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An improved Differential evolution 
with Sailfish optimizer (DESFO) 
for handling feature selection 
problem
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As a preprocessing for machine learning and data mining, Feature Selection plays an important role. 
Feature selection aims to streamline high-dimensional data by eliminating irrelevant and redundant 
features, which reduces the potential curse of dimensionality of a given large dataset. When working 
with datasets containing many features, algorithms that aim to identify the most valuable features to 
improve dataset accuracy may encounter difficulties because of local optima. Many studies have been 
conducted to solve this problem. One of the solutions is to use meta-heuristic techniques. This paper 
presents a combination of the Differential evolution and the sailfish optimizer algorithms (DESFO) 
to tackle the feature selection problem. To assess the effectiveness of the proposed algorithm, a 
comparison between Differential Evolution, sailfish optimizer, and nine other modern algorithms, 
including different optimization algorithms, is presented. The evaluation used Random forest and key 
nearest neighbors as quality measures. The experimental results show that the proposed algorithm 
is a superior algorithm compared to others. It significantly impacts high classification accuracy, 
achieving 85.7% with the Random Forest classifier and 100% with the Key Nearest Neighbors classifier 
across 14 multi-scale benchmarks. According to fitness values, it gained 71% with the Random forest 
and 85.7% with the Key Nearest Neighbors classifiers.

Keywords  Feature selection, Optimization, Meta-heuristics, Local search, Classification, Machine learning, 
Swam intelligence, Differential evolution, Sailfish, Exploration, Exploitation

Recently, the swift progress in high-throughput technologies has resulted in a significant growth in data, both in 
its complexity and the volume of samples. The challenge of managing this extensive and intricate data efficiently 
is becoming more pronounced. The conventional manual approaches to dealing with these data sets are now 
considered unfeasible. Consequently, data mining (DM) and machine learning (ML) methods have risen to the 
forefront, offering automated knowledge extraction and pattern identification solutions within this vast data.

A notable obstacle encountered in this procedure is the prevalent noise within the gathered data. This noise 
can result from multiple factors, including imperfections in the data collection technologies and the data sources’ 
intrinsic characteristics. For example, in medical imaging, any malfunction in the imaging devices can lead to 
noise in the data, which can interfere with further analysis. Furthermore, the rise of social media has shifted 
online users from merely consuming content to producing and consuming it. The quality of data from social 
media platforms can vary dramatically, from extremely valuable to spam or offensive content. Additionally, social 
media data often features informal language characterized by grammatical mistakes, typos, and incorrect punc-
tuation. This diversity and lack of formality increase the difficulty of deriving meaningful knowledge and patterns 
from such broad and noisy datasets. In the process of classification for machine learning and Data mining, the 
primary aim is to identify the category of each instance in a given dataset using a two-phase approach—training 
and testing. For this goal, the classifier model is created during the training phase to classify each instance in 
the training set, which consists of available records. During the later stages of testing, the classifier’s precision is 
evaluated using a group of testing sets. These sets were not employed during the training phase, but this research 
concerns their respective classes. Dealing with high dimensionality can pose a significant obstacle and may hin-
der the effectiveness of the classification process. Datasets containing many features may be utilized in specific 
practical applications and fields, such as the medical field, bioinformatics, text mining, and image classification. 
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However, some of these features may need to be more relevant, redundant, or contain noise. Such characteristics 
in the dataset could result in over-fitting data or create ambiguity in the learning mechanism1,2.

Feature Selection (FS) is commonly employed as a prepossessing step to improve the accuracy of a clas-
sification model. The core objective of FS is to identify the most relevant features that positively impact model 
performance while discarding irrelevant or harmful features at a minimal cost3. Various algorithms have been 
created to identify the most effective set of features that can improve the accuracy of a classification model for a 
given dataset. When dealing with datasets containing many features, traditional algorithms encounter challenges 
in identifying the significant features.

There are three FS (Feature Selection) algorithm types: filter, wrapper, and embedding. Regarding filtering 
algorithms, the FS process and classifier model are treated as distinct phases. During the initial phase, specific 
metrics extract features from the dataset that significantly impact the classification process while ignoring the 
others. In the feature selection process, only the chosen attributes are used in the classification model for its phase. 
However, wrapper algorithms modify the selected feature subsets dynamically, depending on the accuracy of the 
classifier. In Feature Selection (FS), the wrapper approach is commonly used. This approach involves generating 
subsets of features using specific search methods and determining their relevance by running a classification 
algorithm. Embedded algorithms are then combined with a classifier to decide which features should be kept 
or removed from the dataset4–6.

As per reference7, FS is widely believed to present a combinatorial optimization problem that is most likely 
NP-complete. Each feature in a dataset has twice as many potential solutions, making it challenging and time-
consuming to determine the most efficient subset of features. Additionally, in references8,9, the feature selection 
(FS) problem is a problem in the field of optimization that is considered to be NP-hard. This means that the more 
complex the problem, the longer it takes to compute the solution, with computational time increasing exponen-
tially. Hence, researchers have shown a keen interest in meta-heuristic (MH) algorithms10; four main categories 
of algorithms excel in solving various optimization problems. These categories include Human-based algorithms, 
Swarm intelligence algorithms (SI), Physics-based algorithms (PA), and Evolutionary Algorithms (EA).

Swarms and animal behavioral patterns are the basis for SI algorithms11. A commonly employed algorithm 
in optimization problems is Particle Swarm Optimization (PSO). The algorithm is designed based on the collec-
tive behaviors of swarm objects. In this approach, every individual object represents a potential solution12. The 
concept behind Artificial Fish Swarm (AFS) involves replicating the actions of fish, such as hunting, gathering 
in groups, and tracking, to perform a localized search of individuals to attain a global optimal solution. This 
technique is discussed in reference13. Bacterial Foraging Optimization (BFO) is a recently developed algorithm 
that draws inspiration from the foraging behavior of Escherichia coli in humans. It involves competition and 
cooperation among bacterial populations and is employed as a global random search algorithm14. Ant Colony 
Optimization (ACO) is a well-known swarm intelligence algorithm that imitates the foraging behavior of different 
ant species. In natural settings, ants use chemical pheromones to identify the most optimal path for the colony 
members to follow15. A swarm intelligence optimizer known as pigeon-inspired optimization solves air-robot 
path planning problems. The technique involves using a map and compass operator model based on a magnetic 
field and the sun and a landmark operator model that utilizes landmarks16. The bat algorithm is a metaheuristic 
algorithm based on the behavior of animal groups or herds. It uses the echolocation behavior of bats to generate 
solutions for domains with single- or multi-objectives that exist within a continuous solution space. This informa-
tion is based on reference17. The grey wolf optimizer is an algorithm that imitates the leadership hierarchy and 
hunting mechanisms of grey wolves in nature and is categorized as a swarm intelligence algorithm18.

To effectively search a given space, any search algorithm must balance exploring new areas within that space 
with exploiting already known areas. This means it must balance venturing into uncharted territory and focusing 
on areas near previously explored locations. By achieving an optimal balance between exploration and exploita-
tion, a search algorithm is more likely to succeed in its search efforts19.

There have been multiple attempts to understand the mechanism that regulates the equilibrium between 
exploration and exploitation in search algorithms. However, due to the need for more consistent knowledge, sev-
eral interesting metrics have been proposed to quantify the level of exploration and exploitation in metaheuristic 
schemes. These metrics monitor the current diversity of the population and have been suggested in various 
indexes. Despite several indexes and ongoing proposals, there is yet to be a definitive or objective way to meas-
ure metaheuristic algorithms’ exploration/exploitation rate20. Achieving success with metaheuristic algorithms 
requires a careful balance between exploration and exploitation throughout the evolutionary process. To achieve 
this balance more effectively, it is important to optimize the level of exploration and exploitation21.

Many SI algorithms that show high performance in various optimization problems have been developed in the 
literature. Some of these algorithms include the sailfish optimizer (SFO)22, Chaotic Coyote Algorithm23, Modified 
Social-Spider Optimization Algorithm24, Cheetah Optimization Algorithm25, Migrating Birds Optimization26, 
Owl Optimization Algorithm27, Bacterial Foraging Optimization Algorithm28, Salp Swarm Algorithm (SSA)29.

Many metaheuristic algorithms are based on evolutionary behaviors that emulate biological processes such 
as mutation, crossover, and selection, and they are named EA algorithms. Some of these algorithms include 
Differential Evolution (DE)30, Genetic Algorithm (GA)31, Invasive Tumor Growth Optimizer (ITGO)32 and 
Biogeography-Based Optimizer (BBO)33.These algorithms have shown great efficiency in various optimization 
applications.

Optimization algorithms that are based on physical laws are called PhA algorithms and include Big Bang-Big 
Crunch BBBC34, Multi-verse Optimizer (MVO)35, and Gravitational Search Algorithm (GSA)36.
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Contribution
The proposed framework in this paper puts forward a hybrid algorithm that combines the DE algorithm with 
the SFO algorithm to handle the FS strategy. It offers novel contributions that can be summarized as follows:

1.	 A new algorithm called the DESFO algorithm has been created by integrating and reproducing DE and SFO.
2.	 The transfer function (TF) is the V-shaped function to convert position values into binary format.
3.	 The periodic mode boundary handling (PMBH) approach and a novel local search (LS) strategy are used to 

improve the exploration and exploitation process.
4.	 In supervised classification, the DESFO algorithm is used for wrapper feature selection.
5.	 The DESFO’s performance is evaluated through metrics such as average fitness rate, average accuracy rate, 

and average number of selected features.
6.	 To assess the effectiveness of the suggested DESFO algorithm with the RF and K-NN machine classification 

algorithms, a Wilcoxon’s non-parametric rank-sum test (with a significance level of 5%) is used to compare 
it with similar algorithms.

