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Integrated transmission 
expansion planning incorporating 
fault current limiting devices 
and thyristor‑controlled series 
compensation using meta‑heuristic 
optimization techniques
Abdulaziz Almalaq 1, Khalid Alqunun 1, Rabeh Abbassi 1, Ziad M. Ali 2,3*, 
Mohamed M. Refaat 4 & Shady H. E. Abdel Aleem 5

Transmission expansion planning (TEP) is a vital process of ensuring power systems’ reliable and 
efficient operation. The optimization of TEP is a complex challenge, necessitating the application 
of mathematical programming techniques and meta-heuristics. However, selecting the right 
optimization algorithm is crucial, as each algorithm has its strengths and limitations. Therefore, 
testing new optimization algorithms is essential to enhance the toolbox of methods. This paper 
presents a comprehensive study on the application of ten recent meta-heuristic algorithms for 
solving the TEP problem across three distinct power networks varying in scale. The ten meta-heuristic 
algorithms considered in this study include Sinh Cosh Optimizer, Walrus Optimizer, Snow Geese 
Algorithm, Triangulation Topology Aggregation Optimizer, Electric Eel Foraging Optimization, Kepler 
Optimization Algorithm (KOA), Dung Beetle Optimizer, Sea-Horse Optimizer, Special Relativity 
Search, and White Shark Optimizer (WSO). Three TEP models incorporating fault current limiters 
and thyristor-controlled series compensation devices are utilized to evaluate the performance of the 
meta-heuristic algorithms, each representing a different scale and complexity level. Factors such 
as convergence speed, solution quality, and scalability are considered in evaluating the algorithms’ 
performance. The results demonstrated that KOA achieved the best performance across all tested 
systems in terms of solution quality. KOA’s average value was 6.8% lower than the second-best 
algorithm in some case studies. Additionally, the results indicated that WSO required approximately 
2–3 times less time than the other algorithms. However, despite WSO’s rapid convergence, its average 
solution value was comparatively higher than that of some other algorithms. In TEP, prioritizing 
solution quality is paramount over algorithm speed.

Keywords  Meta-heuristic algorithms, Transmission expansion planning, Fault current limiters, Thyristor-
controlled series compensation devices

Transmission expansion planning (TEP) is the process of identifying and assessing the need for new transmission 
lines, substations, transformers, and associated facilities. The aim is to ensure that the transmission system 
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can accommodate current and future electricity demand while maintaining stability and minimizing costs. 
This planning process takes various factors into account, including load growth projections, renewable energy 
integration, regulatory requirements, technological advancements, and economic considerations. TEP is a critical 
aspect of infrastructure development and investment decisions for electricity providers, policymakers, and system 
operators1.

TEP models can be classified into two types: deterministic and stochastic models2,3. Deterministic models 
provide insights into cost-effective solutions under deterministic conditions. They require precise data about 
future conditions and typically optimize the transmission system based on deterministic forecasts of load growth, 
generation capacity additions, and other relevant parameters. While stochastic models account for uncertainties 
and risk factors to enhance the reliability and resilience of plans. Stochastic models incorporate power network 
uncertainties such as load variations, renewable energy generation, and equipment failures. These models use 
stochastic optimization techniques such as stochastic programming, scenario-based optimization, and robust 
optimization to generate robust and resilient expansion plans.

The application of DC and AC optimal power flow-based TEP models is prevalent for conducting load 
flow analyses and evaluating the capabilities of generation units1–3. While DC models are commonly used, 
AC models are recognized for their superior accuracy and flexibility, enabling the incorporation of various 
technology models within the TEP framework. Abbasi et al.4 introduced an AC-based TEP approach (ACTEP) 
and compared its results with those of the DC model. Despite the higher costs associated with projects planned 
using ACTEP, the AC model is considered more technically suitable and closely aligned with actual system 
operations. Furthermore, the AC model facilitates the integration of reactive power planning and generation 
and transmission network expansion planning (into a unified problem, leading to cost reduction and enhanced 
system performance. Farrag et al.5 introduced two DCTEP models and one ACTEP model, illustrating that 
the AC model accurately represents power networks by appropriately considering factors such as generator 
capacity curves, node voltage limits, reactive power flow, and network losses during the planning phase. Abdi 
et al.6 proposed a mixed DC and AC planning model for TEP and RPP, employing DC power flow for TEP and 
AC power flow for RPP. Their findings highlight the superiority of the mixed model in reducing computational 
time and improving plan accuracy.

