independent predictive power of COSLIR.

Single‑cell RNA‑seq datasets
We conducted a comprehensive comparison of COSLIR with four established regression-based algorithms for 
Gene Regulatory Network (GRN) reconstruction: SINCERITIES, SCODE, SCRIBE, and SINGE, as summarized 
in BEELINE17. Our analysis encompassed two experimental single-cell RNA sequencing (scRNA-seq) datasets: 
one involving human embryonic stem cell (hESC) differentiation to definitive endoderm48, and the other focused 
on mouse embryonic stem cell (mESC) differentiation to primitive endoderm49. Given the multiple time points 
within these datasets, we reconstructed GRNs for each pair of consecutive time points.

To evaluate the reconstructed networks, we employed cell-type-specific networks17 as the ground truth net-
works (Fig. 4). For a more in-depth comparison, including functional interaction networks (STRING) and 
additional cell-type-specific ChIP-Seq data, refer to Supplementary Figures S8-S11.

In Fig. 4A-B, the early precision of various methods at different values of k was presented for both datasets, 
using the cell type-specific ground truth in BEELINE17. The mean and error bar of early precision were com-
puted from the outputs of each algorithm for each pair of consecutive time points. Notably, it was evident from 
the results that COSLIR’s performance competed favorably with the four existing methods. The p-values were 
calculated by Wilcoxon signed rank test, using all the early precision at k = 1, · · · , 100 for each two consecutive 
time points.

Furthermore, the sets of gene-gene regulatory interactions inferred by various methods on high-dimensional 
single-cell RNAseq data exhibited minimal overlap with each other (Fig. 4C, D, and Supplementary Figures S12-
S13). This suggested that the individual accuracy of any existing method was notably limited, and COSLIR 
emerged as a valuable addition to the existing toolkit of methods.

Scalability of COSLIR via single‑cell Human blood atlas
The throughput of single-cell experiments is experiencing a remarkable increase. To effectively handle the surge 
in data throughput, computational methods must be designed with scalability at the forefront. Fortunately, 
COSLIR is inherently scalable, relying solely on the estimation of the first and second moments of the samples. 
This inherent scalability ensures the method’s applicability at a large scale.

We evaluated COSLIR using the official Peripheral Blood Mononuclear Cell Multiome dataset50. The majority 
of gene-regulatory interactions, identified by COSLIR with the highest rescaled values, corresponded to signifi-
cant biomarkers and pathways implicated in blood development (Fig. 5A, B, Supplementary Tables S6-S7, Sup-
plementary Figure S14). Notably, COSLIR demonstrated near independence of computation time from the cell 
number (Fig. 5C), showcasing its scalability. While the computational time of COSLIR exhibited an exponential 
increase with the number of genes (Fig. 5D), it’s important to note that such behavior is a common trait shared 
by almost all methods for inferring gene regulatory relationships17.
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Conclusion and Discussion
In the current era, the convergence of machine learning and network biology presents both invaluable opportu-
nities and challenges, especially in the field of gene regulatory network inference63. In this paper, we presented 
COSLIR, an optimization-based model designed for gene regulatory network inference. A distinctive feature 
of our approach is its minimal input requirements, relying only on the estimated mean and covariances of 
the samples at consecutive time points in single-cell expression data. Despite its simplicity, COSLIR produces 
directed gene regulatory networks with weights and signs, making it a versatile tool applicable to diverse sample 
distributions. In simulation studies, COSLIR demonstrated remarkable accuracy in recovering true networks 
under oracle conditions, and its performance remained robust in sample cases, particularly with the aid of 
bootstrapping to achieve near-perfect precision. In real data analyses, COSLIR successfully identified important 
upstream regulatory genes and gene-gene interactions in single-cell RT-PCR and RNA-seq datasets, shedding 
light on early mouse and human embryonic development.

However, in practical applications, several factors may affect the performance of COSLIR. Multi-scale data 
across genes may require normalization before applying COSLIR. While it is recommended to use a correlation 
matrix rather than a covariance matrix, this introduces some inherent bias. Gene selection is another challenge, 
as the computational time for COSLIR becomes significant when the number of genes exceeds 100017. Common 
strategies involve the selection of highly variable genes, often in conjunction with transcription factors. Also 
in our formulation modeling the difference between the stage t and t + 1 , we assumed that the cells at stage t 
and t + 1 are homogeneous. Hence, COSLIR should be applied after the cells being clustered into homogenous 
populations, just as we have done in this paper when analyzing the real single-cell data along each developmental 
lineage.

Figure 4.   Comparative analysis of various methods on mESC and hESC single-cell RNA-seq datasets. (A, B) 
Display of early precision across different methods and various values of k in mESC (A) and hESC (B) datasets. 
(C–F) Pie charts illustrating the distribution of database-supported gene regulatory relationships predicted 
by each method among all database-validated predictions between consecutive time points during mESC and 
hESC development. Notably, in (C, E), the SINGE method does not predict any gene regulatory relationships 
supported by the database. We use the cell type-specific ground truth in BEELINE17.
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Another important consideration is whether the data strictly adhere to the linear model (1). While the linear 
regression model is the predominant choice for gene regulatory network (GRN) reconstruction from single-cell 
expression data32–34,64,65, it’s worth noting that linearity justification is inherently missing from time-stamped 
cross-sectional data. In statistical learning, the default inclination is to choose the linear model unless there is 
compelling evidence of high nonlinearity. Empirically, as long as the data don’t deviate significantly from linear-
ity, the performance of statistical inference by the linear model remains robust66. In addition, the linear model 
offers a distinct advantage in terms of interpretability, following the principle that simplicity is often synonymous 
with effectiveness.

To improve accuracy, the GRN reconstruction method can be synergistically integrated with existing prior 
knowledge by incorporating additional databases or information67. Recent advances, such as RNA velocity analy-
sis, have demonstrated the potential to recover some temporal information68. Therefore, our future research path 
is to explore the merging of COSLIR with existing database knowledge and bioinformatic methods, leveraging 
these complementary approaches for improved precision and insight.

Data availability
The proposed algorithm and dataset are available at https://​github.​com/​Ge-​lab-​pku/​COSLIR.
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