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An improved Differential evolution
with Sailfish optimizer (DESFO)
for handling feature selection
problem

Safaa. M. Azzam, O. E. Emam & Ahmed Sabry Abolaban™

As a preprocessing for machine learning and data mining, Feature Selection plays an important role.
Feature selection aims to streamline high-dimensional data by eliminating irrelevant and redundant
features, which reduces the potential curse of dimensionality of a given large dataset. When working
with datasets containing many features, algorithms that aim to identify the most valuable features to
improve dataset accuracy may encounter difficulties because of local optima. Many studies have been
conducted to solve this problem. One of the solutions is to use meta-heuristic techniques. This paper
presents a combination of the Differential evolution and the sailfish optimizer algorithms (DESFO)

to tackle the feature selection problem. To assess the effectiveness of the proposed algorithm, a
comparison between Differential Evolution, sailfish optimizer, and nine other modern algorithms,
including different optimization algorithms, is presented. The evaluation used Random forest and key
nearest neighbors as quality measures. The experimental results show that the proposed algorithm

is a superior algorithm compared to others. It significantly impacts high classification accuracy,
achieving 85.7% with the Random Forest classifier and 100% with the Key Nearest Neighbors classifier
across 14 multi-scale benchmarks. According to fitness values, it gained 71% with the Random forest
and 85.7% with the Key Nearest Neighbors classifiers.

Keywords Feature selection, Optimization, Meta-heuristics, Local search, Classification, Machine learning,
Swam intelligence, Differential evolution, Sailfish, Exploration, Exploitation

Recently, the swift progress in high-throughput technologies has resulted in a significant growth in data, both in
its complexity and the volume of samples. The challenge of managing this extensive and intricate data efficiently
is becoming more pronounced. The conventional manual approaches to dealing with these data sets are now
considered unfeasible. Consequently, data mining (DM) and machine learning (ML) methods have risen to the
forefront, offering automated knowledge extraction and pattern identification solutions within this vast data.
A notable obstacle encountered in this procedure is the prevalent noise within the gathered data. This noise
can result from multiple factors, including imperfections in the data collection technologies and the data sources’
intrinsic characteristics. For example, in medical imaging, any malfunction in the imaging devices can lead to
noise in the data, which can interfere with further analysis. Furthermore, the rise of social media has shifted
online users from merely consuming content to producing and consuming it. The quality of data from social
media platforms can vary dramatically, from extremely valuable to spam or offensive content. Additionally, social
media data often features informal language characterized by grammatical mistakes, typos, and incorrect punc-
tuation. This diversity and lack of formality increase the difficulty of deriving meaningful knowledge and patterns
from such broad and noisy datasets. In the process of classification for machine learning and Data mining, the
primary aim is to identify the category of each instance in a given dataset using a two-phase approach—training
and testing. For this goal, the classifier model is created during the training phase to classify each instance in
the training set, which consists of available records. During the later stages of testing, the classifier’s precision is
evaluated using a group of testing sets. These sets were not employed during the training phase, but this research
concerns their respective classes. Dealing with high dimensionality can pose a significant obstacle and may hin-
der the effectiveness of the classification process. Datasets containing many features may be utilized in specific
practical applications and fields, such as the medical field, bioinformatics, text mining, and image classification.
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However, some of these features may need to be more relevant, redundant, or contain noise. Such characteristics
in the dataset could result in over-fitting data or create ambiguity in the learning mechanism"~

Feature Selection (FS) is commonly employed as a prepossessing step to improve the accuracy of a clas-
sification model. The core objective of FS is to identify the most relevant features that positively impact model
performance while discarding irrelevant or harmful features at a minimal cost®. Various algorithms have been
created to identify the most effective set of features that can improve the accuracy of a classification model for a
given dataset. When dealing with datasets containing many features, traditional algorithms encounter challenges
in identifying the significant features.

There are three FS (Feature Selection) algorithm types: filter, wrapper, and embedding. Regarding filtering
algorithms, the FS process and classifier model are treated as distinct phases. During the initial phase, specific
metrics extract features from the dataset that significantly impact the classification process while ignoring the
others. In the feature selection process, only the chosen attributes are used in the classification model for its phase.
However, wrapper algorithms modify the selected feature subsets dynamically, depending on the accuracy of the
classifier. In Feature Selection (FS), the wrapper approach is commonly used. This approach involves generating
subsets of features using specific search methods and determining their relevance by running a classification
algorithm. Embedded algorithms are then combined with a classifier to decide which features should be kept
or removed from the dataset*™.

As per reference’, FS is widely believed to present a combinatorial optimization problem that is most likely
NP-complete. Each feature in a dataset has twice as many potential solutions, making it challenging and time-
consuming to determine the most efficient subset of features. Additionally, in references®”, the feature selection
(FS) problem is a problem in the field of optimization that is considered to be NP-hard. This means that the more
complex the problem, the longer it takes to compute the solution, with computational time increasing exponen-
tially. Hence, researchers have shown a keen interest in meta-heuristic (MH) algorithms'’; four main categories
of algorithms excel in solving various optimization problems. These categories include Human-based algorithms,
Swarm intelligence algorithms (SI), Physics-based algorithms (PA), and Evolutionary Algorithms (EA).

Swarms and animal behavioral patterns are the basis for SI algorithms''. A commonly employed algorithm
in optimization problems is Particle Swarm Optimization (PSO). The algorithm is designed based on the collec-
tive behaviors of swarm objects. In this approach, every individual object represents a potential solution'?. The
concept behind Artificial Fish Swarm (AFS) involves replicating the actions of fish, such as hunting, gathering
in groups, and tracking, to perform a localized search of individuals to attain a global optimal solution. This
technique is discussed in reference!?. Bacterial Foraging Optimization (BFO) is a recently developed algorithm
that draws inspiration from the foraging behavior of Escherichia coli in humans. It involves competition and
cooperation among bacterial populations and is employed as a global random search algorithm!*. Ant Colony
Optimization (ACO) is a well-known swarm intelligence algorithm that imitates the foraging behavior of different
ant species. In natural settings, ants use chemical pheromones to identify the most optimal path for the colony
members to follow'”. A swarm intelligence optimizer known as pigeon-inspired optimization solves air-robot
path planning problems. The technique involves using a map and compass operator model based on a magnetic
field and the sun and a landmark operator model that utilizes landmarks'S. The bat algorithm is a metaheuristic
algorithm based on the behavior of animal groups or herds. It uses the echolocation behavior of bats to generate
solutions for domains with single- or multi-objectives that exist within a continuous solution space. This informa-
tion is based on reference'’. The grey wolf optimizer is an algorithm that imitates the leadership hierarchy and
hunting mechanisms of grey wolves in nature and is categorized as a swarm intelligence algorithm'®.

To effectively search a given space, any search algorithm must balance exploring new areas within that space
with exploiting already known areas. This means it must balance venturing into uncharted territory and focusing
on areas near previously explored locations. By achieving an optimal balance between exploration and exploita-
tion, a search algorithm is more likely to succeed in its search efforts'’.

There have been multiple attempts to understand the mechanism that regulates the equilibrium between
exploration and exploitation in search algorithms. However, due to the need for more consistent knowledge, sev-
eral interesting metrics have been proposed to quantify the level of exploration and exploitation in metaheuristic
schemes. These metrics monitor the current diversity of the population and have been suggested in various
indexes. Despite several indexes and ongoing proposals, there is yet to be a definitive or objective way to meas-
ure metaheuristic algorithms’ exploration/exploitation rate’. Achieving success with metaheuristic algorithms
requires a careful balance between exploration and exploitation throughout the evolutionary process. To achieve
this balance more effectively, it is important to optimize the level of exploration and exploitation®..

Many SI algorithms that show high performance in various optimization problems have been developed in the
literature. Some of these algorithms include the sailfish optimizer (SFO)*, Chaotic Coyote Algorithm?, Modified
Social-Spider Optimization Algorithm?¢, Cheetah Optimization Algorithm?, Migrating Birds Optimization?,
Owl Optimization Algorithm?, Bacterial Foraging Optimization Algorithm?, Salp Swarm Algorithm (SSA)?.

Many metaheuristic algorithms are based on evolutionary behaviors that emulate biological processes such
as mutation, crossover, and selection, and they are named EA algorithms. Some of these algorithms include
Differential Evolution (DE)*°, Genetic Algorithm (GA)*', Invasive Tumor Growth Optimizer (ITGO)*? and
Biogeography-Based Optimizer (BBO)*.These algorithms have shown great efficiency in various optimization
applications.

Optimization algorithms that are based on physical laws are called PhA algorithms and include Big Bang-Big
Crunch BBBC*, Multi-verse Optimizer (MVO)?¥, and Gravitational Search Algorithm (GSA)*¢.
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Contribution
The proposed framework in this paper puts forward a hybrid algorithm that combines the DE algorithm with
the SFO algorithm to handle the FS strategy. It offers novel contributions that can be summarized as follows:

1. A new algorithm called the DESFO algorithm has been created by integrating and reproducing DE and SFO.
. 'The transfer function (TF) is the V-shaped function to convert position values into binary format.

3. 'The periodic mode boundary handling (PMBH) approach and a novel local search (LS) strategy are used to
improve the exploration and exploitation process.

4. Insupervised classification, the DESFO algorithm is used for wrapper feature selection.

5. 'The DESFO’s performance is evaluated through metrics such as average fitness rate, average accuracy rate,
and average number of selected features.

6. To assess the effectiveness of the suggested DESFO algorithm with the RF and K-NN machine classification
algorithms, a Wilcoxon’s non-parametric rank-sum test (with a significance level of 5%) is used to compare
it with similar algorithms.

Structure
The paper follows the structure outlined below:

Section “Related works” provides the recent stats of art and related works.

Section “Preliminary work” provides Preliminary works and explanations about the original DE and SFO

algorithms.

3. Section “Methodology of the proposed DESFO” introduces the methodology of the proposed algorithm
DESFO, along with the related steps.

4. Section “Experimental results and analysis” presents the experimental results of the DESFO algorithm and
compares it with other MH algorithms.