The TEP problem is a complex and challenging task that requires careful consideration of various factors to 
design an efficient and reliable transmission network7,8. For instance, TEP commonly has a multi-objective nature 
to balance conflicting objectives such as minimizing investment costs, reducing transmission losses, enhancing 
system reliability, and accommodating renewable energy integration. Additionally, the TEP problem involves 
a large number of decision variables such as the selection of new transmission lines, location of energy storage 
systems, transformer capacities, and network configurations, which contribute to the combinatorial nature 
of the problem. Furthermore, uncertainties related to future load patterns, generation availability, regulatory 
changes, and economic conditions further increase the complexity of TEP. These uncertainties require the use 
of probabilistic and scenario-based approaches in planning models to account for different potential scenarios 
and ensure robustness in the designed transmission network9. Additionally, the interdependency between 
transmission expansion and other aspects of power system planning, such as generation planning, grid operation, 
and market dynamics, adds another layer of complexity that necessitates coordinated and integrated planning 
approaches10. Addressing these complexities in TEP requires advanced optimization techniques, computational 
tools, data analytics, and stakeholder collaboration to develop optimal and resilient transmission network 
expansion plans that meet the evolving needs of modern power systems.

In solving the TEP model, various types of optimization algorithms are employed to efficiently search for 
optimal or near-optimal solutions within the complex and high-dimensional solution space11. These optimization 
algorithms can be broadly categorized into classical mathematical programming techniques and meta-heuristic 
algorithms. Classical mathematical programming techniques include linear programming, mixed-integer linear 
programming, quadratic programming, and nonlinear programming. These techniques are widely used in TEP 
to formulate and solve optimization problems with deterministic objectives and constraints, such as minimizing 
investment costs while meeting reliability criteria and operational constraints.

Meta-heuristic algorithms provide alternative approaches for addressing TEP problems, particularly when 
dealing with non-linear, non-convex, or large-scale optimization problems that involve uncertainties and 
complexities12–16. These algorithms are inspired by natural processes or social behavior and utilize heuristic 
search strategies to efficiently navigate solution spaces. They commonly employ population-based or swarm-
based approaches to discover optimal solutions. Meta-heuristic algorithms are recognized for their adaptability, 
resilience, and ability to solve complex optimization problems with diverse objectives and constraints. The 
selection of an optimization algorithm is influenced by various factors, including the size and complexity of 
the problem, as well as the constraints and objectives involved17–19. Studies and benchmarking tests are often 
conducted to evaluate the performance of different meta-heuristic algorithms in solving TEP models across 
various scenarios and system conditions20–22. By utilizing a diverse set of optimization algorithms, TEP planners 
can explore a wide range of solution possibilities and make informed decisions to design cost-effective, reliable, 
and resilient transmission networks. Table 1 provides a summary of some meta-heuristic algorithms employed 
for solving TEP.

Figure 1 provides a summary of some of the most common meta-heuristic optimization algorithms. Recent 
advancements in meta-heuristic algorithms have been aimed at improving their efficiency, scalability, robustness, 
and adaptability to handle increasingly complex optimization tasks23,24. These algorithms have been integrated 
with other computational techniques like machine learning, deep learning, and optimization theory, giving 
rise to a new class of hybrid and adaptive algorithms. These algorithms capitalize on the unique strengths 
of each approach to solve complicated problems more efficiently than ever before. The ongoing research in 
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meta-heuristic algorithms continues to explore innovative techniques, algorithms, and applications to further 
advance optimization science and engineering25–27.

As discussed previously, the optimization of TEP presents multifaceted challenges. However, selecting the 
most suitable optimization algorithm is crucial, considering that each algorithm has its own set of advantages 
and constraints. Therefore, exploring novel optimization algorithms is imperative to enrich the repertoire of 
available methodologies. The primary contributions of this paper are as follows:

•	 A comprehensive exploration of ten recent meta-heuristic algorithms for solving the TEP problem across 
three distinct power networks of varying scales.