Structure
The paper follows the structure outlined below:

1.	 Section “Related works” provides the recent stats of art and related works.
2.	 Section “Preliminary work” provides Preliminary works and explanations about the original DE and SFO 

algorithms.
3.	 Section “Methodology of the proposed DESFO” introduces the methodology of the proposed algorithm 

DESFO, along with the related steps.
4.	 Section “Experimental results and analysis” presents the experimental results of the DESFO algorithm and 

compares it with other MH algorithms.
5.	 Section “Conclusion and future works” concludes the paper.

Related works
Numerous research studies have been conducted in feature selection utilizing metaheuristic algorithms. Some 
of these efforts are outlined below.

Rodrigues et al.37 introduced a binary cuckoo search algorithm called BCS, which uses a function to convert 
continuous variables to their binary form to obtain the optimal feature subset. The Optimum Path Forest classifier 
was used to apply BCS on two datasets related to theft detection in a power system. The results indicated that 
BCS was the most efficient and appropriate method for solving feature selection issues in industrial datasets 
while also being the fastest.

In their study, Emary et al.38 introduced the initial binary edition of the firefly algorithm (FFA) for addressing 
feature selection issues by utilizing a threshold value. The algorithm exhibited a high level of exploration quality, 
enabling it to swiftly identify a solution to the problem.

To tackle feature selection problems, Nakamura et al.39 developed a binary version of BA called BBA. They 
used a sigmoid function to confine the position of bats to binary variables. They employed the optimum path 
forest classifier and applied BBA to five datasets to evaluate the accuracy.

Zawbaa et al.40 proposed a binary version of the ALO algorithm to address the feature selection problem by 
applying a threshold value to continuous variables. In their study, Emary et al.41 employed the sigmoidal transfer 
function to obtain binary vectors, also known as bGWO. They evaluated the classification accuracy of these 
vectors using a K-NN classifier across eighteen distinct UCI datasets. The researchers also utilized small, random, 
and large initialization methods during the initialization phase to facilitate thorough exploration.

Hussien et al.42,43 utilized S and V-shaped transfer functions in conventional WOA to solve binary optimization 
problems. They also applied this method to solve feature selection problems with eleven UCI datasets. To ensure 
the relevance of the selected features for classification, they used the K-NN classifier.

In their study, Gad et al.44 introduced a new version of the sparrow search algorithm, which has been 
developed. This version uses a combination of random agent repositioning and the LS method to handle feature 
selection effectively in supervised classification tasks. This approach is particularly useful for choosing the best 
or nearly optimal subset of attributes from a given dataset while maintaining maximum accuracy rates.

Ghosh et al.45 have presented a new variant of the latest and most powerful optimizer, the Sailfish Optimizer 
(SFO), called the Binary Sailfish (BSF) optimizer for solving FS problems. They utilized the sigmoid transfer 
function to convert the continuous search space of SFO into a binary one. They also incorporated adaptive 
β-hill climbing (AβHC), a recently proposed meta-heuristic algorithm, with the BSF optimizer to enhance its 
exploitation ability.

Emrah et al.46 have proposed a new filter criterion that mutual information, ReliefF, and Fisher Score 
inspire. Rather than relying on mutual redundancy, this criterion aims to select the most highly ranked features 
determined by Relief and Fisher Score while ensuring mutual relevance between the features and class labels. 
Based on this new criterion, the team has developed two novel differential evolution (DE) based filter approaches.

Bacanin et al.47, presented a diversity-oriented social network search to tackle the feature selection problem 
in detecting phishing websites. The authors aimed to enhance the detection of phishing websites by refining 
an extreme learning model that leverages the most pertinent subset of features from the phishing websites 
dataset. A new algorithm was developed and integrated into a two-level cooperative framework to accomplish 
this. The efficacy of the proposed algorithm was then evaluated and compared against six other state-of-the-art 
metaheuristics algorithms.
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Alrefai et al.48 Proposed an effective method for cancer classification using ensemble learning. The study 
employed particle swarm optimization and an ensemble learning method for feature selection and cancer 
classification. The study’s findings indicate that the proposed method is effective for cancer classification based 
on microarray datasets. Furthermore, the accuracy of the proposed method proves its superiority over other 
methods.

Gomez et al 49 proposed a new technique called Two-Step Swarm Intelligence. The method involves breaking 
down the heuristic search carried out by agents into two stages. In the first phase, agents generate partial 
solutions, used as starting states in the second phase. Our study aimed to assess the effectiveness of this approach 
in resolving the Feature Selection Problem using Ant Colony Optimization and Particle Swarm Optimization. 
The feature selection is based on the reduction concept in the Rough Set Theory. The results demonstrate that 
the Two-Step Swarm Intelligence method improves the performance of ACO and PSO metaheuristics regarding 
computation time and the quality of reduction produced.

Bezdan et al.50 proposed an algorithm based on a binary hybrid metaheuristic approach to select the optimal 
feature subset. Specifically, they combined the brainstorm optimization algorithm with the firefly algorithm 
to create a wrapper method for feature selection problems on classification data sets. The performance of the 
proposed algorithm was evaluated on 21 data sets and compared against 11 other metaheuristic algorithms. 
Additionally, the algorithm was applied to the coronavirus data set.

Gao et al.51 Introduced a Clustering Probabilistic Particle Swarm Optimization (CPPSO) to improve the 
traditional particle swarm optimization approach. CPPSO incorporates probabilities to represent velocity and 
an elitism mechanism. Additionally, CPPSO uses the K-means algorithm to cluster the population based on the 
Hamming distance into two sub-populations, which enhances its performance. The effectiveness of CPPSO is 
evaluated by comparing it against seven existing algorithms using twenty diverse datasets.

Latha et al.52 Addressed the feature selection problem by implementing grey wolf optimization (GWO) 
with decomposed random differential grouping (DrnDG-GWO) as a supervised learning technique. The study 
found that combining supervised machine learning with swarm intelligence techniques yielded the best feature 
optimization results.

Motivations
Storn et al.30 proposed the differential evolution (DE) algorithm in 1997, a powerful and straightforward 
stochastic search method operating on populations. DE is an effective global optimizer for continuous search 
problems and has been successfully applied in various domains, such as pattern recognition53, communication54, 
and mechanical engineering55,56.

The Sailfish Optimizer (SFO) is a highly effective optimization algorithm developed and presented in 2019 by 
a team of researchers known as Shadravan et al.22. This algorithm is based on the concept of population, and it 
mimics the hunting behavior of a group of sailfish as they hunt for a school of sardines. The strategy employed by 
the sailfish group involves alternating between attacking a group of sardines and retreating to capture their prey. 
The SFO algorithm has become popular in the optimization community due to its robustness and effectiveness. 
In this paper, an algorithm called DESFO that integrates both DE and SFO has been proposed. Due to their 
power and superiority, the proposed algorithm can attain satisfactory search accuracy, swift convergence speed, 
and improved stability.

Moreover, it can prevent getting stuck in local optima, which is an issue that still needs to be systematically 
addressed for the FS problem. On the other hand, compared to the state-of-the-art meta-heuristic techniques, 
including the original DE and SFO, the DESFO approach yields superior results by producing optimal or 
near-optimal outcomes for numerous problems. The proposed feature selection algorithm method was tested 
on 14 benchmarks using multi-scale attributes and records from the UCI machine learning repository. This 
implementation was carried out 30 times to validate its efficacy57. The average classification accuracy is calculated 
using two standard machine learning classification algorithms: Random Forest (RF) and k-nearest Neighbor 
(k-NN).

Preliminary work
As mentioned in the previous section, meta-heuristics have several benefits, but can existing methods adequately 
solve the FS problem? The No Free Lunch theorem (NFL)58 answers this question. This theorem suggests that 
no single algorithm can perfectly solve all optimization problems. In the case of FS on a dataset, an algorithm 
may perform exceptionally well for one dataset but inadequately for another. Therefore, there is still a need 
for an advanced metaheuristic approach that can efficiently solve almost all possible FS dataset types, which is 
currently an open research question. From this point in this section of the paper, the basic DE algorithm and 
SFO algorithm will be explained. The two algorithms will be integrated under the DESFO algorithm to optimize 
the feature selection problem and enhance classification accuracy.

Differential evolution algorithm (DE)
In 1997, Storn et al.30 introduced a Differential Evolution (DE) algorithm, considered one of the most reliable 
versions of Evolutionary Algorithms. It is known for its fast convergence, user-friendly nature, and ease of 
implementation. Additionally, the same set of parameters, such as Population size (NP), Crossover rate (Cr), 
and Scaling Factor (F), can be applied to address various optimization problems. The process begins with a given 
set of solutions. Then, a modified or mutant solution is produced for each solution vector in the current set by 
adding the weighted difference between two candidate solutions to other candidate solutions. This method, 
known as Differential Evolution (DE), has proven effective and widely applied in various optimization problems 
in different scientific and engineering domains59.
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The structure and primary search operators utilized by the DE algorithm are explained as the following:

Mutation
In every epoch (t), a mutation operator is applied by DE to generate a new donor vector, also known as a mutant 
vector, for each target solution. The mutation operator randomly selects three candidate solutions according to 
Eq. (1); it demonstrates that the donor vector is created by scaling the difference vector between two vectors and 
then adding the result to the third solution30.

In this process, three distinct integers r1, r2andr3 are randomly selected, and ∈ [1, NP] where NP is a 
positive integer greater than or equal four. Additionally, these integers are different from the running index i. 
The differential amplification 

(

xr2,G − xr3,G
)

   is then amplified by a constant factor F, which ranges from 0 to 2.