5. Section “Conclusion and future works” concludes the paper.

N —

Related works
Numerous research studies have been conducted in feature selection utilizing metaheuristic algorithms. Some
of these efforts are outlined below.

Rodrigues et al.”” introduced a binary cuckoo search algorithm called BCS, which uses a function to convert
continuous variables to their binary form to obtain the optimal feature subset. The Optimum Path Forest classifier
was used to apply BCS on two datasets related to theft detection in a power system. The results indicated that
BCS was the most efficient and appropriate method for solving feature selection issues in industrial datasets
while also being the fastest.

In their study, Emary et al.”® introduced the initial binary edition of the firefly algorithm (FFA) for addressing
feature selection issues by utilizing a threshold value. The algorithm exhibited a high level of exploration quality,
enabling it to swiftly identify a solution to the problem.

To tackle feature selection problems, Nakamura et al.* developed a binary version of BA called BBA. They
used a sigmoid function to confine the position of bats to binary variables. They employed the optimum path
forest classifier and applied BBA to five datasets to evaluate the accuracy.

Zawbaa et al.** proposed a binary version of the ALO algorithm to address the feature selection problem by
applying a threshold value to continuous variables. In their study, Emary et al.* employed the sigmoidal transfer
function to obtain binary vectors, also known as bBGWO. They evaluated the classification accuracy of these
vectors using a K-NN classifier across eighteen distinct UCI datasets. The researchers also utilized small, random,
and large initialization methods during the initialization phase to facilitate thorough exploration.

Hussien et al.*>* utilized S and V-shaped transfer functions in conventional WOA to solve binary optimization
problems. They also applied this method to solve feature selection problems with eleven UCI datasets. To ensure
the relevance of the selected features for classification, they used the K-NN classifier.

In their study, Gad et al.** introduced a new version of the sparrow search algorithm, which has been
developed. This version uses a combination of random agent repositioning and the LS method to handle feature
selection effectively in supervised classification tasks. This approach is particularly useful for choosing the best
or nearly optimal subset of attributes from a given dataset while maintaining maximum accuracy rates.

Ghosh et al.*> have presented a new variant of the latest and most powerful optimizer, the Sailfish Optimizer
(SFO), called the Binary Sailfish (BSF) optimizer for solving FS problems. They utilized the sigmoid transfer
function to convert the continuous search space of SFO into a binary one. They also incorporated adaptive
B-hill climbing (ABHC), a recently proposed meta-heuristic algorithm, with the BSF optimizer to enhance its
exploitation ability.

Emrah et al.* have proposed a new filter criterion that mutual information, ReliefF, and Fisher Score
inspire. Rather than relying on mutual redundancy;, this criterion aims to select the most highly ranked features
determined by Relief and Fisher Score while ensuring mutual relevance between the features and class labels.
Based on this new criterion, the team has developed two novel differential evolution (DE) based filter approaches.

Bacanin et al.’, presented a diversity-oriented social network search to tackle the feature selection problem
in detecting phishing websites. The authors aimed to enhance the detection of phishing websites by refining
an extreme learning model that leverages the most pertinent subset of features from the phishing websites
dataset. A new algorithm was developed and integrated into a two-level cooperative framework to accomplish
this. The efficacy of the proposed algorithm was then evaluated and compared against six other state-of-the-art
metaheuristics algorithms.
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Alrefai et al.*® Proposed an effective method for cancer classification using ensemble learning. The study
employed particle swarm optimization and an ensemble learning method for feature selection and cancer
classification. The study’s findings indicate that the proposed method is effective for cancer classification based
on microarray datasets. Furthermore, the accuracy of the proposed method proves its superiority over other
methods.

Gomez et al * proposed a new technique called Two-Step Swarm Intelligence. The method involves breaking
down the heuristic search carried out by agents into two stages. In the first phase, agents generate partial
solutions, used as starting states in the second phase. Our study aimed to assess the effectiveness of this approach
in resolving the Feature Selection Problem using Ant Colony Optimization and Particle Swarm Optimization.
The feature selection is based on the reduction concept in the Rough Set Theory. The results demonstrate that
the Two-Step Swarm Intelligence method improves the performance of ACO and PSO metaheuristics regarding
computation time and the quality of reduction produced.

Bezdan et al.* proposed an algorithm based on a binary hybrid metaheuristic approach to select the optimal
feature subset. Specifically, they combined the brainstorm optimization algorithm with the firefly algorithm
to create a wrapper method for feature selection problems on classification data sets. The performance of the
proposed algorithm was evaluated on 21 data sets and compared against 11 other metaheuristic algorithms.
Additionally, the algorithm was applied to the coronavirus data set.

Gao et al.’! Introduced a Clustering Probabilistic Particle Swarm Optimization (CPPSO) to improve the
traditional particle swarm optimization approach. CPPSO incorporates probabilities to represent velocity and
an elitism mechanism. Additionally, CPPSO uses the K-means algorithm to cluster the population based on the
Hamming distance into two sub-populations, which enhances its performance. The effectiveness of CPPSO is
evaluated by comparing it against seven existing algorithms using twenty diverse datasets.

Latha et al.>> Addressed the feature selection problem by implementing grey wolf optimization (GWO)
with decomposed random differential grouping (DrnDG-GWO) as a supervised learning technique. The study
found that combining supervised machine learning with swarm intelligence techniques yielded the best feature
optimization results.

149

Motivations

Storn et al.** proposed the differential evolution (DE) algorithm in 1997, a powerful and straightforward
stochastic search method operating on populations. DE is an effective global optimizer for continuous search
problems and has been successfully applied in various domains, such as pattern recognition®®, communication®,
and mechanical engineering®>®.

The Sailfish Optimizer (SFO) is a highly effective optimization algorithm developed and presented in 2019 by
a team of researchers known as Shadravan et al.?. This algorithm is based on the concept of population, and it
mimics the hunting behavior of a group of sailfish as they hunt for a school of sardines. The strategy employed by
the sailfish group involves alternating between attacking a group of sardines and retreating to capture their prey.
The SFO algorithm has become popular in the optimization community due to its robustness and effectiveness.
In this paper, an algorithm called DESFO that integrates both DE and SFO has been proposed. Due to their
power and superiority, the proposed algorithm can attain satisfactory search accuracy, swift convergence speed,
and improved stability.

Moreover, it can prevent getting stuck in local optima, which is an issue that still needs to be systematically
addressed for the FS problem. On the other hand, compared to the state-of-the-art meta-heuristic techniques,
including the original DE and SFO, the DESFO approach yields superior results by producing optimal or
near-optimal outcomes for numerous problems. The proposed feature selection algorithm method was tested
on 14 benchmarks using multi-scale attributes and records from the UCI machine learning repository. This
implementation was carried out 30 times to validate its efficacy”’. The average classification accuracy is calculated
using two standard machine learning classification algorithms: Random Forest (RF) and k-nearest Neighbor
(k-NN).

Preliminary work

As mentioned in the previous section, meta-heuristics have several benefits, but can existing methods adequately
solve the FS problem? The No Free Lunch theorem (NFL)*® answers this question. This theorem suggests that
no single algorithm can perfectly solve all optimization problems. In the case of FS on a dataset, an algorithm
may perform exceptionally well for one dataset but inadequately for another. Therefore, there is still a need
for an advanced metaheuristic approach that can efficiently solve almost all possible FS dataset types, which is
currently an open research question. From this point in this section of the paper, the basic DE algorithm and
SFO algorithm will be explained. The two algorithms will be integrated under the DESFO algorithm to optimize
the feature selection problem and enhance classification accuracy.

Differential evolution algorithm (DE)

In 1997, Storn et al.*® introduced a Differential Evolution (DE) algorithm, considered one of the most reliable
versions of Evolutionary Algorithms. It is known for its fast convergence, user-friendly nature, and ease of
implementation. Additionally, the same set of parameters, such as Population size (NP), Crossover rate (Cr),
and Scaling Factor (F), can be applied to address various optimization problems. The process begins with a given
set of solutions. Then, a modified or mutant solution is produced for each solution vector in the current set by
adding the weighted difference between two candidate solutions to other candidate solutions. This method,
known as Differential Evolution (DE), has proven effective and widely applied in various optimization problems
in different scientific and engineering domains®.
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The structure and primary search operators utilized by the DE algorithm are explained as the following:

Mutation

In every epoch (t), a mutation operator is applied by DE to generate a new donor vector, also known as a mutant
vector, for each target solution. The mutation operator randomly selects three candidate solutions according to
Eq. (1); it demonstrates that the donor vector is created by scaling the difference vector between two vectors and
then adding the result to the third solution®.

Vig+1 = xr1,6 + F(xr2,6 — x13,6) (1)

In this process, three distinct integers r1, r2andr3 are randomly selected, and € [1, NP] where NP is a
positive integer greater than or equal four. Additionally, these integers are different from the running index i.
The differential amplification (x,,,G — x3,G) is then amplified by a constant factor F, which ranges from 0 to 2.

Crossover

After mutation, a crossover search operator produces an offspring (trial) vector from the target solution. The
exponential and binomial crossover search operators are the most frequently used and uncomplicated ones.
Please keep in mind that for each decision variable (DV) j in the scenario where (rand < C,), do the following:

UG = Uij,G ifrand(j) < Cr 07 j = jrand 2)
b XijG otherwises j=12,...D

where a random value j,,,,4 is selected from the range of, where Ny is a specified value, a value chosen at random
and referred to as “jth evaluation,” denoted by rand (j) is selected from a uniform random number range of [0,
1]. This ensures that at least one DV (design variable) is obtained from the trial vector. The crossover rate C,
which is used to control the number of variables, is obtained from the donor vector, and it is guaranteed that
Vi,G+1provides at least one parameter to u; ;G

Selection

A selection operator is utilized to determine the optimal solution by comparing the objective function values
of both the parent and offspring. If the offspring has a lower objective function value, it is preserved for the
subsequent iterations. If not, the parent vector is mathematically represented within that particular generation,
and it is obtained using:

XiGil = { Ui,G lf(f(ui,G> = (x’G)) 3)
> XiG otherwise
To determine if it should join generation G+ 1, the trial vector x; G+ is evaluated against the target vector
i, using the greedy criterion. If the trial vector x; 4 results in a lower cost function value compared to the
target vector x;,, then the trial vector x; g+ replaces the target vector u; g; if not, the original target vector x; g
value is kept.