•	 The ten meta-heuristic algorithms examined include Sinh Cosh Optimizer28, Walrus Optimizer29, Snow Geese 
Algorithm30, Triangulation Topology Aggregation Optimizer31, Electric Eel Foraging Optimization32, Kepler 
Optimization Algorithm33, Dung Beetle Optimizer34, Sea-Horse Optimizer35, Special Relativity Search36, and 
White Shark Optimizer37. These algorithms encompass a diverse array of search and optimization strategies, 
demonstrating potential across various optimization domains.

•	 Three distinct TEP models were proposed in this analysis to evaluate the performance of these algorithms. The 
first model adhered to the standard TEP model, concentrating on determining the optimal locations for new 
transmission lines and generation units. The second model expanded upon this by incorporating the planning 
model of thyristor-controlled series compensator (TCSC), thereby introducing additional decision-making 
variables. Finally, in the third model, the complexity was further heightened by integrating the planning 
models of TCSCs and fault current limiters (FCLs), resulting in a larger set of variables to be considered.

The subsequent sections of this paper are organized as follows: section “TEP models” presents the testing 
planning models used in this study. Section “Optimization algorithms” provides a summary of the operating 
mechanisms of the considered optimization algorithms. Section “Implementation of metaheuristics in solving 
TEP” delves into the strategy of implementing metaheuristics for solving TEP. In section “Testing systems”, 
the testing power networks are introduced. Section “Results and discussion” presents the results, while section 
“Conclusions” concludes the paper.

Table 1.   Some metaheuristic algorithms applied to solve the TEP problem.

Optimization algorithm Refs. Year Testing model Testing system Objective function

Ant colony optimization Leeprechanon et al.12 2010 DC TEP Garver network Minimizing the cost of newly installed 
transmission lines

Harmony research Verma et al.13 2010 DC TEP IEEE 24-bus system
South Brazilian 46 bus system

Minimizing the cost of newly installed 
transmission lines

Shuffled frog leaping algorithm Eghbal et al.14 2011 DC TEP IEEE 24-bus system
Minimizing the cost of newly installed 
transmission lines
Minimizing congestion cost
Minimizing load shedding values

Differential evolution algorithm Alhamrouni et al.15 2014 AC TEP Garver network
IEEE 24-bus system

Minimizing the expansion cost of 
expanding the transmission network and 
adjusting generation capacity

Particle swarm optimization Fathy et al.16 2017 DC TEP
Garver network
The Egyptian West Delta network
An Egyptian Extra High Voltage Network

Minimizing the cost of newly installed 
transmission lines

Non-dominated Sorting Genetic 
Algorithm II Abbasi et al.17 2018 DC TEP IEEE 24-bus system

Iranian 400 kV transmission network
Minimizing investment costs
Minimizing congestion costs
Minimizing risk costs

Multi-Verse Optimizer Shaheen et al.18 2019 DC TEP The Egyptian West Delta network
An Egyptian Extra High Voltage Network

Minimizing the expenses related to 
constructing new lines

Grey wolf optimization Ghadimi et al.19 2021 AC TEP Garver network
Minimizing the cost of newly installed 
lines
Minimizing the cost of load 
disconnection penalties

• lévy flight distribution,
• Sine cosine algorithm,
• LSHADE-SPACMA

Refaat et al.20 2021 DC TEP Egyptian West Delta network

Minimizing the expenses related to 
constructing new lines, fault current 
limiters, and generation units
Minimizing generator operating costs
Minimizing load shedding values

• Gravitational search algorithm
• Imperialist competitive algorithm Abdi et al.6 2022 DC TEP IEEE 24-bus system

IEEE 118- bus system

Minimizing the cost of newly installed 
lines
Minimizing the cost of the installed 
reactive power sources

Hybrid snake optimization algorithm and 
sine cosine algorithm Rawa et al.21 2022 ACTEP Garver network