Crossover
After mutation, a crossover search operator produces an offspring (trial) vector from the target solution. The 
exponential and binomial crossover search operators are the most frequently used and uncomplicated ones. 
Please keep in mind that for each decision variable (DV) j in the scenario where ( rand ≤ Cr ), do the following:

where a random value jrand is selected from the range of, where Nx is a specified value, a value chosen at random 
and referred to as “jth evaluation,” denoted by rand(j) is selected from a uniform random number range of [0, 
1]. This ensures that at least one DV (design variable) is obtained from the trial vector. The crossover rate Cr , 
which is used to control the number of variables, is obtained from the donor vector, and it is guaranteed that 
Vi,G+1 provides at least one parameter to ui,j,G

Selection
A selection operator is utilized to determine the optimal solution by comparing the objective function values 
of both the parent and offspring. If the offspring has a lower objective function value, it is preserved for the 
subsequent iterations. If not, the parent vector is mathematically represented within that particular generation, 
and it is obtained using:

To determine if it should join generation G + 1, the trial vector xi,G+1 is evaluated against the target vector 
xi,G using the greedy criterion. If the trial vector xi,G+1 results in a lower cost function value compared to the 
target vector xi,G , then the trial vector xi,G+1 replaces the target vector ui,G ; if not, the original target vector xi,G 
value is kept.

The sailfish optimizer (SFO)
Shadravan et al.22 developed a unique algorithm called sailfish optimizer (SFO) in 2019, which is based on swarm 
intelligence and is a population-based algorithm. To devise this technique, the scientists took cues from a pack of 
predatory sailfish. The approach involves the use of two distinct populations. The sailfish population is responsible 
for intensifying the search around the current best solution, while the sardine population diversifies the search 
space. The sailfishes are considered potential solutions, and their positions in the search space represent the 
problem’s variables. The algorithm aims to randomize all search agents’ movement (sailfish and sardine) to the 
greatest extent possible. Sailfishes are dispersed throughout the search space, while the positions of sardines aid 
in discovering the optimal solution in the search space.

The algorithm identifies the sardine with the best fitness value as the ‘injured’ fish, with its position denoted 
as ( Pisrdinj ) at the  ith iteration. During each iteration, the positions of both sardines and sailfishes are updated. 
For the ith iteration, the position of a sailfish is updated using the ‘elite’ sailfish PiSlfbest and the ‘injured’ sardine 
based on a specific criterion.

The position of sailfishes and sardines is modified at each iteration denoted by i+ , and the (elite) and (injured) 
alter or update the position of a sailfish to a new one denoted by. The updating is done according to Eq. (4) 37:

where the value of   rnd ∈ (0,1)  is a random value, and the coefficient  µi is generated by Eq. (5):

where In each iteration, the prey density ( PrD ), which represents the number of prey available, is determined 
using Eq. (3). As the number of prey decreases during group hunting, the value of PrD decreases accordingly.

(1)Vi,G+1 = xr1,G + F
(

xr2,G − xr3,G
)

(2)ui,j,G =
{

ui,j,G if rand
(

j
)

≤ Cr or j = jrand
xi,j,G otherwise′ j = 1,2, . . .D

(3)xi,G+1 =
{

ui,G if
(

f
(

ui,G
)

≤
(

xi,G
))

xi,G otherwise

(4)Pi+1
Slf = PiSlfbest − µi

(

rand ∗
Pi
Slfbest + Pisrdinj

2
− Pi

Slf

)

(5)µi = (3 ∗ rand ∗ PrD − PrD)
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Sailfish’s and sardine numbers are represented by NSlf andNsrd, respectively. The NumSlf  can be calculated 
according to Eq. (7):

Please keep in mind that ( Prcent ) refers to the percentage of the sardine population that constitutes the 
initial sailfish population. It is also assumed that the initial number of sardines exceeds the number of sailfish.

The positions of the sardines are updated in each iteration according to Eq. (8):

The old position and the updated position of the sardine are represented by  PiSrd and Pi+1,

Srd  respectively. While 
the ATK represents the power of the sailfish attack at each iteration ith and can be calculated by Eq. (9):

ATK is crucial in determining the number of sardines that update their positions and the extent of their 
displacement. Decreasing ATK can facilitate the convergence of search agents. Based on the ATK  parameter, 
the values of γ (number of sardines that update their position) and δ(number of variables) of the sardines are 
computed using Eqs. (10) and (11):

where NSrd and v denote the sardine number and the number of variables, respectively, if a sardine surpasses 
the fitness level of any sailfish, the sailfish will adjust its position to follow that sardine. In contrast, the sardine 
is removed from its population.

To explore the search space effectively, it’s important to select both sailfishes and sardines randomly. Sailfishes 
have a decreasing attack power after each iteration, allowing sardines to escape from the most aggressive sailfish. 
This helps to balance the exploration and exploitation of the search space. The ATK parameter is used to find 
the optimal balance between both of them.

Methodology of the proposed DESFO
Improving the accuracy of classifiers involves focusing on pertinent features. Some Recent research studies1,60 
suggest utilizing the methodology of feature selection (FS) to substitute a sizable quantity of insignificant features 
with a more concise and applicable subset of features. FS categorizes features as essential or non-essential, 
marking them as 1 or 0. This paper presents a hyped algorithm named (DESFO) which consists of two algorithms, 
(DE) differential evolution and (SFO) sailfish optimizer, for implementing FS. The algorithm comprises several 
stages: initialization, position updating, binary conversion, exploration optimization via a new strategy, and 
exploitation optimization.

Table 2 displays the number of iterations allocated for each algorithm, which is 100. For the proposed 
algorithm, DESFO, this number was distributed equally between DE and SFO, with 50 iterations each. DE 
optimized the first 50 iterations to obtain the optimal solution, which was then passed on to SFO to enhance 
selected relevant features and achieve the best classification accuracy. The following sections provide detailed 
explanations of each of these stages.

Initial population generation
The first step in using the DESFO algorithm is generating an initial population of X positions representing 
potential solutions in a D-dimensional space. The population size is determined using a specific formula.

X signifies the overall number of positions, while D represents the problem’s dimensionality. The position 
matrix is defined as:

The jth solution is represented by Mi,j , where j is the jth component. M , the initial population, is generated 
within predefined bounders as:

(6)PrD = 1−
NSlf

NSlf − Nsrd

(7)NSlf = Nsrd ∗ Prcent

(8)Pi+1
Srd = rand ∗ (PiSlfbest − PiSrd + ATK)

(9)ATK = A ∗ (1− (2 ∗ itr ∗ k))

(10)γ = ATK ∗ NSrd

(11)δ = ATK ∗ v

(12)X = Round
(

10+ 2 ∗
√
D
)

.

M =











m1,1,m1,2, . . .m1,p

m2,1,m2,2, . . .m2,p

.

.

.
.
.
.

. . .
.
.
.

mX,1,mX,2, . . .mX,p











(13)Mu
i = u(0,1) ∗ (UB− LB)+ LB
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Position update in DESFO
Updating the position involves using the equations of DE and SFO as described in subsections 3.1 and 3.2. After 
updating the position, it goes through binary conversion, as explained in Subsection 4.3. The fitness function 
then assesses the binary-transformed vector to calculate the classification error while keeping the original format 
of the vector for future updates.

Position binary conversions
Converting the values of meerkat positions from continuous to binary is necessary before assessing their fitness 
using the FS method. This is because the DESFO method, which is used to derive the position values, differs 
from the binary framework of FS, making it challenging to apply the latter directly to binary/discrete problems.

The feature selection (FS) method uses a vector of binary values, where the selected features are represented 
by 1s, indicating 0s represent their continuous values and the non-selected features. The length of the solution 
vector is equivalent to the count of features in the original dataset.

A transfer function (TF) has been utilized in the proposed algorithm, which Fang et al. suggested61, which has 
a V-shaped curve and is known for its exceptional global search capability. The function is expressed as follows:

The position value obtained is represented by y , and a DESFO position is considered to have a valid TF output 
where α is less than 0.64 and falls within the range of [0, 1]. The defined update rule for DESFO’s position is 
based on the following equation:

Fitness evaluation
The DESFO framework and a new FS-based technique incorporate k-NN and RF as evaluative mechanisms. The 
k-NN method62 selects the most common class among the closest neighbors to predict the classification of new 
instances. On the other hand, the RF, explained in44, uses decision trees to recursively divide the training data 
into small sets, which helps optimize the classification task by using an impurity criterion such as information 
gain or “gini” index63. These classifiers are particularly efficient in handling high-dimensional data and require 
minimal computational effort, as stated in62.

Achieving the right balance between accuracy and feature set size is crucial in DESFO. While opting for 
a smaller feature set can improve the precision of classifiers such as k-NN and RF, it may also compromise 
accuracy due to the reduced feature set64. The relationship between the size of the feature set and the preferred 
features is inversely proportional, which means there is a potential trade-off between accuracy and feature set 
size. Therefore, the PMBH method is vital in balancing feature selection and classification accuracy65.

When assessing the effectiveness of an algorithm, it is essential to consider the trade-off between precision 
and feature size. This trade-off can be mathematically represented as:

In the given equation, there are two weight coefficients, α1 and α2, where α1 is a value between 0 and 1, 
and α2 is determined by subtracting α1 from 1. These values have been determined through extensive testing, 
as mentioned in reference, and the expression represents the ratio of the selected features to the total number 
of features in the original dataset. The main objective of this design is to increase precision while reducing the 
length of the feature set, as suggested in reference38. The value |D *| represents the size of the selected feature set, 
while |D| represents the total number of features in the original dataset.

Improving exploration
Search agents like meerkats tend to explore outside their assigned search areas to find optimal solutions. However, 
issues may arise when using boundary-handling techniques to keep an agent within the initial search territory, 
as discussed in61. The two primary traditional methods for boundary handling are Boundary and Random 
modes. In Boundary mode, if a solution’s dimension d goes beyond the search space S, it gets repositioned to the 
nearest boundary, either lower bound L or upper bound U. Conversely, dimension d of S receives random value 
mutations in Random mode. These traditional methods, however, have limitations in fully exploring the search 
space. Therefore, Periodic Mode Boundary Handling (PMBH) was developed as per61, aiming to improve the 
exploration phase. PMBH allows for infinite search space for agent movement, consisting of periodic replicas of 
the original space S, maintaining the same fitness landscape, as shown in Fig. 1.