The sailfish optimizer (SFO)

Shadravan et al.” developed a unique algorithm called sailfish optimizer (SFO) in 2019, which is based on swarm
intelligence and is a population-based algorithm. To devise this technique, the scientists took cues from a pack of
predatory sailfish. The approach involves the use of two distinct populations. The sailfish population is responsible
for intensifying the search around the current best solution, while the sardine population diversifies the search
space. The sailfishes are considered potential solutions, and their positions in the search space represent the
problem’s variables. The algorithm aims to randomize all search agents’ movement (sailfish and sardine) to the
greatest extent possible. Sailfishes are dispersed throughout the search space, while the positions of sardines aid
in discovering the optimal solution in the search space.

The algorithm identifies the sardine with the best fitness value as the ‘injured’ fish, with its position denoted
as (P ,..) at the i iteration. During each iteration, the positions of both sardines and sailfishes are updated.
For the i iteration, the position of a sailfish is updated using the ‘elite’ sailfish Pélfb o5t and the ‘injured’ sardine
based on a specific criterion.

The position of sailfishes and sardines is modified at each iteration denoted by i+, and the (elite) and (injured)
alter or update the position of a sailfish to a new one denoted by. The updating is done according to Eq. (4) *”:

A PL_ 4P .
+1 i Slfbest srdinj i
PISZf = P.ISlfbeSt — Wi <mnd * - 5 P.tslf) (4)

where the value of rnd € (0,1) is a random value, and the coefficient u; is generated by Eq. (5):
i = (3 % rand x PrD — PrD) (5)

where In each iteration, the prey density (PrD), which represents the number of prey available, is determined
using Eq. (3). As the number of prey decreases during group hunting, the value of PrD decreases accordingly.
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N,
PrD=1-— s (6)
NSlf — Nird

Sailfish’s and sardine numbers are represented by NgjrandNy,, respectively. The Numgy can be calculated
according to Eq. (7):

Ngif = Ngrq * Preent (7)

Please keep in mind that (Prcent) refers to the percentage of the sardine population that constitutes the
initial sailfish population. It is also assumed that the initial number of sardines exceeds the number of sailfish.
The positions of the sardines are updated in each iteration according to Eq. (8):

Pg—dl = rand x (Péljhest - Pérd + ATK) (8)

The old position and the updated position of the sardine are represented by Pg g and Pg:'dl‘ respectively. While
the ATK represents the power of the sailfish attack at each iteration i and can be calculated by Eq. (9):

ATK = A% (1 — 2 % itr % k) (9)

ATK is crucial in determining the number of sardines that update their positions and the extent of their
displacement. Decreasing ATK can facilitate the convergence of search agents. Based on the ATK parameter,
the values of y (number of sardines that update their position) and §(number of variables) of the sardines are
computed using Eqgs. (10) and (11):

y = ATK * Ngg (10)

8§ =ATK xv (11)

where Ng,4 and v denote the sardine number and the number of variables, respectively, if a sardine surpasses
the fitness level of any sailfish, the sailfish will adjust its position to follow that sardine. In contrast, the sardine
is removed from its population.

To explore the search space effectively, it’s important to select both sailfishes and sardines randomly. Sailfishes
have a decreasing attack power after each iteration, allowing sardines to escape from the most aggressive sailfish.
This helps to balance the exploration and exploitation of the search space. The ATK parameter is used to find
the optimal balance between both of them.

Methodology of the proposed DESFO

Improving the accuracy of classifiers involves focusing on pertinent features. Some Recent research studies"*
suggest utilizing the methodology of feature selection (FS) to substitute a sizable quantity of insignificant features
with a more concise and applicable subset of features. FS categorizes features as essential or non-essential,
marking them as 1 or 0. This paper presents a hyped algorithm named (DESFO) which consists of two algorithms,
(DE) differential evolution and (SFO) sailfish optimizer, for implementing FS. The algorithm comprises several
stages: initialization, position updating, binary conversion, exploration optimization via a new strategy, and
exploitation optimization.

Table 2 displays the number of iterations allocated for each algorithm, which is 100. For the proposed
algorithm, DESFO, this number was distributed equally between DE and SFO, with 50 iterations each. DE
optimized the first 50 iterations to obtain the optimal solution, which was then passed on to SFO to enhance
selected relevant features and achieve the best classification accuracy. The following sections provide detailed
explanations of each of these stages.

Initial population generation
The first step in using the DESFO algorithm is generating an initial population of X positions representing
potential solutions in a D-dimensional space. The population size is determined using a specific formula.

X:Round(lO—i—Z*«/B). (12)

X signifies the overall number of positions, while D represents the problem’s dimensionality. The position
matrix is defined as:

my1, My, ... Mip

ma,1, M2, ... Map
M=

mx,1, Mx,2, . .. Mx,p

The j™ solution is represented by M; j» where j is the j™" component. M, the initial population, is generated
within predefined bounders as:

M = u(0,1) % (UB — LB) + LB (13)
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Position update in DESFO

Updating the position involves using the equations of DE and SFO as described in subsections 3.1 and 3.2. After
updating the position, it goes through binary conversion, as explained in Subsection 4.3. The fitness function
then assesses the binary-transformed vector to calculate the classification error while keeping the original format
of the vector for future updates.

Position binary conversions
Converting the values of meerkat positions from continuous to binary is necessary before assessing their fitness
using the FS method. This is because the DESFO method, which is used to derive the position values, differs
from the binary framework of FS, making it challenging to apply the latter directly to binary/discrete problems.
The feature selection (FS) method uses a vector of binary values, where the selected features are represented
by 1s, indicating Os represent their continuous values and the non-selected features. The length of the solution
vector is equivalent to the count of features in the original dataset.
A transfer function (TF) has been utilized in the proposed algorithm, which Fang et al. suggested®', which has
a V-shaped curve and is known for its exceptional global search capability. The function is expressed as follows:

s

Vit (14)

arctan (y) *
v(y) =ax -
The position value obtained is represented by y, and a DESFO position is considered to have a valid TF output
where « is less than 0.64 and falls within the range of [0, 1]. The defined update rule for DESFO’s position is
based on the following equation:

Yibi” _ { 1, If rand < v(Y;) (15)

0, otherwise

Fitness evaluation
The DESFO framework and a new FS-based technique incorporate k-NN and RF as evaluative mechanisms. The
k-NN method® selects the most common class among the closest neighbors to predict the classification of new
instances. On the other hand, the RF, explained in**, uses decision trees to recursively divide the training data
into small sets, which helps optimize the classification task by using an impurity criterion such as information
gain or “gini” index®. These classifiers are particularly efficient in handling high-dimensional data and require
minimal computational effort, as stated in®%.
Achieving the right balance between accuracy and feature set size is crucial in DESFO. While opting for
a smaller feature set can improve the precision of classifiers such as k-NN and RF, it may also compromise
accuracy due to the reduced feature set®’. The relationship between the size of the feature set and the preferred
features is inversely proportional, which means there is a potential trade-off between accuracy and feature set
size. Therefore, the PMBH method is vital in balancing feature selection and classification accuracy®.
When assessing the effectiveness of an algorithm, it is essential to consider the trade-off between precision
and feature size. This trade-off can be mathematically represented as:
|D*|
FIT = oy * (1 — accuracy) +oay+ | —

D] (16)

In the given equation, there are two weight coefficients, al and a2, where al is a value between 0 and 1,
and a2 is determined by subtracting al from 1. These values have been determined through extensive testing,
as mentioned in reference, and the expression represents the ratio of the selected features to the total number
of features in the original dataset. The main objective of this design is to increase precision while reducing the
length of the feature set, as suggested in reference®. The value |D *| represents the size of the selected feature set,
while |D| represents the total number of features in the original dataset.

Improving exploration

Search agents like meerkats tend to explore outside their assigned search areas to find optimal solutions. However,
issues may arise when using boundary-handling techniques to keep an agent within the initial search territory,
as discussed in®!. The two primary traditional methods for boundary handling are Boundary and Random
modes. In Boundary mode, if a solution’s dimension d goes beyond the search space S, it gets repositioned to the
nearest boundary, either lower bound L or upper bound U. Conversely, dimension d of S receives random value
mutations in Random mode. These traditional methods, however, have limitations in fully exploring the search
space. Therefore, Periodic Mode Boundary Handling (PMBH) was developed as per®, aiming to improve the
exploration phase. PMBH allows for infinite search space for agent movement, consisting of periodic replicas of
the original space S, maintaining the same fitness landscape, as shown in Fig. 1.

Exploitation optimization

This particular segment notices the updated LS principles of the enhanced DESFO. These principles aim to
improve the efficiency of algorithms and ensure better utilization by generating a fresh population with optimal
positions while maintaining the essential structure.
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Figure 1. PMBH".

Three main principles guide the proposed approach. Firstly, to address the limitation of the original algo-
rithm that lacks a mechanism to recall and preserve the best solutions over iterations, a binary matrix has been
introduced to store the top solutions obtained previously. Secondly, repetitive best solution patterns resulting
from binary conversion can reduce exploitation effectiveness, which can be improved by incorporating distinct
solutions in the binary matrix. Lastly, the LS strategy relies on identifying solutions close to the best discovered
by converting continuous positions into binary format and following a constrained normal distribution, as
shown in Eq. (17).

xf;'l =xl + gxt (17)

The solution obtained through minor mutation slightly deviates from the current best, due to a random factor
represented by 8 which is normally distributed N (0.0, 0.4). The optimal solution is initially added to an empty
set to find local search solutions. The set has a fixed maximum size, LS;,4x. Then, a new solution is generated
by applying Eq. (17) on the current gp., which is then converted to binary and assessed for fitness. If this new
solution outperforms the current best, it is considered the best solution.
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The flowchart and Pseudo code of DESFO
In Fig. 2, the steps of the proposed DESFO algorithm are demonstrated.