IEEE 24-bus system

Minimizing the capital cost of newly 
installed lines, generation units, batteries 
and fault current limiters
Minimizing the operating cost of 
generation units and batteries

Hybrid sine cosine artificial rabbits 
algorithm Vellingiri et al.22 2023 ACTEP Garver network

IEEE 24-bus system
Improving the hosting capacity
Minimizing the cost of newly installed 
lines and fault current limiters
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TEP models
In this study, three TEP models are utilized to evaluate the performance of the optimization algorithms. These 
models differ in scale and the quantity of decision-making variables. The initial model illustrates the conventional 
TEP, which concentrates on identifying optimal locations for new transmission lines and generation facilities 
to accommodate projected load growth. In the second model, the integration of TEP with TCSC planning 
is examined. The third planning model integrates short-circuit current (SC) constraints and is designed to 
encompass planning considerations for transmission lines, generation units, TCSC installations, and FCL.

Standard TEP model (model#1)
The conventional TEP methodology is formulated as a mixed-integer linear programming model, typically 
represented by (1)–(7)16. The primary goal of the objective function is to minimize the total investment cost 

Figure 1.   Classification of most common meta-heuristic optimization algorithms.
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associated with new transmission lines, alongside the operational and capital expenses related to generation 
units. This objective function can be expressed as follows:

While the problem constraints are explained by:

where Nl
ij and N0

ij denote the newly installed and existing circuits respectively, in a corridor between nodes i and 
j. �B represents a set comprising all buses within the system. The boxed Eqs. (2)–(4) constrain the number of 
newly installed circuits and dictate the location and size of generation units within prescribed limits. NG signifies 
the count of generation units installed at the Gth bus, while PG

newdenotes the capacity of the new generation unit 
in MW. PG represents the power dispatched from the generation units.

The power balance equation, expressed as Eq. (5), stipulates that the net power injected at any node must 
equate to the disparity between the power generated and consumed at that node. Equation (6) ensures that 
active power flowing through any line remains below its thermal limits Pmax

ij  , while Eq. (7) maintains the voltage 
angles θi of the buses within their designated thresholds. βij symbolizes the susceptance of the transmission lines 
connecting bus i and bus j.

TEP with TCSC planning model (model#2)
In the second model, the integration of TEP with TCSC planning is presented. It is formulated as a mixed-integer 
nonlinear programming model. The objective is to minimize the total investment cost associated with new 
transmission lines and TCSCs, while also considering the operational and capital expenses related to generation 
units. The objective function is given by:

The problem constraints are detailed in (2)–(7) and further supplemented by (9) and (10). The second term 
in the objective function (8) accounts for the investment cost associated with installed TCSCs38. Introducing the 
TCSC module in series along any given route amplifies the equivalent capacity of power flow through that route 

by 
Nl
ij�

TCSC
ij

1−�
TCSC
ij

 . Here, �TCSCij  represents the requisite compensation level for a TCSC installed within the circuit 

between buses i and j.

TEP with TCSC and FCL planning model (model#3)
The model’s objective is delineated through (11). It encompasses the investment and operational costs associated 
with various installed projects, whether they are FCLs, TCSCs, transmission lines, or newly installed generation 
units.

(1)Min. O.F1 =
∑

∀i,j∈�B

Cij

(

Nl
ij − N0

ij

)

+
∑

∀G∈�G

(

Cinv,gNGP
new
G + Cop,GNGPG

)

(2)No
ij ≤ Nl

ij ≤ Nmax
ij ; ∀

{

i, j ∈ �B

}

(3)Nmin
G ≤ NG ≤ Nmax

G ; ∀{G ∈ �G}

(4)Pmin
G ≤ PG ≤ Pmax

G ; {G ∈ �G}

(5)NGPG − Pd,i =
∑

∀j∈�B

Pij; ∀
{

j ∈ �B;G ∈ �G

}

(6)−Nl
ijP

max
ij ≤ βijN

l
ij

(

θi − θj
)

≤ Nl
ijP

max
ij ; ∀

{

i, j ∈ �B

}

(7)θmin
i ≤ θi ≤ θmax

i ; ∀{i ∈ �B}

(8)