Exploitation optimization
This particular segment notices the updated LS principles of the enhanced DESFO. These principles aim to 
improve the efficiency of algorithms and ensure better utilization by generating a fresh population with optimal 
positions while maintaining the essential structure.
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Three main principles guide the proposed approach. Firstly, to address the limitation of the original algo-
rithm that lacks a mechanism to recall and preserve the best solutions over iterations, a binary matrix has been 
introduced to store the top solutions obtained previously. Secondly, repetitive best solution patterns resulting 
from binary conversion can reduce exploitation effectiveness, which can be improved by incorporating distinct 
solutions in the binary matrix. Lastly, the LS strategy relies on identifying solutions close to the best discovered 
by converting continuous positions into binary format and following a constrained normal distribution, as 
shown in Eq. (17).

The solution obtained through minor mutation slightly deviates from the current best, due to a random factor 
represented by β which is normally distributed N(0.0, 0.4) . The optimal solution is initially added to an empty 
set to find local search solutions. The set has a fixed maximum size, LSmax . Then, a new solution is generated 
by applying Eq. (17) on the current gbest , which is then converted to binary and assessed for fitness. If this new 
solution outperforms the current best, it is considered the best solution.

(17)xl+1
d = xL + βxL

Figure 1.   PMBH70.
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The flowchart and Pseudo code of DESFO
In Fig. 2, the steps of the proposed DESFO algorithm are demonstrated.

Algorithm 1.   Differential Evolution with Sailfish Optimizer (DESFO)

Complexity analysis
In analyzing the complexity of the DESFO, we can delve deeper into the computational processes involved. This 
includes looking at the computational demands of evaluating classifiers and the benefits of using combined 
methods in terms of efficiency.
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•	 Complexity Breakdown by Component

1-	 Initialization: Initializes NP individuals, each possessing D features. This operation has a complexity of 
O (NP × D).

2-	 Differential Evolution Operations:

•	 Mutation: For the mutation step to be executed across all individuals, it involves choosing three different 
individuals and then computing the vector differences for each, which amounts to a complexity of (D) for each 
individual. Consequently, the total complexity for the mutation step applied to all individuals is O (NP × D).

•	 Crossover: for each person, determined by the probability CR, this leads to O (NP × D).
•	 Selection: Evaluating and selecting the better individual between the target and trial vector typically involves 

fitness computation, which can be a significant factor depending on the complexity of the fitness function. 
the complexity is O(NP)

Figure 2.   DESFO flowchart.
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3-	 Sailfish Optimizer Updates:

•	 Position Update: Each sailfish updates its position based on the positions of elite and injured sardines, the 
complexity per generation is O(NP)

4-	 Binary Conversion and Fitness Evaluation:

•	 Binary Conversion: Each of the DD features of each NPNP individuals is converted from a real number to a 
binary value based on a transfer function, totaling O(NP × D)

•	 Fitness Evaluation: The evaluation of fitness depends on the classification algorithm used. For k-NN or RF, the 
time complexity might depend on the number of features D and possibly the sample size if a wrapper method 
is used. The complexity is therefore O (NP × f (D)), where (D) represents the computational complexity of 
evaluating one individual.

5-	 Local Search:

•	 Local Search Operations: Assuming that local search is applied to a subset of the population (say k best 
individuals) and each local search operation has a complexity O ((D)), where (D) might involve multiple 
evaluations of minor variations of the individual. If LS iterations of local search are performed for each 
individual, the complexity for this part would be (k × LS × (D)).

•	 Overall Complexity

Combining all these elements, the total complexity per generation of the DESFO algorithm would be: (NP×
D+NP×D+NP+NP×D+NP×(D)+k×LS×g(D))

This simplifies to: (3×NP×D+NP×(D)+k×LS×g(D))
For all generations, MaxGens, the overall complexity becomes: (MaxGens×(3×NP×D+NP×f(D)+k×LS×g(D)))

–	 Comparing the complexity of DESFO with DE and SFO shows that the total complexity for DESFO is O(M
axGens × (3 × NP × D + NP × f(D) + k × LS × g(D))) however SFO complexity is O(MaxGens × 4 × NP) and DE 
complexity is O(MaxGens × 3 × NP)which mean that The DESFO has more computational complexity due to 
its integrated steps and phases

Experimental results and analysis
The following part of the paper presents the results from the proposed DESFO algorithm and compares them 
with those reported in prior studies. To verify the proposed algorithm, 14 multi-scale benchmarks were utilized—
the mean values in the results are represented as evaluation metrics. To showcase the efficacy of the suggested 
algorithm, in all experiments, we employed the datasets that are elaborated in subsection 5.1, Moreover, the 
metaheuristic techniques’ main parameters utilized in this paper are outlined in subsection 5.2, in subsection 5.3, 
evaluation measures are explained, then, in subsection 5.4, the proposed DESFO algorithm is evaluated and 
compared with the k-NN and RF algorithms to investigate their respective results, in subsection 5.5, An 
investigation was conducted to compare the outcomes of the suggested DESFO algorithm with those of other 
methods, Convergence graphs are depicted in Sect. 5.6, in subsection 5.7, the Wilcoxon’s test is conducted to 
assess the credibility of differences in fitness rates between the proposed DESFO algorithm and its counterparts 
and the final Sect. 5.8 is for discussion of the results.

Benchmarks description
The proposed algorithm’s performance is demonstrated using 14 multi-domain features and instance benchmarks. 
These benchmarks are obtained from the UCI machine learning repository57. A variety of attributes and instances 
in each benchmark is beneficial in validating the proposed algorithm. Table 1 provides an overview of the 
benchmarks used in this paper, along with their respective properties and descriptions. The datasets shown in 
Table 1 are sorted in descending according to the number of features.

Parameters configuration
The DESFO algorithm proposed in this study was evaluated against several meta-heuristic algorithms, including 
the two original algorithms that were combined, the Differential Evolution (DE) algorithm30 and the sailfish 
optimization (SFO) algorithm22, as well as nine of the other algorithms, including Harris Hawks Optimization 
(HHO)66, Particle Swarm Optimization (PSO)67, Bat Algorithm (BA)17, Whale Optimization Algorithm (WOA)68, 
Grasshopper Optimization Algorithm(GOA)69, Grey Wolf Optimization (GWO)18, Bird Swarm Algorithm 
(BSA)70, Henry gas solubility optimization (HGSO)71, and Artificial Bee Colony (ABC)11. In this work, the ML 
classifiers’ primary parameters have been established as follows: the k-NN classifier’s Euclidean distance metric 
has been approximated to be 5. The estimation was based on the outcomes obtained from previous papers, such 
as72. On the other hand, the Random forest (RF) classifier73 is a popular machine-learning algorithm often used 
for complex tasks such as time-series forecasting, image classification, facial expression recognition, action 
recognition and detection, visual tracking, label distribution learning, and more. Every method is evaluated on 
each dataset by conducting 30 distinct experiments. The results are reported according to the mean performance 
measures. To maintain equality in the evaluation process, each method had a population size of 10 and a 
maximum of 100 iterations. The size of the datasets used was proportional to the complexity of the problem. 
The exploration of the continuous search space was confined yet extensive by establishing the search domain 
as [−1, 1].
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A validation process is necessary to assess the optimality achieved by the outcomes in the framework, so a 
tenfold cross-validation method is employed. This ensures that the values obtained are reliable. The benchmark 
is randomly split into two subsets, with 80% of the benchmark used for training and the remaining for testing 
purposes3. During the learning process of the machine learning classifier, sunset for training is used and opti-
mized, while the test subset is used to evaluate the selected features. Table 2 displays the standard configurations 
for all techniques and the parameter settings for each method, which were determined based on the original 
variants and the data included in their initial publications. Python is used to run the processes on a computer 
system environment equipped with a CPU, an Intel i7 processor, RAM, which is 16 GB, and a GPU, which is 
NVIDIA GTX 1050i.

Metrics of performance
The DESFO algorithm performance is compared to other methods, and each approach is assessed independently 
in 30 runs per benchmark. The evaluation of the FS strategy employs certain measures to conduct this assessment.

Mean accuracy: The accurate data classification rate ( Meanacc ) can be determined by executing the method 
independently for 30 runs:

Table 1.   Dataset characteristics.

# Benchmarks #. features #. instances #.classes

1 PenglungEW 325 73 7

2 IonosphereEW 34 351 2

3 SonarEW 60 208 2

4 WaveformEW 40 5000 3

5 KrVsKpEW 36 3196 2

6 BreastEW 30 569 2

7 Lymphography 18 148 4

8 Vote 16 300 2

9 Zoo 16 101 7

10 Exactly2 13 1000 2

11 M-of-n 13 1000 2

12 WineEW 13 178 3

13 Breast cancer 9 699 2

14 Tic-tac-toe 9 958 2

Table 2.   All Algorithms parameter’s configuration.