Input: D (dimensionality of feature set), NP (population size), F (scaling factor), CR (crossover rate), MaxGens
(maximum generations), and Output: Optimal feature subset for classification
1: Initialize Population
// Generate initial population with randomly selected features within specified bounds
fori=1to NP do
forj=1to D do
calculate Eq.13
end for
end for
2: Define helper functions
// Define binary conversion function using a V-shaped transfer function
function binary conversion(y):
return 1 if rand() < abs else 0 using Eq.14
// Define fitness evaluation function, combining accuracy and complexity
fitness function (vector):
return vector using Eq.16
3: Evolutionary cycle
for G =1 to Maxge,s do
// Differential Evolution Operations
fori=1to NP do
// Mutation: Generate donor vector using differential strategy
select distinct rl, r2, r3 from {1, ..., NP} where rl #12 #13 #1
calculate Eq.1
// Crossover: Combine donor and target vectors to form trial vector
forj=1toDdo
calculate Eq.2
end for
// Selection: Choose better vector based on fitness for the next generation
calculate Eq.3
end for
// Sailfish Optimizer Updates
for each sailfish S in Sailfish population, do
// Update sailfish positions based on the 'elite' position and 'injured' sardine
best_sardine = identify best_injured_sardine()
elite_position = identify_elite position()
S =elite_position - random_factor() * (elite_position + best_sardine - S)
end for
// Binary Conversion for Feature Selection
fori=1to NP do
forj=1toDdo
B[i, j] = binary conversion(X[i, j, G+1]) using Eq.14
end for
// Evaluate each binary vector's fitness
if fitness(B[i]) > fitness(X_best):
X best = BJ[i]
end if
end for
// Local Search for optimal features
for each best_solution X_best do
X_new = local_search(X_best) using Eq.17
if fitness(X_new) > fitness(X_best):
X best=X new
end if
end for
// Termination Check: Break if the optimal solution is found or other criteria are met
if termination_condition_met(X_best):
break
end if
end for
10: return X_best // Return the best feature subset found

Algorithm 1. Differential Evolution with Sailfish Optimizer (DESFO)

Complexity analysis

In analyzing the complexity of the DESFO, we can delve deeper into the computational processes involved. This
includes looking at the computational demands of evaluating classifiers and the benefits of using combined
methods in terms of efficiency.
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Figure 2. DESFO flowchart.

e Complexity Breakdown by Component

1- Initialization: Initializes NP individuals, each possessing D features. This operation has a complexity of
O (NPx D).
2- Differential Evolution Operations:

e Mutation: For the mutation step to be executed across all individuals, it involves choosing three different
individuals and then computing the vector differences for each, which amounts to a complexity of (D) for each
individual. Consequently, the total complexity for the mutation step applied to all individuals is O (NP x D).

® Crossover: for each person, determined by the probability CR, this leads to O (NPx D).

® Selection: Evaluating and selecting the better individual between the target and trial vector typically involves
fitness computation, which can be a significant factor depending on the complexity of the fitness function.
the complexity is O(NP)
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3- Sailfish Optimizer Updates:

® DPosition Update: Each sailfish updates its position based on the positions of elite and injured sardines, the
complexity per generation is O(NP)

4- Binary Conversion and Fitness Evaluation:

® Binary Conversion: Each of the DD features of each NPNP individuals is converted from a real number to a
binary value based on a transfer function, totaling O(NP x D)

e Fitness Evaluation: The evaluation of fitness depends on the classification algorithm used. For k-NN or RE the
time complexity might depend on the number of features D and possibly the sample size if a wrapper method
is used. The complexity is therefore O (NP x f (D)), where (D) represents the computational complexity of
evaluating one individual.

5-  Local Search:

® Local Search Operations: Assuming that local search is applied to a subset of the population (say k best
individuals) and each local search operation has a complexity O ((D)), where (D) might involve multiple
evaluations of minor variations of the individual. If LS iterations of local search are performed for each
individual, the complexity for this part would be (k x LS x (D)).

e Overall Complexity

Combining all these elements, the total complexity per generation of the DESFO algorithm would be: (NPx
D+NPxD+NP+NPxD+NPx(D)+kxLSxg(D))

This simplifies to: (3xNPxD+NPx(D)+kxLSxg(D))

For all generations, MaxGens, the overall complexity becomes: (MaxGensx(3xNPxD+NPxf(D)+kxLSxg(D)))

- Comparing the complexity of DESFO with DE and SFO shows that the total complexity for DESFO is O(M
axGens x (3x NPx D+ NPx f{D) +kx LS x g(D))) however SFO complexity is O(MaxGens x 4 x NP, and DE
complexity is O(MaxGens x 3 x Np)which mean that The DESFO has more computational complexity due to
its integrated steps and phases

Experimental results and analysis

The following part of the paper presents the results from the proposed DESFO algorithm and compares them
with those reported in prior studies. To verify the proposed algorithm, 14 multi-scale benchmarks were utilized—
the mean values in the results are represented as evaluation metrics. To showcase the efficacy of the suggested
algorithm, in all experiments, we employed the datasets that are elaborated in subsection 5.1, Moreover, the
metaheuristic techniques’ main parameters utilized in this paper are outlined in subsection 5.2, in subsection 5.3,
evaluation measures are explained, then, in subsection 5.4, the proposed DESFO algorithm is evaluated and
compared with the k-NN and RF algorithms to investigate their respective results, in subsection 5.5, An
investigation was conducted to compare the outcomes of the suggested DESFO algorithm with those of other
methods, Convergence graphs are depicted in Sect. 5.6, in subsection 5.7, the Wilcoxon’s test is conducted to
assess the credibility of differences in fitness rates between the proposed DESFO algorithm and its counterparts
and the final Sect. 5.8 is for discussion of the results.

Benchmarks description

The proposed algorithm’s performance is demonstrated using 14 multi-domain features and instance benchmarks.
These benchmarks are obtained from the UCI machine learning repository*’. A variety of attributes and instances
in each benchmark is beneficial in validating the proposed algorithm. Table 1 provides an overview of the
benchmarks used in this paper, along with their respective properties and descriptions. The datasets shown in
Table 1 are sorted in descending according to the number of features.

Parameters configuration

The DESFO algorithm proposed in this study was evaluated against several meta-heuristic algorithms, including
the two original algorithms that were combined, the Differential Evolution (DE) algorithm®® and the sailfish
optimization (SFO) algorithm??, as well as nine of the other algorithms, including Harris Hawks Optimization
(HHO)®, Particle Swarm Optimization (PSO)%, Bat Algorithm (BA)!'7, Whale Optimization Algorithm (WOA)®,
Grasshopper Optimization Algorithm(GOA)®, Grey Wolf Optimization (GWO)'®, Bird Swarm Algorithm
(BSA), Henry gas solubility optimization (HGSO)}, and Artificial Bee Colony (ABC)'!. In this work, the ML
classifiers’ primary parameters have been established as follows: the k-NN classifier’s Euclidean distance metric
has been approximated to be 5. The estimation was based on the outcomes obtained from previous papers, such
as’%. On the other hand, the Random forest (RF) classifier” is a popular machine-learning algorithm often used
for complex tasks such as time-series forecasting, image classification, facial expression recognition, action
recognition and detection, visual tracking, label distribution learning, and more. Every method is evaluated on
each dataset by conducting 30 distinct experiments. The results are reported according to the mean performance
measures. To maintain equality in the evaluation process, each method had a population size of 10 and a
maximum of 100 iterations. The size of the datasets used was proportional to the complexity of the problem.
The exploration of the continuous search space was confined yet extensive by establishing the search domain
as [-1, 1].
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# Benchmarks #.features | #. instances | #.classes
1 PenglungEW 325 73 7
2 TonosphereEW | 34 351 2
3 SonarEW 60 208 2
4 WaveformEW | 40 5000 3
5 KrVsKpEW 36 3196 2
6 BreastEW 30 569 2
7 Lymphography | 18 148 4
8 Vote 16 300 2
9 Zoo 16 101 7
10 Exactly2 13 1000 2
11 M-of-n 13 1000 2
12 ‘WineEW 13 178 3
13 Breast cancer 9 699 2
14 | Tic-tac-toe 9 958 2

Table 1. Dataset characteristics.

# Algorithm Parameters configuration

#of Runs =30

#T denoted Iterations =100

N is the size of the population=10

D=# of Attributes in the Used benchmarks

1 All Algorithms

F is an amplifier constant € [0, 2], Cr is the crossover rate, Rand € [0, 1]
2 DE jrand € [1,2.Nx]
rl, r2, r3€[1, NP], NP >4

pp=0.11is the in-between ratio of sardines and sailfish

3 SFO £=0.0001
A=1
4 ABC # bees=16, # scout bees =3, # onlooker bees =4
5 PSO Inertia w?ight (wmax=0.90min=0.4),
Acceleration parameter (c2=c1=1.2)
6 BA Loudness A =0.8 Lower and upper pulse frequencies =0, 10 Pulse emission rate r=0.95
7 GWO a is reduced from 2 to 0 linearly
8 WOA ais reduced from 2 to 0 b=1.0 p=0.5 linearly
9 GOA Cmax =1 and Cmin =0.00004
10 HHO E€[-1, 1] denotes Rabbit energy

ff=10 and denote the flight frequent

f1=0.5 is the Following coefficient

11 BSA (al =a2=1.0) are the Effects on the vigilance behaviors of birds
(c1=c2=1.5) are two coeflicients of the Acceleration

p=0.8 is food foraging Probability

12 HGSO #of clusters=21,=5E—-03,1,=1E+02,and ,;=1E-02 a==0.1 and K=1.0

Table 2. All Algorithms parameter’s configuration.

A validation process is necessary to assess the optimality achieved by the outcomes in the framework, so a
tenfold cross-validation method is employed. This ensures that the values obtained are reliable. The benchmark
is randomly split into two subsets, with 80% of the benchmark used for training and the remaining for testing
purposes®. During the learning process of the machine learning classifier, sunset for training is used and opti-
mized, while the test subset is used to evaluate the selected features. Table 2 displays the standard configurations
for all techniques and the parameter settings for each method, which were determined based on the original
variants and the data included in their initial publications. Python is used to run the processes on a computer
system environment equipped with a CPU, an Intel i7 processor, RAM, which is 16 GB, and a GPU, which is
NVIDIA GTX 1050i.