Min. O.F2 =
∑

∀i,j∈�B

Cij

(

Nl
ij − N0

ij

)

+
∑

∀i,j∈�TCSC

(

CTCSC
1 STCSC2ij + CTCSC

2 STCSCij + CTCSC
3

)

+
∑

∀g∈�G

(

Cinv,g NGP
new
G + Cop,GNG PG

)

(9)�
TCSC
min ≤ �

TCSC
ij ≤ �

TCSC
max ; ∀

{

i, j ∈ �TCSC

}

(10)−
(

Nl
ij

1− �
TCSC
ij

)

Pmax
ij ≤

Nl
ij

(

θi − θj
)

(
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TCSC
ij

)

Xij

≤
(

Nl
ij
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TCSC
ij

)
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i, j ∈ �B

}
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The initial two terms aim to mitigate the investment expenses incurred in transmission and generation 
projects, as elucidated in (11). Meanwhile, the investment outlay for newly installed TCSCs is encapsulated 
in the third term. The fourth term accounts for the investment costs associated FCLs, necessary to maintain 
short-circuit current levels below the designated threshold value. xFCLij  represents the calculated size of the FCL 
required between bus i and bus j to limit during abnormal operations.

The problem constraints are formulated in (2)–(7), along with Eqs. (9) and (10). Additionally, constraints (12) 
and (13) further restrict the problem. Short-circuit current constraints are delineated in (12) and (13). Various 
faults, including single line-to-ground faults, double line-to-ground faults, and line-to-line faults, frequently 
manifest in power networks. However, this study focuses on the worst-case scenario, the three-phase short-
circuit fault. The short-circuit current level of substations is regulated by (13). Calculation of the short-circuit 
current is detailed in (14)39–41.

Vh
i (o) is the pre-fault voltage, and Zii is the bus i diagonal value in the impedance matrix. When an FCL 

module is installed in the route m–n, it is converted to a parallel impedance, which is obtained by (15)40.

Optimization algorithms
Sinh Cosh Optimizer (SCHO)
Bai et al.28 introduced the SCHO approach in 2023, leveraging the mathematical principles of Sinh and Cosh. 
SCHO comprises four key stages: two exploration phases, two exploitation phases, a bounded search strategy, 
and a switching mechanism. The operational framework of SCHO can be summarized as follows:

Similar to other metaheuristic algorithms, SCHO begins by randomly setting up a group of candidate 
solutions as provided in (16).

SCHO’s exploration stage is split into two phases during each iteration, and is necessary in the later iterations 
to avoid getting trapped in local optima. In the first phase, the new solution’s positions are updated by (17). While, 
in the second phase, the new solution’s positions are determined by (18). The threshold value (T) that triggers 
the transition between these phases is calculated using (19).

where iterMax represents the maximum value of iterations, floor is a MATLAB function that rounds down, and 
ct is a coefficient used to set the switching point between the two phases. The weight coefficient W1 determines 
the influence of Xt in the initial exploration stage, guiding potential solutions away from each other and towards 
the optimal solution as calculated by (20). Meanwhile, W2 represents the weight coefficient of Xbest during the 
second exploration phase, determined by utilizing (21). u is a sensitive parameter that influences the precision of 
exploration during the initial phase. The values for a1 and a2 are determined as described in Bai et al.28. Whereas 
random numbers r1 to r6 fall within the range of 0 to 1.

(11)

Min. O.F3 =
∑

∀i,j∈�B

Cij

(

Nl
ij − N0

ij

)

+
∑

∀i,j∈�TCSC

(

CTCSC
1 STCSC2ij + CTCSC

2 STCSCij + CTCSC
3

)

+
∑

∀g∈�G

(

Cinv,gP
new
g + Cop,g Pg

)

+
∑

∀i,j∈�B

(

xFCLij − xFCL−1
ij

)

(12)0 ≤ xFCLij ≤ xFCLij,max; ∀
{

s ∈ �S, i, j ∈ �B

}

(13)0 ≤ ISCi ≤ ISCmax; ∀{s ∈ �S, i ∈ �B}

(14)ISCi =
Vi(o)

Zii

(15)zP =
xmn

(

xFCLmn + xmn

)