# Algorithm Parameters configuration

1 All Algorithms
#of Runs = 30
#T denoted Iterations = 100
N is the size of the population = 10
D = # of Attributes in the Used benchmarks

2 DE
F is an amplifier constant ∈ [0, 2], Cr is the crossover rate, Rand ∈ [0, 1]
jrand ∈ [1,2.Nx]
r1, r2, r3 ∈ [1, NP], NP ≥ 4

3 SFO
pp = 0.1 is the in-between ratio of sardines and sailfish
ε = 0.0001
A = 1

4 ABC # bees = 16, # scout bees = 3, # onlooker bees = 4

5 PSO Inertia weight (ωmax = 0.9ωmin = 0.4),
Acceleration parameter (c2 = c1 = 1.2)

6 BA Loudness A = 0.8 Lower and upper pulse frequencies = 0, 10 Pulse emission rate r = 0.95

7 GWO a is reduced from 2 to 0 linearly

8 WOA a is reduced from 2 to 0 b = 1.0 p = 0.5 linearly

9 GOA Cmax = 1 and Cmin = 0.00004

10 HHO E ∈ [− 1, 1] denotes Rabbit energy

11 BSA

ff = 10 and denote the flight frequent
fl = 0.5 is the Following coefficient
(a1 = a2 = 1.0) are the Effects on the vigilance behaviors of birds
(c1 = c2 = 1.5) are two coefficients of the Acceleration
p = 0.8 is food foraging Probability

12 HGSO # of clusters = 2 l1 = 5E − 03, l2 = 1E + 02, and l3 = 1E − 02 α = β = 0.1 and K = 1.0
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where mean accuracy is represented by Meanacc , while the number of samples in the subset of testing is denoted 
by m, the predicted class label for a sample is denoted by PLr. In contrast, the reference class label is denoted 
by ALr. A function called match (PLr, ALr) compares these labels. When PLr is equal to ALr, the value of match 
(PLr, ALr) is 1; otherwise, it is 0.

Mean fitness value: The metric (MeanFit) measures the average fitness results achieved through the 
recommended approach by running it individually for 30 runs. This highlights how decreasing the number of 
chosen features can lead to a lower error classification rate, as per Eq. (16). The best result is indicated by the 
minimum value, which is evaluated based on fitness as:

The MeanFit denotes the mean or average fitness value, while f k∗  indicates the best possible fitness outcome 
attained during each run of the 30 k-th runs.

The mean number of features selected: This metric, which MeanFeat denotes, represents the mean or average 
count of chosen features obtained by performing the technique independently for 30 runs and is defined as:

where 
∣

∣dk∗
∣

∣ denotes the selected features, the number of features for the optimal solution for each run of the thirty 
k-th runs, while |D| denotes the number of the complete features used from the benchmarks.

•	 Wilcoxon’s rank-sum test: To gain a deeper insight into the importance of the method discussed statistical 
evidence must demonstrate its effectiveness. Therefore, the efficacy of the results derived from the methods 
used is often validated by employing the Wilcoxon rank-sum non-parametric test. This is favored for its 
ability to statistically distinguish the significance and dependability of various competing methods74. In 
this study, the focus is on evaluating the proposed DESFO method in comparison with other algorithms. A 
null hypothesis is put forward, suggesting no difference in performance between the DESFO algorithm and 
the others when compared pairwise. Conversely, if proven otherwise, the DESFO algorithm outperforms 
the rest. The assessment hinges on the calculation of a p-value through the Wilcoxon rank-sum test, which 
helps analyze the differences in outcomes from 30 separate executions of both the DESFO and competing 
algorithms.

The results of ML classifiers (k‑NN and RF) and DESFO
The mean accuracy ( Meanacc ) was used to compare the performance of the presented ML classifiers (RF and 
k-NN) with the proposed methods (DESFO-RF and DESFO-K-NN) and the mean number of selected features 
( MeanFeat ) in this subsection are also given. This was done to evaluate the effectiveness and scope of the DESFO 
approach.

Comparisons of DESFO‑ K‑NN and K‑NN
In Table 3, a comparison between the DESFO-K-NN technique and the basic K-NN algorithm is demonstrated. 
The evaluation is centered on two metrics to measure performance: the average accuracy of classification 
(MeanAcc) and the average count of selected features (MeanFeat).

After analyzing Table 3, it is worth mentioning that the DESFO–K-NN technique led to an increase in MeanAcc 
on all benchmarks. The increase was more than 15% on four of them. Moreover, MeanAcc had a score of over 
93% on nine out of the total fourteen benchmarks. It even achieved 100% MeanAcc on four of them. It is worth 
mentioning that the MeanFeat has decreased in 93% of the benchmarks due to implementing the DESFO–K-NN 
method as suggested. However, the DESFO–K-NN method could not improve the MeanFeat on the Tic-tac-toe 
benchmark. Finally, it was found that the DESFO–K-NN technique outperformed the basic K-NN in terms of 
MeanAcc and most of the benchmarks. On the other hand, the suggested MeanFeat of the DESFO–k-NN approach 
has shown promising results in feature selection compared to the basic k-NN tested with the chosen datasets.

Comparisons of DESFO‑ RF and RF
In Table 4, a comparison between the DESFO-RF algorithm and the basic RF algorithm is demonstrated. The 
comparison is based on two performance metrics: the mean accuracy of classification (MeanAcc) and the mean 
number of chosen features (MeanFeat).

After analyzing Table 4, it is worth mentioning that the DESFO–RF technique led to an increase in MeanAcc 
on 93% of all benchmarks. The increase was more than 15% on four of them. Moreover, MeanAcc had a score of 
over 92% on nine out of the total fourteen benchmarks. It even achieved 100% MeanAcc on three of them. It is 
monitored that DESFO-RF and basic RF are equal in accuracy in one of the WineEW benchmarks. It is worth 
mentioning that the MeanFeat has decreased in 100% of the benchmarks due to implementing the DESFO–RF 
method as suggested. However, finally, it was found that the DESFO–RF method outperformed the original RF 
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algorithm in terms of MeanAcc in most of the benchmarks and MeanFeat. The suggested DESFO–RF approach has 
shown promising results in feature selection compared to the main RF on the chosen benchmarks.

DESFO results versus other MH algorithms
To prove the effectiveness of DESFO in comparison with DESFO-RF and DESFO-K-NN, which rely on RF and 
k-NN classifiers, respectively, a comparison was made between DESFO and other meta-heuristic methods such 
as DE, SFO, ABC, PSO, BA, GWO, WOA, GOA, HHO, BSA, and HGSO, all of which were conducted under 

Table 3.   Comparison of MaeanAcc and MeanFeat for DESFO-K-NN & the basic K-NN. Superior values are in 
[bold].

Benchmarks

Accuracy Features

Basic K-NN
DESFO-
K-NN(Mean)

Increasing
(%) Basic K-NN

DESFO-
K- NN(Mean)

Decreasing
(%)

PenglungEW 0.5333 0.6533 22.50 325 108.2 66.71

IonosphereEW 0.8451 0.9324 10.33 34.0 9.700 71.47

SonarEW 0.8571 0.9857 15.00 60.0 23.60 60.67

WaveformEW 0.804 0.8480 5.470 40.0 23.20 42.00

KrVsKpEW 0.9656 0.9822 1.720 36.0 20.10 44.17

BreastEW 0.9211 0.9649 4.760 30.0 6.300 79.00

Lymphography 0.7000 0.8400 20.00 18.0 8.500 52.78

Vote 0.9333 1.0000 7.150 16.0 4.100 74.38

Zoo 0.9048 1.0000 10.52 16.0 5.200 67.50

Exactly2 0.7400 0.7935 7.230 13.0 6.300 51.54

M-of-n 0.8800 1.0000 13.64 13.0 6.100 53.08

WineEW 0.5833 1.0000 71.44 13.0 4.000 69.23

BreastCancer 0.6214 0.9857 58.63 9.00 6.000 33.33

Tic tac toe 0.8441 0.8542 1.200 9.00 9.000 0.00

W
Score T
L

0 14

*

0 13

*
0 0 1 1

14 0 13 0

Table 4.   Comparison of MaeanAcc and MeanFeat for DESFO-RF & the basic RF. Superior values are in [bold].

Benchmarks

Accuracy Features

Basic RF
DESFO-
RF(Mean)

Increasing
(%) Basic RF

DESFO-
RF(Mean)

Decreasing
(%)

PenglungEW 0.3333 0.7667 130.03 325 155.6 52.12

IonosphereEW 0.9014 0.9732 7.9700 34.0 014.6 57.06

SonarEW 0.7857 0.9286 18.190 60.0 027.6 54.00

WaveformEW 0.7690 0.8197 6.5900 40.0 020.9 47.75

KrVsKpEW 0.7953 0.9487 19.290 36.0 017.1 52.50

BreastEW 0.9298 0.9947 6.9800 30.0 012.2 59.33

Lymphography 0.7333 0.8933 21.820 18.0 009.1 49.44

Vote 0.9000 1.0000 11.110 16.0 003.2 80.00

Zoo 0.9524 1.0000 5.0000 16.0 004.5 71.88

Exactly2 0.7500 0.7650 2.0000 13.0 005.0 61.54

M-of-n 0.8000 0.9950 24.380 13.0 006.3 51.54

WineEW 1.0000 1.0000 0.0000 13.0 003.0 76.92

BreastCancer 0.9643 0.9857 2.2200 9.00 005.1 43.33

Tic tac toe 0.7500 0.8698 15.970 9.00 007.0 22.22

W
Score T
L

0 13

*

0 14

*1 1 0 0

13 0 14 0
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identical conditions. The comparison results were measured in terms of mean fitness value (MaeanFit), mean 
accuracy (MaeanAcc), and mean number of features selected (MeanFeat).

Comparisons based on the RF classifier
Table 5 presents the fitness values obtained from the proposed DESFO-RF meta-heuristic optimization algorithm, 
compared with those of other advanced optimization techniques in addressing the FS issue. Table 5 shows that 
DESFO-RF showed superior performance compared to other methods. In the FS problem, it scored the highest 
in 8 benchmarks and achieved the same score as the others in 2 benchmarks. This led to a more significant 
impact in 10 out of the 14 benchmarks, equivalent to 71% of all the benchmarks. Furthermore, the benchmark 
employed in this research comprises benchmarks of varying sizes, demonstrating the ability of DESFO-RF to 
deliver consistent performance across the entire range of benchmarks, regardless of their size. It was observed 
that DESFO–RF missed out on 4 benchmarks, but the results obtained were much closer to the methods used 
by SFO and ABC when the mean fitness values were compared. This indicates that the DESFO–RF has better 
outcomes than its competitors. It has been discovered that the DESFO-RF method suggested by the team ranked 
first in all benchmarks except for SFO. This provides further evidence of the effectiveness of the proposed method 
over other techniques used by competitors.