Metrics of performance

The DESFO algorithm performance is compared to other methods, and each approach is assessed independently

in 30 runs per benchmark. The evaluation of the FS strategy employs certain measures to conduct this assessment.
Mean accuracy: The accurate data classification rate (Mean,.) can be determined by executing the method

independently for 30 runs:

Scientific Reports |

(2024) 14:13517 | https://doi.org/10.1038/s41598-024-63328-w nature portfolio



www.nature.com/scientificreports/

11 30 m
Meang.. = om Z Z match(PL,,AL,) (18)
k=1 r=1
where mean accuracy is represented by Mear., while the number of samples in the subset of testing is denoted
by m, the predicted class label for a sample is denoted by PLr. In contrast, the reference class label is denoted
by ALr. A function called match (PL, AL,) compares these labels. When PLr is equal to ALr, the value of match

(PLr, ALr) is 1; otherwise, it is 0.

Mean fitness value: The metric (Meang;) measures the average fitness results achieved through the
recommended approach by running it individually for 30 runs. This highlights how decreasing the number of
chosen features can lead to a lower error classification rate, as per Eq. (16). The best result is indicated by the
minimum value, which is evaluated based on fitness as:

30
1 k
Meangj = 30 kg_lf* s (19)

The Meang;; denotes the mean or average fitness value, while f¥ indicates the best possible fitness outcome
attained during each run of the 30 k-th runs.

The mean number of features selected: This metric, which MeanFeat denotes, represents the mean or average
count of chosen features obtained by performing the technique independently for 30 runs and is defined as:

Mean = — ,
Feat 30 Z |D| (20)

where | d*|denotes the selected features, the number of features for the optimal solution for each run of the thirty
k-th runs, while |D| denotes the number of the complete features used from the benchmarks.

®  Wilcoxon’s rank-sum test: To gain a deeper insight into the importance of the method discussed statistical
evidence must demonstrate its effectiveness. Therefore, the efficacy of the results derived from the methods
used is often validated by employing the Wilcoxon rank-sum non-parametric test. This is favored for its
ability to statistically distinguish the significance and dependability of various competing methods™. In
this study, the focus is on evaluating the proposed DESFO method in comparison with other algorithms. A
null hypothesis is put forward, suggesting no difference in performance between the DESFO algorithm and
the others when compared pairwise. Conversely, if proven otherwise, the DESFO algorithm outperforms
the rest. The assessment hinges on the calculation of a p-value through the Wilcoxon rank-sum test, which
helps analyze the differences in outcomes from 30 separate executions of both the DESFO and competing
algorithms.

The results of ML classifiers (k-NN and RF) and DESFO

The mean accuracy (Mean,.) was used to compare the performance of the presented ML classifiers (RF and
k-NN) with the proposed methods (DESFO-RF and DESFO-K-NN) and the mean number of selected features
(Meang,a) in this subsection are also given. This was done to evaluate the effectiveness and scope of the DESFO
approach.

Comparisons of DESFO- K-NN and K-NN

In Table 3, a comparison between the DESFO-K-NN technique and the basic K-NN algorithm is demonstrated.
The evaluation is centered on two metrics to measure performance: the average accuracy of classification
(Mean,,.) and the average count of selected features (Meanp,,;).

After analyzing Table 3, it is worth mentioning that the DESFO-K-NN technique led to an increase in Mean,,,,
on all benchmarks. The increase was more than 15% on four of them. Moreover, Mean, . had a score of over
93% on nine out of the total fourteen benchmarks. It even achieved 100% Mean,,. on four of them. It is worth
mentioning that the Meang,,, has decreased in 93% of the benchmarks due to implementing the DESFO-K-NN
method as suggested. However, the DESFO-K-NN method could not improve the Meang,,, on the Tic-tac-toe
benchmark. Finally, it was found that the DESFO-K-NN technique outperformed the basic K-NN in terms of
Mean,,, and most of the benchmarks. On the other hand, the suggested MeanFeat of the DESFO-k-NN approach
has shown promising results in feature selection compared to the basic k-NN tested with the chosen datasets.

Comparisons of DESFO- RF and RF

In Table 4, a comparison between the DESFO-RF algorithm and the basic RF algorithm is demonstrated. The
comparison is based on two performance metrics: the mean accuracy of classification (Mean,,) and the mean
number of chosen features (Meang,,,).

After analyzing Table 4, it is worth mentioning that the DESFO-RF technique led to an increase in Mean,,,
on 93% of all benchmarks. The increase was more than 15% on four of them. Moreover, Mean, . had a score of
over 92% on nine out of the total fourteen benchmarks. It even achieved 100% Mean,,. on three of them. It is
monitored that DESFO-RF and basic RF are equal in accuracy in one of the WineEW benchmarks. It is worth
mentioning that the Meang,,, has decreased in 100% of the benchmarks due to implementing the DESFO-RF
method as suggested. However, finally, it was found that the DESFO-RF method outperformed the original RF
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Accuracy Features
DESFO- Increasing DESFO- Decreasing

Benchmarks Basic K-NN | K-NN(Mean) | (%) Basic K-NN | K- NN(Mean) | (%)
PenglungEW 0.5333 0.6533 22.50 325 108.2 66.71
TonosphereEW 0.8451 0.9324 10.33 34.0 9.700 71.47
SonarEW 0.8571 0.9857 15.00 60.0 23.60 60.67
WaveformEW 0.804 0.8480 5.470 40.0 23.20 42.00
KrVsKpEW 0.9656 0.9822 1.720 36.0 20.10 44.17
BreastEW 0.9211 0.9649 4.760 30.0 6.300 79.00
Lymphography | 0.7000 0.8400 20.00 18.0 8.500 52.78
Vote 0.9333 1.0000 7.150 16.0 4.100 74.38
Zoo 0.9048 1.0000 10.52 16.0 5.200 67.50
Exactly2 0.7400 0.7935 7.230 13.0 6.300 51.54
M-of-n 0.8800 1.0000 13.64 13.0 6.100 53.08
WineEW 0.5833 1.0000 71.44 13.0 4.000 69.23
BreastCancer 0.6214 0.9857 58.63 9.00 6.000 33.33
Tic tac toe 0.8441 0.8542 1.200 9.00 9.000 0.00
w
Score T 0 14 0 13
L * *

0 0 1 1

14 0 13 0

Table 3. Comparison of Maean, . and Meang,,, for DESFO-K-NN & the basic K-NN. Superior values are in

[bold].
Accuracy Features
DESFO- Increasing DESFO- Decreasing
Benchmarks Basic RF | RF(Mean) | (%) Basic RF | RF(Mean) | (%)
PenglungEW 0.3333 0.7667 130.03 325 155.6 52.12
IonosphereEW 0.9014 0.9732 7.9700 34.0 014.6 57.06
SonarEW 0.7857 0.9286 18.190 60.0 027.6 54.00
WaveformEW 0.7690 0.8197 6.5900 40.0 020.9 47.75
KrVsKpEW 0.7953 0.9487 19.290 36.0 017.1 52.50
BreastEW 0.9298 0.9947 6.9800 30.0 012.2 59.33
Lymphography | 0.7333 | 0.8933 21.820 18.0 009.1 49.44
Vote 0.9000 1.0000 11.110 16.0 003.2 80.00
Zoo 0.9524 1.0000 5.0000 16.0 004.5 71.88
Exactly2 0.7500 0.7650 2.0000 13.0 005.0 61.54
M-of-n 0.8000 0.9950 24.380 13.0 006.3 51.54
WineEW 1.0000 1.0000 0.0000 13.0 003.0 76.92
BreastCancer 0.9643 0.9857 2.2200 9.00 005.1 43.33
Tic tac toe 0.7500 0.8698 15.970 9.00 007.0 22.22
w 0 13 0 14
Score T 1 1 * 0 0 *
L 13 0 14 0

Table 4. Comparison of Maean, . and Meang,,, for DESFO-RF & the basic RE. Superior values are in [bold].

algorithm in terms of Mean,, in most of the benchmarks and Meany,,. The suggested DESFO-RF approach has
shown promising results in feature selection compared to the main RF on the chosen benchmarks.

DESFO results versus other MH algorithms

To prove the effectiveness of DESFO in comparison with DESFO-RF and DESFO-K-NN, which rely on RF and
k-NN classifiers, respectively, a comparison was made between DESFO and other meta-heuristic methods such
as DE, SFO, ABC, PSO, BA, GWO, WOA, GOA, HHO, BSA, and HGSO, all of which were conducted under
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identical conditions. The comparison results were measured in terms of mean fitness value (Maeang;), mean
accuracy (Maean,, ), and mean number of features selected (Meang,,).

Comparisons based on the RF classifier

Table 5 presents the fitness values obtained from the proposed DESFO-RF meta-heuristic optimization algorithm,
compared with those of other advanced optimization techniques in addressing the FS issue. Table 5 shows that
DESFO-RF showed superior performance compared to other methods. In the FS problem, it scored the highest
in 8 benchmarks and achieved the same score as the others in 2 benchmarks. This led to a more significant
impact in 10 out of the 14 benchmarks, equivalent to 71% of all the benchmarks. Furthermore, the benchmark
employed in this research comprises benchmarks of varying sizes, demonstrating the ability of DESFO-RF to
deliver consistent performance across the entire range of benchmarks, regardless of their size. It was observed
that DESFO-RF missed out on 4 benchmarks, but the results obtained were much closer to the methods used
by SFO and ABC when the mean fitness values were compared. This indicates that the DESFO-RF has better
outcomes than its competitors. It has been discovered that the DESFO-RF method suggested by the team ranked
first in all benchmarks except for SFO. This provides further evidence of the effectiveness of the proposed method
over other techniques used by competitors.