−xFCLmn

(16)X = LB+ (UB− LB).rand

(17)Xt+1 =
{

Xbest + r1 ×W1 × Xt , ifr2 > 0.5

Xbest − r1 ×W1 × Xt , , ifr2 < 0.5

(18)Xt+1 =
{

Xt +
∣

∣ε ×W2 × Xbest − Xt
∣

∣, ifr3 > 0.5

Xt −
∣

∣ε ×W2 × Xbest − Xt
∣

∣, ifr3 < 0.5

(19)T = floor

(

iterMax

ct

)

(20)W1 = r4 × a1 × (cosh r5 + u sinh r5 − 1)
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The exploitation process is divided into two distinct phases that occur consistently across all iterations. In 
the initial exploitation phase, exploitation is conducted in the proximity of Xt, resulting in the formulation 
of the exploitation formula as depicted in Eq. (22). On the other hand, in the subsequent exploitation phase, 
candidate solutions delve further into exploiting the vicinity surrounding the currently best solution. The degree 
of exploitation around this optimal solution escalates with each iteration. The equation representing the position 
update function is presented in Eq. (23).

W3 is the weight coefficient responsible for guiding candidate solutions during the initial exploitation phase 
to explore the search space starting from nearby areas and extending towards farther regions. Its calculation is 
determined using (24). Random numbers r7 to r11 fall within the range of 0–1.

To alternate between exploration and exploitation stages, a switching mechanism based on Sinh and Cosh 
functions is introduced. When A > 1, SCHO engages in exploration, whereas when A < 1, SCHO conducts 
exploitation. The values of A are determined according to the method described in Bai et al.28.

To maximize the exploration of the potential search space, the bounded search strategy is implemented. 
When SCHO employs the bounded search strategy consistently, the upper and lower bounds of optimization 
problems are determined using (25) for the upper bound and (26) for the lower bound. When the bounded 
search strategy is activated, all candidate solutions are randomly initialized within this potential space using 
Eq. (16). The initiation of this strategy is governed by BSk. The calculation of BSk is detailed in Bai et al.28. Xsecond 
is the second optimal solution.

Walrus Optimizer (WO)
WO was developed by Han et al.29 in 2023. It draws inspiration from the behaviours of walruses, which make 
decisions such as migration, breeding, roosting, feeding, gathering, and escaping based on receiving critical 
signals such as danger and safety signals. WO’s operating mechanism can be described as follows.

In the WO, the presence of a danger signal is utilized to determine whether the WO engages in exploration or 
exploitation. If the absolute value of the danger signal is equal to or greater than 1, the walrus herd relocates to a 
new area within the solution space, representing the exploration phase during the early stages of the algorithm. 
Conversely, during the later stages of the algorithm, the walrus herd engages in reproduction, indicating the 
exploitation phase. The security signal plays a crucial role in the exploitation phase as it influences the choice 
between roosting behaviour and foraging behaviour for individual walruses. Foraging behaviour encompasses 
two common actions, gathering and fleeing, both of which are regulated by the danger signals.

•	 Danger and safety signals

WO relies on danger and safety signals to determine the behaviour of walruses, which play a critical role in 
the decision-making process. The danger ( signaldanger ) and safety ( signalsafety ) signals, an essential component 
of WO, is defined as follows:

where rand1 and rand2 are randomly generated variables located in the range between 0 and 1.

•	 Migration (exploration)

In the migration phase, which signifies the exploration stage of the algorithm, the walrus’s position is adjusted 
based on various parameters, including a random number r3, and two randomly selected solutions ( xtm, xtn ). The 
equation used to update the walrus’s position is as follows:

(21)W2 = r6 × a2

(22)Xt+1 =
{

Xbest + r7 ×W3 × Xt , ifr8 > 0.5

Xbest − r7 ×W3 × Xt , , ifr8 < 0.5

(23)Xt+1 = Xt + r9 ×
sinh r10

cosh r10

∣

∣W2 × Xbest − Xt
∣

∣

(24)W3 = r11 × a1 × (cosh r11 + u sinh r11)

(25)UBk = Xbest +
(

1−
iter

iterMax

)