Table 6 compares the classification accuracy means of the presented DESFO-RF with other advanced 
metaheuristic optimization algorithms in tackling the FS issue, as per the empirical findings. It’s worth mentioning 
that, according to Table 6, the DESFO-RF approach showed better performance than all other methods in terms 
of accuracy mean across seven benchmarks. Moreover, it delivered equivalent results to other methods across five 
benchmarks but needed to be more fortunate to outperform them in two benchmarks. However, the DESFO-RF 
approach was significantly more effective than other methods in 12 out of 14 benchmarks, equivalent to 85.7% 
of all the benchmarks. Also, it’s worth noting that the SFO method was ranked second on several benchmarks. 
It showed a slight improvement of 0.0034% on the Lymphography benchmark and 0.0020% on the M-of-n 
benchmark while achieving the same score as the top performer on five other benchmarks.

Table 7 compares the mean number of selected features between the DESFO-RF method and other popular 
meta-heuristic optimization algorithms commonly used for feature selection (FS) strategy. When Table 7 is 
analyzed, the observation shows that DESFO-RF and SFO produce similar results regarding the number of 
selected features, and both outperform the other algorithms. These two techniques won in two benchmarks and 
tied in three benchmarks, surpassing the other algorithms: DE, ABC, PSO, BA, GWO, WOA, GOA, HHO, BSA, 
and HGSO. However, it is important to note that this does not necessarily imply a tie in classification accuracy 
between DESFO and SFO. DESFO has demonstrated superiority over other algorithms. Furthermore, it should be 
kept in mind that choosing the smallest number of characteristics may negatively impact classification accuracy.

Comparisons based on the K‑NN classifier
Table 8 compares the average fitness values between the proposed DESFO-K-NN and other advanced MH opti-
mization algorithms in addressing the FS problem. After examining Table 8, the DESFO-K-NN outperformed all 
other methods in 9 benchmarks and tied in 2 benchmarks in the FS problem. This indicates that DESFO-K-NN 
had a significantly better impact on 11 out of 14 benchmarks, accounting for 85.7% of all benchmarks. Addition-
ally, the study employed a benchmark of both large and small-scale benchmarks, indicating that DESFO-K-NN 
can deliver consistent performance across the entire range of benchmarks, irrespective of their size. For the two 

Table 5.   Results comparison of the mean fitness value (MeanFit) based on RF classifier for DESFO with other. 
MH methods Superior values are in [bold].

Benchmarks DESFO DE SFO ABC PSO BA GWO WOA GOA HHO BSA HGSO

PenglungEW 0.2358 0.2623 0.2423 0.2499 0.3084 0.3152 0.2953 0.2952 0.3085 0.3019 0.2821 0.3357

IonosphereEW 0.0308 0.0417 0.0334 0.0381 0.0447 0.0493 0.0417 0.0442 0.0422 0.0457 0.0405 0.0501

SonarEW 0.0753 0.1064 0.0849 0.0977 0.1177 0.1467 0.1108 0.0993 0.1013 0.118 0.1017 0.1472

WaveformEW 0.1837 0.1967 0.1853 0.1889 0.1991 0.2075 0.1891 0.1965 0.1934 0.1953 0.1949 0.2103

KrVsKpEW 0.0555 0.0676 0.0604 0.0622 0.0731 0.0784 0.0619 0.0657 0.0635 0.0688 0.0641 0.0798

BreastEW 0.0093 0.0165 0.0115 0.0118 0.0219 0.0195 0.0165 0.0191 0.0192 0.0202 0.0136 0.0278

Lymphography 0.1107 0.1505 0.1071 0.128 0.1603 0.1666 0.1373 0.1535 0.1299 0.1435 0.137 0.1903

Vote 0.0020 0.0032 0.0018 0.0023 0.0037 0.0144 0.0027 0.0026 0.0026 0.0023 0.0027 0.0123

Zoo 0.0028 0.0033 0.0029 0.0032 0.0035 0.004 0.0033 0.0036 0.0034 0.0034 0.0035 0.0047

Exactly2 0.2365 0.242 0.2385 0.241 0.2462 0.2466 0.241 0.2447 0.2431 0.2457 0.238 0.2488

M-of-n 0.0098 0.0556 0.0078 0.0184 0.0732 0.0751 0.013 0.028 0.0332 0.0255 0.0367 0.0839

WineEW 0.0023 0.0027 0.0023 0.0027 0.0028 0.0035 0.0026 0.0025 0.0028 0.0029 0.0026 0.0044

BreastCancer 0.0192 0.0194 0.0191 0.0191 0.0198 0.0218 0.0197 0.0196 0.0196 0.0201 0.0194 0.0200

Tic-tac-toe 0.1367 0.1375 0.1367 0.1367 0.1383 0.1391 0.1367 0.1383 0.1375 0.1403 0.1367 0.1482

W
Score T
L

8 0 3 0 0 0 0 0 0 0 0 0

2 0 3 2 0 0 1 0 0 0 1 0

4 14 8 12 14 14 13 14 14 14 13 14
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missing benchmarks, it has been noted that DESFO-K-NN has produced almost equivalent outcomes to other 
techniques in terms of mean fitness values. This highlights the superior results of DESFO-K-NN. Except for SFO 
in two benchmarks (vote and zoo), none of the competing methods are ranked first compared to DESFO-K-
NN. Hence, it is evident that DESFO-K-NN is superior to the suggested competitor’s methods. In addition, the 
results of the comparison between DESFO-K-NN and other metaheuristic optimization algorithms in terms of 
classification accuracy values for feature selection strategy are presented in Table 9. The table shows the empiri-
cal outcomes of this comparison.

From Table 9, it is essential to note that DESFO-K-NN outperformed all other methods regarding accuracy 
mean values across seven benchmarks. In the remaining seven benchmarks, results were similar to those achieved 
by the different methods. DESFO-K-NN also showed significantly better performance in all 14 benchmarks, 
accounting for 100% of all benchmarks, which is a remarkable improvement compared to other methods. 
Additionally, In Table 10, a comparison of the mean number of selected features between the DESFO-K-NN 
method and other established meta-heuristic optimization algorithms is given. This comparison helps us 
understand the effectiveness of the DESFO-K-NN method in addressing the FS strategy.

Table 6.   Results comparison of the mean accuracy (MeanAcc) based on RF classifier for DESFO with other MH 
methods. Superior values are in [bold].

Benchmarks DESFO DE SFO ABC PSO BA GWO WOA GOA HHO BSA HGSO

PenglungEW 0.7667 0.74 0.76 0.7533 0.6933 0.6867 0.7067 0.7067 0.6933 0.7 0.72 0.6667

IonosphereEW 0.9732 0.962 0.9704 0.9662 0.9592 0.9549 0.962 0.9592 0.962 0.9577 0.9634 0.9549

SonarEW 0.9286 0.8976 0.919 0.9071 0.8857 0.8571 0.8929 0.9048 0.9024 0.8857 0.9024 0.8571

WaveformEW 0.8197 0.8062 0.8179 0.8145 0.8039 0.7955 0.814 0.8070 0.8101 0.8076 0.8075 0.7937

KrVsKpEW 0.9487 0.9367 0.9441 0.9423 0.9313 0.9264 0.942 0.9384 0.9406 0.9350 0.9403 0.9252

BreastEW 0.9947 0.9877 0.993 0.993 0.9825 0.9851 0.9877 0.9851 0.9851 0.9842 0.9912 0.9772

Lymphography 0.8933 0.8533 0.8967 0.8767 0.8433 0.8367 0.8667 0.8500 0.8733 0.8600 0.8667 0.8133

Vote 1.0000 1.0000 1.0000 1.0000 1.0000 0.9883 1.0000 1.0000 1.0000 1.000 1.0000 0.9917

Zoo 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000

Exactly2 0.7650 0.7595 0.7630 0.7605 0.7555 0.755 0.7605 0.757 0.7585 0.7555 0.7635 0.7515

M-of-n 0.9950 0.9495 0.9970 0.9865 0.9325 0.93 0.992 0.977 0.972 0.9795 0.9685 0.9220

WineEW 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

BreastCancer 0.9857 0.9857 0.9857 0.9857 0.9857 0.9836 0.9857 0.9857 0.9857 0.9857 0.9857 0.9857

Tic-tac-toe 0.8698 0.8688 0.8698 0.8698 0.8677 0.8667 0.8698 0.8677 0.8688 0.8656 0.8698 0.8573

W
Score T
L

7 0 2 0 0 0 0 0 0 0 0 0

5 4 5 5 4 2 5 4 4 4 5 3

2 10 7 9 10 12 9 10 10 10 9 11

Table 7.   Results comparison of the mean number of features selected (MeanFeat) based on the RF classifier for 
DESFO with other MH methods. Superior values are in [bold].