Table 6 compares the classification accuracy means of the presented DESFO-RF with other advanced
metaheuristic optimization algorithms in tackling the FS issue, as per the empirical findings. It's worth mentioning
that, according to Table 6, the DESFO-RF approach showed better performance than all other methods in terms
of accuracy mean across seven benchmarks. Moreover, it delivered equivalent results to other methods across five
benchmarks but needed to be more fortunate to outperform them in two benchmarks. However, the DESFO-RF
approach was significantly more effective than other methods in 12 out of 14 benchmarks, equivalent to 85.7%
of all the benchmarks. Also, it’s worth noting that the SFO method was ranked second on several benchmarks.
It showed a slight improvement of 0.0034% on the Lymphography benchmark and 0.0020% on the M-of-n
benchmark while achieving the same score as the top performer on five other benchmarks.

Table 7 compares the mean number of selected features between the DESFO-RF method and other popular
meta-heuristic optimization algorithms commonly used for feature selection (FS) strategy. When Table 7 is
analyzed, the observation shows that DESFO-RF and SFO produce similar results regarding the number of
selected features, and both outperform the other algorithms. These two techniques won in two benchmarks and
tied in three benchmarks, surpassing the other algorithms: DE, ABC, PSO, BA, GWO, WOA, GOA, HHO, BSA,
and HGSO. However, it is important to note that this does not necessarily imply a tie in classification accuracy
between DESFO and SFO. DESFO has demonstrated superiority over other algorithms. Furthermore, it should be
kept in mind that choosing the smallest number of characteristics may negatively impact classification accuracy.

Comparisons based on the K-NN classifier

Table 8 compares the average fitness values between the proposed DESFO-K-NN and other advanced MH opti-
mization algorithms in addressing the FS problem. After examining Table 8, the DESFO-K-NN outperformed all
other methods in 9 benchmarks and tied in 2 benchmarks in the FS problem. This indicates that DESFO-K-NN
had a significantly better impact on 11 out of 14 benchmarks, accounting for 85.7% of all benchmarks. Addition-
ally, the study employed a benchmark of both large and small-scale benchmarks, indicating that DESFO-K-NN
can deliver consistent performance across the entire range of benchmarks, irrespective of their size. For the two

Benchmarks DESFO | DE SFO ABC PSO BA GWO |WOA | GOA HHO | BSA HGSO
PenglungEW 0.2358 | 0.2623 | 0.2423 | 0.2499 |0.3084 | 0.3152 |0.2953 |0.2952 |0.3085 | 0.3019 |0.2821 |0.3357
TonosphereEW 0.0308 0.0417 ]0.0334 | 0.0381 |0.0447 |0.0493 |0.0417 |0.0442 |0.0422 |0.0457 |0.0405 |0.0501
SonarEW 0.0753 0.1064 |0.0849 |0.0977 |0.1177 |0.1467 |0.1108 |0.0993 |0.1013 |0.118 0.1017 | 0.1472
WaveformEW 0.1837 0.1967 |0.1853 |0.1889 |0.1991 |0.2075 |0.1891 |0.1965 |0.1934 |0.1953 |0.1949 |0.2103
KrVsKpEW 0.0555 0.0676 |0.0604 |0.0622 |0.0731 |0.0784 |0.0619 |0.0657 |0.0635 |0.0688 |0.0641 |0.0798
BreastEW 0.0093 0.0165 |0.0115 |0.0118 |0.0219 |0.0195 |0.0165 |0.0191 |0.0192 |0.0202 |0.0136 |0.0278
Lymphography 0.1107 0.1505 | 0.1071 |0.128 0.1603 | 0.1666 |0.1373 |0.1535 |0.1299 |0.1435 |0.137 0.1903
Vote 0.0020 0.0032 | 0.0018 |0.0023 |0.0037 |0.0144 |0.0027 |0.0026 |0.0026 |0.0023 |0.0027 |0.0123
Zoo 0.0028 0.0033 | 0.0029 |0.0032 |0.0035 |0.004 0.0033 | 0.0036 |0.0034 |0.0034 |0.0035 |0.0047
Exactly2 0.2365 0.242 0.2385 |0.241 0.2462 | 0.2466 |0.241 0.2447 |0.2431 |0.2457 |0.238 0.2488
M-of-n 0.0098 0.0556 |0.0078 |0.0184 |0.0732 |0.0751 |0.013 0.028 0.0332 | 0.0255 |0.0367 |0.0839
WineEW 0.0023 0.0027 |0.0023 |0.0027 |0.0028 |0.0035 |0.0026 |0.0025 |0.0028 |0.0029 |0.0026 |0.0044
BreastCancer 0.0192 0.0194 [0.0191 |0.0191 |0.0198 |0.0218 |0.0197 |0.0196 |0.0196 |0.0201 |0.0194 |0.0200
Tic-tac-toe 0.1367 | 0.1375 |0.1367 |0.1367 |0.1383 |0.1391 |0.1367 |[0.1383 |0.1375 |0.1403 |0.1367 |0.1482
w 8 0 3 0 0 0 0 0 0 0 0 0
Score T 2 0 3 2 0 0 1 0 0 0 1 0

L 4 14 8 12 14 14 13 14 14 14 13 14

Table 5. Results comparison of the mean fitness value (Meang;) based on RF classifier for DESFO with other.
MH methods Superior values are in [bold].
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Benchmarks DESFO DE SFO ABC PSO BA GWO WOA GOA HHO BSA HGSO
PenglungEW 0.7667 0.74 0.76 0.7533 0.6933 0.6867 0.7067 0.7067 0.6933 0.7 0.72 0.6667
IonosphereEW 0.9732 0.962 0.9704 0.9662 0.9592 0.9549 0.962 0.9592 0.962 0.9577 0.9634 0.9549
SonarEW 0.9286 0.8976 0.919 0.9071 0.8857 0.8571 0.8929 0.9048 0.9024 0.8857 0.9024 0.8571
WaveformEW 0.8197 0.8062 0.8179 0.8145 0.8039 0.7955 0.814 0.8070 0.8101 0.8076 0.8075 0.7937
KrVsKpEW 0.9487 0.9367 0.9441 0.9423 0.9313 0.9264 0.942 0.9384 0.9406 0.9350 0.9403 0.9252
BreastEW 0.9947 0.9877 0.993 0.993 0.9825 0.9851 0.9877 0.9851 0.9851 0.9842 0.9912 0.9772
Lymphography 0.8933 0.8533 0.8967 0.8767 0.8433 0.8367 0.8667 0.8500 0.8733 0.8600 0.8667 0.8133
Vote 1.0000 1.0000 1.0000 1.0000 1.0000 0.9883 1.0000 1.0000 1.0000 1.000 1.0000 0.9917
Zoo 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000
Exactly2 0.7650 0.7595 0.7630 0.7605 0.7555 0.755 0.7605 0.757 0.7585 0.7555 0.7635 0.7515
M-of-n 0.9950 0.9495 0.9970 0.9865 0.9325 0.93 0.992 0.977 0.972 0.9795 0.9685 0.9220
WineEW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
BreastCancer 0.9857 0.9857 0.9857 0.9857 0.9857 0.9836 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857
Tic-tac-toe 0.8698 0.8688 0.8698 0.8698 0.8677 0.8667 0.8698 0.8677 0.8688 0.8656 0.8698 0.8573
W 7 0 2 0 0 0 0 0 0 0 0 0
Score T 5 4 5 5 4 2 5 4 4 4 5 3
L 2 10 7 9 10 12 9 10 10 10 9 11
Table 6. Results comparison of the mean accuracy (Mean,, ) based on RF classifier for DESFO with other MH
methods. Superior values are in [bold].
Benchmarks DESFO | DE SFO |ABC |[PSO |BA GWO |WOA |GOA |HHO |BSA | HGSO
PenglungEW 1556 | 160.7 |153.3 |183.7 |1563 |161.1 [159.9 |155 |158.8 |160.2 |160.2 |184.7
IonosphereEW [ 14.60 | 13.90 |14.00 |158 |14.6 |16.00 |13.90 |12.9 |1550 |13.10 |1430 |18.70
SonarEW 27.60  |3020 [28.70 |347 |27.6 |3150 |2830 |29.9 [2820 [29.30 |30.10 |34.90
WaveformEW 2090 | 19.30 [20.10 |21.1 200 |2020 |19.80 |217 |2L70 [19.10 |17.50 |24.20
KrVsKpEW 1710 |18.00 |18.00 [183 |182 |19.90 |1640 |17.2 [17.10 [15.90 |18.20 |20.60
BreastEW 1220|1290 |13.80 |147 [135 |1420 |1290 |13.0 |13.40 [13.60 |14.60 |15.70
Lymphography | 9.100  |9.500 |8.600 |10.6 |9.40 |8.800 |9.500 [9.00 |8.100 |8.900 |9.000 |9.900
Vote 3200|5100 [2.800 [3.60 [590 |4.600 |4.300 |420 |4.100 |3.600 |4.300 |6.400
Zoo 4500 [5300 |4.600 |510 |560 |6400 |5300 |570 [5.400 [5.500 |5.600 |7.500
Exactly2 5000  |5100 |5000 [500 [540 [5.200 |5.000 |540 |5.200 |4.800 |5.000 |3.600
M-of-n 6.300 |7.300 |6.300 |650 |830 |7.500 |6.600 |6.80 [7.100 [6.800 |7.200 |8.700
WineEW 3.000 [3.500 [3.000 [3.50 [3.70 |4.500 |3.400 [3.30 |3.600 |3.800 |3.400 |5.700
BreastCancer 5100  |5.300 |5.000 [5.00 [570 |5.500 |5.600 [5.50 5500 |6.000 |5.300 |5.900
Tic-tac-toe 7.000  |6.800 [7.000 |[7.00 |6.60 |6.400 |7.000 |6.60 |6.800 |6.500 |7.000 |6.200
W 2 0 2 0 0 0 0 0 0 0 0 2
Score T 3 0 3 1 1 0 0 1 1 1 1 0
L 9 14 9 13 13 14 14 13 13 13 13 12
Table 7. Results comparison of the mean number of features selected (Meang,,;) based on the RF classifier for
DESFO with other MH methods. Superior values are in [bold].
missing benchmarks, it has been noted that DESFO-K-NN has produced almost equivalent outcomes to other
techniques in terms of mean fitness values. This highlights the superior results of DESFO-K-NN. Except for SFO
in two benchmarks (vote and zoo), none of the competing methods are ranked first compared to DESFO-K-
NN. Hence, it is evident that DESFO-K-NN is superior to the suggested competitor’s methods. In addition, the
results of the comparison between DESFO-K-NN and other metaheuristic optimization algorithms in terms of
classification accuracy values for feature selection strategy are presented in Table 9. The table shows the empiri-
cal outcomes of this comparison.