× |Xbest − Xsecond |

(26)LBk = Xbest −
(

1−
iter

iterMax

)

× |Xbest − Xsecond |

(27)
{

signaldanger = 2
(

1− t
itermax

)

× (2rand1 − 1)

signalsafety = rand2



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:13046  | https://doi.org/10.1038/s41598-024-63331-1

www.nature.com/scientificreports/

•	 Reproduction (exploitation)

When the risk factors are low, walrus herds tend to engage in breeding activities. During the reproduction 
phase, two main behaviours are observed: onshore roosting and underwater foraging. The mathematical model 
representing these behaviours is as follows:

1.	 Roosting behaviour.

The population of walruses consists of three categories: male, female, and juvenile individuals. These walruses 
update their positions using diverse methods:

(a)	 Dispersal of male walruses.

The Halton sequence distribution is employed for updating the position of male walruses. This distribution 
enables a more extensive distribution of the population within the search space.

(b)	 Dispersal of female walruses.

The behaviour of female walruses is influenced by two key factors: the male walruses ( maleti  ) and the lead 
walrus ( x∗ ). During the course of iterations, the influence of the female walrus’s companion diminishes, while 
the influence of the leader becomes more prominent.

(c)	 Dispersal of juvenile walruses.

Young walruses often face the threat of predation from polar bears and killer whales near the edges of their 
colonies. Consequently, they must adapt their current positions in order to avoid being hunted.

 where youngt+1
i  denotes the updated position for the ith juvenile walrus. P signifies the distress coefficient of 

the juvenile walrus, which is a random number between 0 and 1. O stands for the reference safety position as 
provided in Han et al.29.

2.	 Foraging behaviour.

(a)	 Fleeing behaviour.

This behaviour arises during the later stages of the WO, and introducing a certain level of disturbance to the 
population aids walruses in engaging in worldwide exploration.

where r4 is a random number that falls within the interval of (0, 1).

(b)	 Gathering behaviour.

Walruses have the ability to collaborate in their search for food and navigation by taking cues from the 
movements of fellow walruses within the group. Sharing information about their whereabouts can greatly assist 
the entire herd in locating areas of the sea where food is more plentiful.

where,
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X1 and X2 represent two factors influencing the foraging behaviour of walruses, while Xt denotes the position of 
the second walrus during the ongoing iteration. The variable r5 represents a random number within the interval 
(0, 1), and θ ranges from 0 to π.

Snow Geese Algorithm (SGA)
The SGA was developed in 2023 by Tian et al.30. The algorithm takes inspiration from the migratory patterns of 
snow geese, replicating the unique “Herringbone” and “Straight Line” flight shapes observed during the geese’s 
migration. The symbol δ represents a hyper-parameter that applies a shift of the snow geese population from the 
exploration phase (which has a herringbone shape) to the exploitation phase (which is a straight line).

•	 A herringbone shape (exploration)

When δ is less than π , the SGA enters the exploration stage. In this stage, individuals within the populations 
are sorted based on their quality. Equation (34) is used to update the positions of individuals who exhibit 
exceptional fitness values and belong to the top 20%.

where Vt+1 is the next generation velocity and is calculated as follows:

Equation (36) is applied to update the positions of individuals who fall within the least fit quintile, including 
those who are weaker, unwell, or incapacitated and are located in the midsection of the population. The updating 
equation depends on the population central particle xtc beside the optimal solution at the cuurent iteration X∗.

Finally, Eq. (37) is used to update the positions of individuals who remain in the population. The position 
represented by xtn corresponds to the candidate solution. This candidate solution denotes the location of the 
lowest-ranked snow goose following population sorting.

•	 A straight-line shape (exploitation)

During this stage, the algorithm places greater emphasis on avoiding local optima rather than exact navigation. 
Two strategies are employed by snow geese as they adopt a straight-line flight pattern. The individuals’ new 
position is determined as follows:

where r is a random number, and ⊕ indicates to entry wise multiplication.