Benchmarks DESFO DE SFO ABC PSO BA GWO WOA GOA HHO BSA HGSO

PenglungEW 155.6 160.7 153.3 183.7 156.3 161.1 159.9 155 158.8 160.2 160.2 184.7

IonosphereEW 14.60 13.90 14.00 15.8 14.6 16.00 13.90 12.9 15.50 13.10 14.30 18.70

SonarEW 27.60 30.20 28.70 34.7 27.6 31.50 28.30 29.9 28.20 29.30 30.10 34.90

WaveformEW 20.90 19.30 20.10 21.1 20.0 20.20 19.80 21.7 21.70 19.10 17.50 24.20

KrVsKpEW 17.10 18.00 18.00 18.3 18.2 19.90 16.40 17.2 17.10 15.90 18.20 20.60

BreastEW 12.20 12.90 13.80 14.7 13.5 14.20 12.90 13.0 13.40 13.60 14.60 15.70

Lymphography 9.100 9.500 8.600 10.6 9.40 8.800 9.500 9.00 8.100 8.900 9.000 9.900

Vote 3.200 5.100 2.800 3.60 5.90 4.600 4.300 4.20 4.100 3.600 4.300 6.400

Zoo 4.500 5.300 4.600 5.10 5.60 6.400 5.300 5.70 5.400 5.500 5.600 7.500

Exactly2 5.000 5.100 5.000 5.00 5.40 5.200 5.000 5.40 5.200 4.800 5.000 3.600

M-of-n 6.300 7.300 6.300 6.50 8.30 7.500 6.600 6.80 7.100 6.800 7.200 8.700

WineEW 3.000 3.500 3.000 3.50 3.70 4.500 3.400 3.30 3.600 3.800 3.400 5.700

BreastCancer 5.100 5.300 5.000 5.00 5.70 5.500 5.600 5.50 5.500 6.000 5.300 5.900

Tic-tac-toe 7.000 6.800 7.000 7.00 6.60 6.400 7.000 6.60 6.800 6.500 7.000 6.200

W
Score T
L

2 0 2 0 0 0 0 0 0 0 0 2

3 0 3 1 1 0 0 1 1 1 1 0

9 14 9 13 13 14 14 13 13 13 13 12
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Based on the results shown in Table 10, it can be inferred that the DESFO-K-NN algorithm has better explo-
ration capabilities compared to other algorithms, as it has the lowest mean selected features number among all 
the algorithms tested (winning in 5 out of 7 cases and tying in 2 cases). This performance is superior to DE, PSO, 
GWO, GOA, BSA, and HGSO algorithms. It is worth mentioning that even though SFO selected fewer irrelevant 
features compared to DESFO-K-NN and other methods on only a few benchmarks (lymphography, vote, and 
Zoo), and achieved the same performance as DESFO-K-NN on two benchmarks (WineEw and BreastCancer), 
it did not outperform DESFO-K-NN in terms of mean accuracy. When selecting a minimal number of char-
acteristics for classification, it is important to note that this approach can harm accuracy. The DESFO-K-NN 
algorithm has been proposed to efficiently identify the pertinent attributes and reduce the feature search area 
without compromising the classification accuracy. The algorithm achieves optimal results by discarding insig-
nificant search areas and concentrating on the most viable ones.

Table 8.   Results comparison of the mean fitness value (MeanFit) based on the K-NN classifier for DESFO with 
other MH methods. Superior values are in [bold].

Benchmarks DESFO DE SFO ABC PSO BA GWO WOA GOA HHO BSA HGSO

PenglungEW 0.3465 0.394 0.3544 0.3742 0.3941 0.3943 0.3742 0.3808 0.3875 0.3803 0.3939 0.4011

IonosphereEW 0.0698 0.0888 0.0784 0.0832 0.0958 0.1088 0.0873 0.0846 0.0848 0.0743 0.0872 0.1112

SonarEW 0.0181 0.0377 0.0206 0.0258 0.0357 0.0607 0.028 0.035 0.0305 0.0249 0.0277 0.0525

WaveformEW 0.1563 0.1734 0.1629 0.1642 0.1771 0.178 0.1657 0.17 0.1682 0.1626 0.1684 0.1774

KrVsKpEW 0.0232 0.0345 0.0301 0.0259 0.0393 0.0457 0.03 0.032 0.032 0.0292 0.0343 0.0391

BreastEW 0.0368 0.0386 0.0374 0.038 0.0396 0.0441 0.0381 0.0391 0.038 0.0384 0.039 0.0457

Lymphography 0.1631 0.1927 0.1689 0.1692 0.1996 0.2257 0.1825 0.1859 0.1826 0.1889 0.1762 0.2104

Vote 0.0026 0.007 0.0022 0.0031 0.0068 0.0181 0.0032 0.0076 0.0034 0.0049 0.0047 0.0206

Zoo 0.0033 0.0037 0.0032 0.0034 0.0039 0.0096 0.0037 0.0041 0.0038 0.0087 0.0038 0.0056

Exactly2 0.2093 0.2257 0.2121 0.2206 0.2331 0.2457 0.2244 0.2303 0.2274 0.2361 0.2308 0.2397

M-of-n 0.0047 0.0343 0.005 0.0075 0.0449 0.0711 0.0095 0.0111 0.0112 0.008 0.0091 0.062

WineEW 0.0031 0.0035 0.0031 0.0034 0.007 0.0183 0.0032 0.0035 0.0037 0.0035 0.0033 0.0084

BreastCancer 0.0201 0.0212 0.0201 0.0201 0.0233 0.0253 0.0203 0.0222 0.0219 0.0216 0.0211 0.0235

Tic-tac-toe 0.1544 0.1544 0.1544 0.1544 0.1602 0.1719 0.1544 0.1544 0.1552 0.1600 0.1544 0.1600

W
Score T
L

9 0 2 0 0 0 0 0 0 0 0 0

3 1 3 2 0 0 1 1 0 0 1 0

2 13 9 12 14 14 13 13 14 14 13 14

Table 9.   Results comparison of the mean accuracy (MeanAcc) based on the K-NN classifier for DESFO with 
others. MH methods. Superior values are in [bold].

Benchmarks DESFO DE SFO ABC PSO BA GWO WOA GOA HHO BSA HGSO

PenglungEW 0.6533 0.6067 0.6467 0.6267 0.6067 0.6067 0.6267 0.6200 0.6133 0.6200 0.6067 0.6000

IonosphereEW 0.9324 0.9141 0.9239 0.9197 0.907 0.8944 0.9155 0.9183 0.9183 0.9282 0.9155 0.8930

SonarEW 0.9857 0.9667 0.9833 0.9786 0.969 0.9429 0.9762 0.969 0.9738 0.9786 0.9762 0.9524

WaveformEW 0.848 0.8312 0.8416 0.8403 0.8268 0.8267 0.8386 0.8337 0.8359 0.8417 0.8359 0.8268

KrVsKpEW 0.9822 0.9714 0.9764 0.9802 0.9666 0.9595 0.9759 0.9736 0.9739 0.9762 0.9716 0.9675

BreastEW 0.9649 0.9649 0.9649 0.9649 0.964 0.9596 0.9649 0.964 0.9649 0.964 0.964 0.9588

Lymphography 0.8400 0.8100 0.8333 0.8333 0.8033 0.7767 0.82 0.8167 0.8200 0.8133 0.8267 0.7933

Vote 1.0000 0.9967 1.0000 1.0000 0.9967 0.985 1.0000 0.995 1.0000 0.9983 0.9983 0.9833

Zoo 1.0000 1.0000 1.0000 1.0000 1.0000 0.9952 1.0000 1.0000 1.0000 0.9952 1.0000 1.0000

Exactly2 0.7935 0.7765 0.7905 0.783 0.769 0.756 0.7785 0.773 0.7755 0.7665 0.7725 0.7640

M-of-n 1.0000 0.9715 1.0000 0.9975 0.961 0.9345 0.9955 0.994 0.994 0.997 0.996 0.9440

WineEW 1.0000 1.0000 1.0000 1.0000 0.9972 0.9861 1.0000 1.0000 1.0000 1.0000 1.0000 0.9972

BreastCancer 0.9857 0.9857 0.9857 0.9857 0.9829 0.9807 0.9857 0.9843 0.9843 0.9843 0.985 0.9836

Tic-tac-toe 0.8542 0.8542 0.8542 0.8542 0.8474 0.8344 0.8542 0.8542 0.8531 0.8469 0.8542 0.8474

W
Score T
L

7 0 0 0 0 0 0 0 0 0 0 0

7 5 7 6 1 0 6 3 4 1 3 1

0 9 7 8 13 14 8 11 10 13 11 13
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Analysis and visualization
An analysis for DESFO–RF and DESFO-K-NN, used for handling the FS strategy, has been performed in this sec-
tion using asymptotic analysis. To validate their convergence capabilities, the proposed technique was applied to 
14 widely used benchmark datasets, and their performance has been compared against their peers under identical 
conditions, including the iteration number and population size. Figures 3 and 4 demonstrate the convergence 
ability of these methods in comparison to their counterparts.

Based on the results depicted in Fig. 3, the DESFO-RF approach showcases rapid yet effective convergence 
across eight benchmarks, including PenglungEW, IonosphereEW, SonarEW, WaveformEW, KrVsKpEW, 
BreastEW, Zoo, and Exactly2. On the other hand, Fig. 4 highlights that the DESFO-K-NN model outperforms 
the competition in five benchmarks, namely PenglungEW, IonosphereEW, SonarEW, WaveformEW, KrVsKpEW, 
BreastEW, Lymphography, Exactly2, and Lymphography. It’s worth noting that both the proposed algorithms 
(DESFO-RF and DESFO-K-NN) balance exploration and exploitation, ensuring the timely acquisition of the 
optimal solution.

 Figures 5, 6, and 7 show the performance of DSEFO and other methods regarding Mean fitness Function 
values with RF and K-NN. The box plot with the swarm plot is demonstrated in Figs. 5 and 6, showing the supe-
riority of DESFO over other algorithms. The plots reveal no outliers with Both DESFO-RF and DESFO-K-NN, 
unlike the DE, PSO, and HGSO Algorithms. The swarm plot demonstrates that most values are in the boxplot’s 
interquartile range (IQR). Figure 7 shows the KDE plots, demonstrating the performance of DESFO and the 
other algorithms with the 14 UCI benchmarks.

Figures 8, 9, and 10 show the performance of DSEFO and other methods regarding Mean classification 
accuracy with RF and K-NN. Figures 8 and 9 illustrate the box plot with the swarm plot, highlighting the supe-
rior performance of DESFO over other algorithms. A noticeable observation from the plots is that no outliers 
exist in DESFO-RF and DESFO-K-NN, unlike other algorithms such as DE, PSO, BA, BSA, GOA, and HGSO 
Algorithms. The swarm plot indicates that for DESFO with RF and KNN, most of the values are located in the 
interquartile range (IQR) and the maximum value of the boxplot. Additionally, Fig. 10 shows KDE plots that 
depict the performance of DESFO and other algorithms with the 14 UCI benchmarks.