From Table 9, it is essential to note that DESFO-K-NN outperformed all other methods regarding accuracy
mean values across seven benchmarks. In the remaining seven benchmarks, results were similar to those achieved
by the different methods. DESFO-K-NN also showed significantly better performance in all 14 benchmarks,
accounting for 100% of all benchmarks, which is a remarkable improvement compared to other methods.
Additionally, In Table 10, a comparison of the mean number of selected features between the DESFO-K-NN
method and other established meta-heuristic optimization algorithms is given. This comparison helps us
understand the effectiveness of the DESFO-K-NN method in addressing the FS strategy.
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Benchmarks DESFO | DE SFO ABC PSO BA GWO |WOA |GOA |HHO |BSA HGSO
PenglungEW 0.3465 | 0.394 0.3544 | 0.3742 | 0.3941 |0.3943 | 0.3742 |0.3808 |0.3875 |0.3803 | 0.3939 |0.4011
IonosphereEW 0.0698 0.0888 | 0.0784 |0.0832 |0.0958 |0.1088 |0.0873 |0.0846 |0.0848 |0.0743 |0.0872 |0.1112
SonarEW 0.0181 | 0.0377 |0.0206 |0.0258 |0.0357 |0.0607 | 0.028 0.035 0.0305 |0.0249 |0.0277 |0.0525
WaveformEW 0.1563 | 0.1734 |0.1629 |0.1642 |0.1771 |0.178 |0.1657 |0.17 0.1682 |0.1626 |0.1684 |0.1774
KrVsKpEW 0.0232 | 0.0345 |0.0301 |0.0259 |0.0393 |0.0457 |0.03 0.032 0.032  ]0.0292 |0.0343 |0.0391
BreastEW 0.0368 | 0.0386 |0.0374 |0.038 0.0396 |0.0441 |0.0381 |0.0391 |0.038 |0.0384 |0.039 0.0457
Lymphography | 0.1631 | 0.1927 |0.1689 |0.1692 |0.1996 |0.2257 |0.1825 |0.1859 |0.1826 |0.1889 |0.1762 |0.2104
Vote 0.0026 | 0.007 0.0022 | 0.0031 |0.0068 |0.0181 |0.0032 |0.0076 |0.0034 |0.0049 |0.0047 |0.0206
Zoo 0.0033 0.0037 |0.0032 |0.0034 |0.0039 |0.0096 |0.0037 |0.0041 |0.0038 |0.0087 |0.0038 |0.0056
Exactly2 0.2093 | 0.2257 |0.2121 |0.2206 |0.2331 |0.2457 |0.2244 |0.2303 |0.2274 |0.2361 |0.2308 |0.2397
M-of-n 0.0047 | 0.0343 | 0.005 0.0075 |0.0449 |0.0711 |0.0095 |0.0111 |0.0112 |0.008 |0.0091 |0.062
‘WineEW 0.0031 0.0035 |0.0031 |0.0034 |0.007 0.0183 [0.0032 |0.0035 |0.0037 |0.0035 |0.0033 |0.0084
BreastCancer 0.0201 |0.0212 |0.0201 |0.0201 |0.0233 |0.0253 |0.0203 |0.0222 |0.0219 |0.0216 |0.0211 |0.0235
Tic-tac-toe 0.1544 |0.1544 |0.1544 |0.1544 |0.1602 |0.1719 |0.1544 |0.1544 |0.1552 |0.1600 |0.1544 |0.1600
W 9 0 2 0 0 0 0 0 0 0 0 0
Score T 3 1 3 2 0 0 1 1 0 0 1 0

L 2 13 9 12 14 14 13 13 14 14 13 14

Table 8. Results comparison of the mean fitness value (Meang;) based on the K-NN classifier for DESFO with
other MH methods. Superior values are in [bold].

Benchmarks DESFO DE SFO ABC PSO BA GWO WOA GOA HHO BSA HGSO
PenglungEW 0.6533 0.6067 0.6467 0.6267 0.6067 0.6067 0.6267 0.6200 0.6133 0.6200 0.6067 0.6000
IonosphereEW 0.9324 0.9141 0.9239 0.9197 0.907 0.8944 0.9155 0.9183 0.9183 0.9282 0.9155 0.8930
SonarEW 0.9857 0.9667 0.9833 0.9786 0.969 0.9429 0.9762 0.969 0.9738 0.9786 0.9762 0.9524
WaveformEW 0.848 0.8312 0.8416 0.8403 0.8268 0.8267 0.8386 0.8337 0.8359 0.8417 0.8359 0.8268
KrVsKpEW 0.9822 0.9714 0.9764 0.9802 0.9666 0.9595 0.9759 0.9736 0.9739 0.9762 0.9716 0.9675
BreastEW 0.9649 0.9649 0.9649 0.9649 0.964 0.9596 0.9649 0.964 0.9649 0.964 0.964 0.9588
Lymphography 0.8400 0.8100 0.8333 0.8333 0.8033 0.7767 0.82 0.8167 0.8200 0.8133 0.8267 0.7933
Vote 1.0000 0.9967 1.0000 1.0000 0.9967 0.985 1.0000 0.995 1.0000 0.9983 0.9983 0.9833
Zoo 1.0000 1.0000 1.0000 1.0000 1.0000 0.9952 1.0000 1.0000 1.0000 0.9952 1.0000 1.0000
Exactly2 0.7935 0.7765 0.7905 0.783 0.769 0.756 0.7785 0.773 0.7755 0.7665 0.7725 0.7640
M-of-n 1.0000 0.9715 1.0000 0.9975 0.961 0.9345 0.9955 0.994 0.994 0.997 0.996 0.9440
WineEW 1.0000 1.0000 1.0000 1.0000 0.9972 0.9861 1.0000 1.0000 1.0000 1.0000 1.0000 0.9972
BreastCancer 0.9857 0.9857 0.9857 0.9857 0.9829 0.9807 0.9857 0.9843 0.9843 0.9843 0.985 0.9836
Tic-tac-toe 0.8542 0.8542 0.8542 0.8542 0.8474 0.8344 0.8542 0.8542 0.8531 0.8469 0.8542 0.8474
w 7 0 0 0 0 0 0 0 0 0 0 0
Score T 7 5 7 6 1 0 6 3 4 1 3 1

L 0 9 7 8 13 14 8 11 10 13 11 13

Table 9. Results comparison of the mean accuracy (Mean,.) based on the K-NN classifier for DESFO with
others. MH methods. Superior values are in [bold].

Based on the results shown in Table 10, it can be inferred that the DESFO-K-NN algorithm has better explo-
ration capabilities compared to other algorithms, as it has the lowest mean selected features number among all
the algorithms tested (winning in 5 out of 7 cases and tying in 2 cases). This performance is superior to DE, PSO,
GWO, GOA, BSA, and HGSO algorithms. It is worth mentioning that even though SFO selected fewer irrelevant
features compared to DESFO-K-NN and other methods on only a few benchmarks (lymphography, vote, and
Z00), and achieved the same performance as DESFO-K-NN on two benchmarks (WineEw and BreastCancer),
it did not outperform DESFO-K-NN in terms of mean accuracy. When selecting a minimal number of char-
acteristics for classification, it is important to note that this approach can harm accuracy. The DESFO-K-NN
algorithm has been proposed to efficiently identify the pertinent attributes and reduce the feature search area
without compromising the classification accuracy. The algorithm achieves optimal results by discarding insig-
nificant search areas and concentrating on the most viable ones.
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Benchmarks DESFO | DE SFO | ABC |PSO |BA GWO | WOA |GOA |HHO |BSA | HGSO
PenglungEW 108.2 149.2 | 1499 |150.6 |[153.7 |159.5 |1482 |[151 152.4 | 131.8 |147.6 |167.2
IonosphereEW 9.700 12.70 |10.40 |12.50 |12.90 |14.20 |12.20 12.6 13.50 |10.9 12.00 |17.70
SonarEW 23.60 28.10 |24.40 |27.40 |30.20 |24.60 |26.40 |26.1 2730 |22.2 24.60 |32.40
WaveformEW 23.20 25.00 |24.50 |24.20 |22.50 |25.70 |23.80 |21.3 23.00 |23.7 23.90 |23.90
KrVsKpEW 20.10 2220 |24.20 |22.40 |22.40 |20.20 |22.10 21.2 22.10 |20.3 22.30 |25.10
BreastEW 6.300 11.70 |8.000 |9.900 |12.10 |12.50 |10.00 |10.4 9.800 |8.50 10.30 | 14.70
Lymphography | 8.500 8.300 |7.100 |7.600 |8.900 |8.300 |7.800 |7.90 8.000 |7.30 8.200 |10.50
Vote 4.100 5.900 |3.500 |4.900 |5.600 |5.200 |5.100 |4.20 5.500 |5.20 4.900 | 6.500
Zoo 5.200 5.900 |5.100 |5.500 |6.300 |7.800 |5.900 |6.50 6.000 |6.30 6.000 | 9.000
Exactly2 6.300 5.800 |6.100 |7.500 |5.700 |5.400 |6.700 |7.20 6.700 | 6.40 7.200 | 7.900
M-of-n 6.100 7.900 |6.500 |6.500 |8.200 |8.100 |6.500 |6.70 6.900 |6.60 6.700 | 8.500
‘WineEW 4.000 4.500 |4.000 |4.400 |5.500 |[5.900 |4.200 4.60 4.800 |4.50 4.300 |7.400
BreastCancer 6.000 7.100 |6.000 |6.000 |6.300 |6.200 |6.200 |6.60 6.300 |6.00 6.300 | 7.200
Tic-tac-toe 9.000 9.000 [9.000 |9.000 |8.200 |7.100 |9.000 |9.00 8.800 |7.600 |9.000 |8.000
W 5 0 3 0 0 2 0 0 0 1 0 0
Score T 2 0 2 1 0 0 0 1 0 1 0 0

L 7 14 9 13 14 12 14 13 14 12 14 14

Table 10. Results comparison of the mean number of features selected (Meang,,,) based on the K-NN classifier
for DESFO with other MH methods. Superior values are in [bold].

Analysis and visualization

An analysis for DESFO-RF and DESFO-K-NN, used for handling the ES strategy, has been performed in this sec-
tion using asymptotic analysis. To validate their convergence capabilities, the proposed technique was applied to
14 widely used benchmark datasets, and their performance has been compared against their peers under identical
conditions, including the iteration number and population size. Figures 3 and 4 demonstrate the convergence
ability of these methods in comparison to their counterparts.

Based on the results depicted in Fig. 3, the DESFO-RF approach showcases rapid yet effective convergence
across eight benchmarks, including PenglungEW, IonosphereEW, SonarEW, WaveformEW, KrVsKpEW,
BreastEW, Zoo, and Exactly2. On the other hand, Fig. 4 highlights that the DESFO-K-NN model outperforms
the competition in five benchmarks, namely PenglungEW, IonosphereEW, SonarEW, WaveformEW, KrVsKpEW,
BreastEW, Lymphography, Exactly2, and Lymphography. It's worth noting that both the proposed algorithms
(DESFO-RF and DESFO-K-NN) balance exploration and exploitation, ensuring the timely acquisition of the
optimal solution.

Figures 5, 6, and 7 show the performance of DSEFO and other methods regarding Mean fitness Function
values with RF and K-NN. The box plot with the swarm plot is demonstrated in Figs. 5 and 6, showing the supe-
riority of DESFO over other algorithms. The plots reveal no outliers with Both DESFO-RF and DESFO-K-NN,
unlike the DE, PSO, and HGSO Algorithms. The swarm plot demonstrates that most values are in the boxplot’s
interquartile range (IQR). Figure 7 shows the KDE plots, demonstrating the performance of DESFO and the
other algorithms with the 14 UCI benchmarks.

Figures 8, 9, and 10 show the performance of DSEFO and other methods regarding Mean classification
accuracy with RF and K-NN. Figures 8 and 9 illustrate the box plot with the swarm plot, highlighting the supe-
rior performance of DESFO over other algorithms. A noticeable observation from the plots is that no outliers
exist in DESFO-RF and DESFO-K-NN, unlike other algorithms such as DE, PSO, BA, BSA, GOA, and HGSO
Algorithms. The swarm plot indicates that for DESFO with RF and KNN, most of the values are located in the
interquartile range (IQR) and the maximum value of the boxplot. Additionally, Fig. 10 shows KDE plots that
depict the performance of DESFO and other algorithms with the 14 UCI benchmarks.

Wilcoxon's analysis

The statistical significance of the analysis can be observed in Tables 11 and 12, where the Wilcoxon test was
conducted as a pair-wise assessment. This test helped to determine if there was a significant difference between
the fitness results achieved by the proposed DESFO algorithm and its counterparts™.

The Wilcoxon test is a statistical test often used in hypothesis testing situations. The test involves ranking the
differences between the results of two paired algorithms on a set of problems. The calculation of ranks is based
on the absolute values of the differences. Next, the positive and negative ranks are summed separately as R* and
R". The smaller sum between the two is recorded. If the significance level of the recorded results is less than 5%,
then the null hypothesis is rejected. On the other hand, if the significance level is greater than 5%, then the null
hypothesis is not rejected.

After analyzing the data presented in Tables 11 and 12, it can be concluded that the DESFO-RF and DESFO-
k-NN algorithms outperformed all other algorithms in all the tested scenarios. In Tables 11 and 12, the indicated
p values are below 5%, implying that the proposed method’s results are statistically significant. This strong
evidence against the null hypothesis suggests that the outcomes obtained are not due to chance.
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Figure 3. The convergence graphs comparing the suggested DESFO approach with other methods using the RF

Classifier.

Discussion

According to the results of the empirical analysis, the DESFO algorithm stands out among recent algorithms
in terms of its reliability in feature selection for classification tasks. This algorithm makes use of k-NN and RF
classifiers. Among all the benchmarks, DESFO-K-NN produced the best results in terms of mean accuracy,
followed by DESFO-REF. Additionally, the DESFO optimizer demonstrated a more pronounced exploration and
exploitation behavior than its counterparts. On the other hand, The DESFO method exhibits a limitation in that
it selects more features than its competitors across various datasets. Specifically, when compared with other
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Figure 4. The convergence graphs comparing the suggested DESFO approach with other methods using the
K-NN Classifier.

methods, DESFO-REF selects a greater number of features in 9 out of 18 datasets (PenglungEW, IonosphereEW,
WaveformEW, KrVsKpEW, Lymphography, Vote, Exacly2, BreastCancer, and Tic-tac-toe), while DESFO-K-NN
does so in 7 datasets (SonarEW, WaveformEW, Lymphography, Vote, Zoo, Exactly2, and Tic-tac-toe).
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Conclusion and future works

The DESFO algorithm, a combination of the DE and SFO algorithms, has been proposed in this paper to handle
FS strategies. The LS strategy has also been incorporated to improve the optimal results after each algorithm
iteration. The algorithm has exhibited satisfactory performance and capability with significantly enhanced results.
To evaluate the chosen feature subsets, RF and K-NN classifiers were used to calculate the classification accuracy.
The DESFO algorithm was tested on several benchmarks using multi-scale attributes and records in this work to
assess its effectiveness. The results were compared with binary versions of 11 different meta-heuristic methods.
The performance has been evaluated based on various metrics, such as mean fitness rate, mean accuracy rate,
and mean number of features selected. The findings indicated that the two algorithms proposed in the study
(DESFO-RF and DESFO-K-NN) outperformed their counterparts in managing FS strategies. DESFO-RF was
the most effective method among all benchmarks regarding mean accuracy results, followed by IBAO-k-NN.

Additionally, the DESFO optimizer demonstrated greater exploration and exploitation abilities than its
counterparts. According to Wilcoxon’s test (with a significance level of a=0.05), it was evident that the DESFO
algorithm with RF and k-NN classifiers outperformed the other methods. This algorithm achieved exceptional
classification accuracy up to 100% in some benchmarks and also resulted in a reduced feature size.

The DESFO technique has one limitation: it tends to choose more features than its rivals across different
datasets. Specifically, in comparison with other methods, DESFO-RF selects more features in 9 out of 18 datasets,
and DESFO-K-NN does so in 7 datasets. Therefore, to improve the proposed algorithm, it would be beneficial to
implement a new selection strategy to reduce the number of features selected, particularly for high-dimensional
datasets with small instances. This opens up avenues for further research in the future.

Integrating the DESFO algorithm with various other optimization techniques merits exploration for future
works. Additionally, the application of different classifiers, such as Artificial Neural Networks (ANNs), Decision
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DESFO-RFvs | Rt | R\~ | Exact Pvalue | Winner
DE 105 |0 1.255E-04 DESFO
SFO 775 | 27.5 |0.1270800 DESFO
ABC 90 1 4.88E-04 DESFO
PSO 105 |0 1.22E-04 DESFO
BA 105 |0 1.22E-04 DESFO
GWO 91 0 2.44E-04 DESFO
WOA 105 |0 1.22E-04 DESFO
GOA 105 |0 1.22E-04 DESFO
HHO 105 |0 1.22E-04 DESFO
BSA 91 0 2.44E-04 DESFO
HGSO 105 |0 1.22E-04 DESFO

Table 11. Wilcoxon’s test for DESO-RF vs Other algorithms.

DESFO-K-NNvs | R+ | RI=) | Exact Pvalue | Winner
DE 91 0 2.44E-04 DESFO
SFO 815 |95 | 0.009277 DESFO
ABC 103.5 | 105 | 3.05E-04 DESFO
PSO 105 |0 1.22E-04 DESFO
BA 105 |0 1.22E-04 DESFO
GWO 91 0 2.44E-04 DESFO
WOA 91 0 2.44E-04 DESFO
GOA 105 |0 1.22E-04 DESFO
HHO 105 |0 1.22E-04 DESFO
BSA 91 0 2.44E-04 DESFO
HGSO 105 |0 1.22E-04 DESFO

Table 12. Wilcoxon’s test for DESO-K-NN versus Other algorithms.

Trees (DT), support vector machines (SVM), and others, could further examine DESFO’s capability in feature
selection for classification. The adaptation of other transfer functions, such as S-shape functions, could also be
explored. Given its feature selection (FS) efficacy, DESFO presents significant potential across various domains,
such as healthcare, the Internet of Things (IoT), and intrusion detection systems. Furthermore, employing
DESFO in the context of CEC benchmark functions could also be explored.

Data availability

The datasets used in our research are available and stored in a public access repository designed for machine
learning purposes and data classification which is the UC Irvine Machine Learning Repository https://archive.
ics.uci.edu/datasets, it is important to be declared that we used 14 variant datasets, include: IonosphereEW from
the link: https://archive.ics.uci.edu/dataset/52/ionosphere). Waveform from the link: (https://archive.ics.uci.
edu/dataset/108/waveform+database+generator+version+2). lymphography from the link: https://archive.ics.
uci.edu/dataset/63/lymphography. Zoo from https://archive.ics.uci.edu/dataset/111/zoo. Breastcancer from the
link: https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original. BreastEW from the link https://
archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic. Tic Tac Toe from the link: https://archive.
ics.uci.edu/dataset/101/tic+tac+toe+endgame. SonarEW from the link: https://archive.ics.uci.edu/dataset/151/
connectionist+bench+sonar+mines+vs+rocks. Wine from the link: https://archive.ics.uci.edu/dataset/109/wine.
KrVsKpEW from the link: https://archive.ics.uci.edu/dataset/22/chess+king+rook+vs+king+pawn. The rest of
them can be accessed directly from GitHub link: https://github.com/trin07/MA-HS/commit/3fea0b1c4470170
f3408cedab76a3e82493b3b5f.
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