Wilcoxon’s analysis
The statistical significance of the analysis can be observed in Tables 11 and 12, where the Wilcoxon test was 
conducted as a pair-wise assessment. This test helped to determine if there was a significant difference between 
the fitness results achieved by the proposed DESFO algorithm and its counterparts74.

The Wilcoxon test is a statistical test often used in hypothesis testing situations. The test involves ranking the 
differences between the results of two paired algorithms on a set of problems. The calculation of ranks is based 
on the absolute values of the differences. Next, the positive and negative ranks are summed separately as R+ and 
R−. The smaller sum between the two is recorded. If the significance level of the recorded results is less than 5%, 
then the null hypothesis is rejected. On the other hand, if the significance level is greater than 5%, then the null 
hypothesis is not rejected.

After analyzing the data presented in Tables 11 and 12, it can be concluded that the DESFO-RF and DESFO-
k-NN algorithms outperformed all other algorithms in all the tested scenarios. In Tables 11 and 12, the indicated 
p values are below 5%, implying that the proposed method’s results are statistically significant. This strong 
evidence against the null hypothesis suggests that the outcomes obtained are not due to chance.

Table 10.   Results comparison of the mean number of features selected (MeanFeat) based on the K-NN classifier 
for DESFO with other MH methods. Superior values are in [bold].

Benchmarks DESFO DE SFO ABC PSO BA GWO WOA GOA HHO BSA HGSO

PenglungEW 108.2 149.2 149.9 150.6 153.7 159.5 148.2 151 152.4 131.8 147.6 167.2

IonosphereEW 9.700 12.70 10.40 12.50 12.90 14.20 12.20 12.6 13.50 10.9 12.00 17.70

SonarEW 23.60 28.10 24.40 27.40 30.20 24.60 26.40 26.1 27.30 22.2 24.60 32.40

WaveformEW 23.20 25.00 24.50 24.20 22.50 25.70 23.80 21.3 23.00 23.7 23.90 23.90

KrVsKpEW 20.10 22.20 24.20 22.40 22.40 20.20 22.10 21.2 22.10 20.3 22.30 25.10

BreastEW 6.300 11.70 8.000 9.900 12.10 12.50 10.00 10.4 9.800 8.50 10.30 14.70

Lymphography 8.500 8.300 7.100 7.600 8.900 8.300 7.800 7.90 8.000 7.30 8.200 10.50

Vote 4.100 5.900 3.500 4.900 5.600 5.200 5.100 4.20 5.500 5.20 4.900 6.500

Zoo 5.200 5.900 5.100 5.500 6.300 7.800 5.900 6.50 6.000 6.30 6.000 9.000

Exactly2 6.300 5.800 6.100 7.500 5.700 5.400 6.700 7.20 6.700 6.40 7.200 7.900

M-of-n 6.100 7.900 6.500 6.500 8.200 8.100 6.500 6.70 6.900 6.60 6.700 8.500

WineEW 4.000 4.500 4.000 4.400 5.500 5.900 4.200 4.60 4.800 4.50 4.300 7.400

BreastCancer 6.000 7.100 6.000 6.000 6.300 6.200 6.200 6.60 6.300 6.00 6.300 7.200

Tic-tac-toe 9.000 9.000 9.000 9.000 8.200 7.100 9.000 9.00 8.800 7.600 9.000 8.000

W
Score T
L

5 0 3 0 0 2 0 0 0 1 0 0

2 0 2 1 0 0 0 1 0 1 0 0

7 14 9 13 14 12 14 13 14 12 14 14
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Discussion
According to the results of the empirical analysis, the DESFO algorithm stands out among recent algorithms 
in terms of its reliability in feature selection for classification tasks. This algorithm makes use of k-NN and RF 
classifiers. Among all the benchmarks, DESFO-K-NN produced the best results in terms of mean accuracy, 
followed by DESFO-RF. Additionally, the DESFO optimizer demonstrated a more pronounced exploration and 
exploitation behavior than its counterparts. On the other hand, The DESFO method exhibits a limitation in that 
it selects more features than its competitors across various datasets. Specifically, when compared with other 

Figure 3.   The convergence graphs comparing the suggested DESFO approach with other methods using the RF 
Classifier.



20

Vol:.(1234567890)

Scientific Reports |        (2024) 14:13517  | https://doi.org/10.1038/s41598-024-63328-w

www.nature.com/scientificreports/

methods, DESFO–RF selects a greater number of features in 9 out of 18 datasets (PenglungEW, IonosphereEW, 
WaveformEW, KrVsKpEW, Lymphography, Vote, Exacly2, BreastCancer, and Tic-tac-toe), while DESFO–K-NN 
does so in 7 datasets (SonarEW, WaveformEW, Lymphography, Vote, Zoo, Exactly2, and Tic-tac-toe).

Figure 4.   The convergence graphs comparing the suggested DESFO approach with other methods using the 
K-NN Classifier.
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Conclusion and future works
The DESFO algorithm, a combination of the DE and SFO algorithms, has been proposed in this paper to handle 
FS strategies. The LS strategy has also been incorporated to improve the optimal results after each algorithm 
iteration. The algorithm has exhibited satisfactory performance and capability with significantly enhanced results. 
To evaluate the chosen feature subsets, RF and K-NN classifiers were used to calculate the classification accuracy. 
The DESFO algorithm was tested on several benchmarks using multi-scale attributes and records in this work to 
assess its effectiveness. The results were compared with binary versions of 11 different meta-heuristic methods. 
The performance has been evaluated based on various metrics, such as mean fitness rate, mean accuracy rate, 
and mean number of features selected. The findings indicated that the two algorithms proposed in the study 
(DESFO–RF and DESFO–K-NN) outperformed their counterparts in managing FS strategies. DESFO-RF was 
the most effective method among all benchmarks regarding mean accuracy results, followed by IBAO-k-NN.

Additionally, the DESFO optimizer demonstrated greater exploration and exploitation abilities than its 
counterparts. According to Wilcoxon’s test (with a significance level of α = 0.05), it was evident that the DESFO 
algorithm with RF and k-NN classifiers outperformed the other methods. This algorithm achieved exceptional 
classification accuracy up to 100% in some benchmarks and also resulted in a reduced feature size.

The DESFO technique has one limitation: it tends to choose more features than its rivals across different 
datasets. Specifically, in comparison with other methods, DESFO–RF selects more features in 9 out of 18 datasets, 
and DESFO–K-NN does so in 7 datasets. Therefore, to improve the proposed algorithm, it would be beneficial to 
implement a new selection strategy to reduce the number of features selected, particularly for high-dimensional 
datasets with small instances. This opens up avenues for further research in the future.

Integrating the DESFO algorithm with various other optimization techniques merits exploration for future 
works. Additionally, the application of different classifiers, such as Artificial Neural Networks (ANNs), Decision 

Figure 5.   Box and swarm plot of DESFO-RF and Algorithms performance in terms of fitness value.

Figure 6.   Box and swarm plot of DESFO-K-NN other Algorithms performance in terms of fitness value.
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Figure 7.   KDE plot diagram of DESFO and other Algorithms performance in terms of fitness value.

Figure 8.   Box and swarm plot of DESFO-RF and Algorithms performance in term of Classification Accuracy.
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Figure 9.   Box and swarm plot of DESFO-K-NN and Algorithms performance in term of classification accuracy.

Figure 10.   KDE plot diagram of DESFO and other Algorithms performance in term of classification accuracy.
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Trees (DT), support vector machines (SVM), and others, could further examine DESFO’s capability in feature 
selection for classification. The adaptation of other transfer functions, such as S-shape functions, could also be 
explored. Given its feature selection (FS) efficacy, DESFO presents significant potential across various domains, 
such as healthcare, the Internet of Things (IoT), and intrusion detection systems. Furthermore, employing 
DESFO in the context of CEC benchmark functions could also be explored.

Data availability
The datasets used in our research are available and stored in a public access repository designed for machine 
learning purposes and data classification which is the UC Irvine Machine Learning Repository https://​archi​ve.​
ics.​uci.​edu/​datas​ets, it is important to be declared that we used 14 variant datasets, include: IonosphereEW from 
the link: https://​archi​ve.​ics.​uci.​edu/​datas​et/​52/​ionos​phere). Waveform from the link: (https://​archi​ve.​ics.​uci.​
edu/​datas​et/​108/​wavef​orm+​datab​ase+​gener​ator+​versi​on+2). lymphography from the link: https://​archi​ve.​ics.​
uci.​edu/​datas​et/​63/​lymph​ograp​hy.  Zoo from https://​archi​ve.​ics.​uci.​edu/​datas​et/​111/​zoo. Breastcancer from the 
link: https://​archi​ve.​ics.​uci.​edu/​datas​et/​15/​breast+​cancer+​wisco​nsin+​origi​nal. BreastEW from the link https://​
archi​ve.​ics.​uci.​edu/​datas​et/​17/​breast+​cancer+​wisco​nsin+​diagn​ostic. Tic Tac Toe from the link: https://​archi​ve.​
ics.​uci.​edu/​datas​et/​101/​tic+​tac+​toe+​endga​me. SonarEW from the link: https://​archi​ve.​ics.​uci.​edu/​datas​et/​151/​
conne​ction​ist+​bench+​sonar+​mines+​vs+​rocks. Wine from the link: https://​archi​ve.​ics.​uci.​edu/​datas​et/​109/​wine. 
KrVsKpEW from the link: https://​archi​ve.​ics.​uci.​edu/​datas​et/​22/​chess+​king+​rook+​vs+​king+​pawn. The rest of 
them can be accessed directly from GitHub link: https://​github.​com/​trin07/​MA-​HS/​commit/​3fea0​b1c44​70170​
f3408​cedab​76a3e​82493​b3b5f.
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