Triangulation Topology Aggregation Optimizer (TTAO)
The TTAO was developed in 2023 by Zhao et al.31. The TTAO algorithm uses similar triangles in its approach. 
Through iterative evolution, new vertices are constantly generated to form similar triangles of varying sizes. Each 
triangle in the TTAO algorithm is seen as a basic evolutionary unit, consisting of four agents—three vertices 
of the triangle and one random vertex inside. Additionally, the algorithm utilizes aggregation to group vertices 
with superior characteristics. The TTAO algorithm uses aggregation to collect vertexes with good information 
within or between different topological units. Note that all constructed triangles in the algorithm are equilateral 
and derived from the second theorem for constructing similar triangles.

The TTAO algorithm comprises of two techniques, namely the general aggregation and the local aggregation. 
Both techniques work together to create multiple triangular topological units that are similar to each other, 
through iterative processes. This helps to balance the exploration and exploitation in the algorithm.

•	 Generic aggregation

During the exploration phase of generic aggregation, the focus is put on gathering information of good 
individuals in various triangular units, which is then combined to create new feasible solutions. The process 
involves an exchange of information between the best individual in each triangular topological unit and the best 

(33)
{
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∣
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∣

∣
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∣
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∣

∣
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(36)xt+1 = xt + (4× rand − 2)×
(

X∗ − xt
)

− (3× rand − 1.5)×
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individual in any randomly selected set of units. The better two-vertex connection produces the newly individual, 
which can be expressed mathematically as follows:

where r is a randomly generated number within the range of 0 to 1. xt,∗i  represents the best position for unit i, 
while xt,∗random represents a randomly chosen unit at that iteration.

•	 Local aggregation

Local aggregation primarily focuses on the exploitation stage. During this phase, triangular topological 
components are grouped together internally. Following the earlier phase, a triangular structure was created 
temporarily among the improved optimal or suboptimal individuals and the two vertices within the group 
exhibiting high fitness levels. The new vertex is determined as follows:

where xt+1,∗
s  represents the individual with the best suboptimal performance at the i th iteration. It is equal to 

xt+1
i,new1 if the fitness value of xt+1

i,new1 is better than the fitness value of xt,∗s  . Otherwise, it equals xt,∗s .

Electric Eel Foraging Optimization (EEFO)
The EEFO was developed in 2023 by Zhao et al.32. It takes inspiration from the collective foraging behaviours of 
electric eels, aiming to mimic four essential foraging behaviours—interaction, resting, hunting, and migration—
in its mathematical model. This approach aims to facilitate both exploration and exploitation in the optimization 
process.

The EEFO algorithm employs an energy factor to govern the search behaviours, facilitating a balanced 
transition between exploration (Interacting behaviour) and exploitation (resting, hunting, and migration 
behaviours) for enhanced optimization performance. The energy factor of an eel plays a crucial role in selecting 
the appropriate strategy, whether it is exploration or exploitation. The energy factor is precisely defined as follows:

where r is a random number between 0 and 1. When E is greater than1, the exploration stage is applied. 
Otherwise, the exploration phase is employed.

•	 Interacting behaviour

When eels come across a group of fish, they engage in swimming and stirring movements together. 
Subsequently, they form a large electrified loop in the water to ensnare multiple small fish at the centre of the 
loop. This activity can be seen as the exploration phase. The updating equation for individuals in this stage can 
be expressed as follows:

where xt = 1
np

np
∑

i=1

xti  , and xtr = LB+ r × (UP − LB) . p1 and p2 represent random numbers between 0 and 1, 

F
(

xti
)

 denotes the fitness of the candidate position of the ith electric eel, xtj  is the position of an eel chosen 
randomly from the current population, and r is a random vector ranging between 0 and 1. C represents the 
random movement of eels, and it is calculated as explained in Zhao et al.32.

•	 Resting behaviour

In order for electric eels to exhibit resting behaviour in EEFO, the resting area needs to be set up beforehand. 
To improve the search efficiency, a designated resting area is set up in the area where a single dimension of the 
eel’s position vector aligns with the main diagonal within the search space. Once the resting area is identified, 
the eels will relocate to it for resting. An eel moves towards its resting spot by adjusting its position relative to its 
designated resting area. The behaviour of resting can be described as:

where,

(39)xt+1
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More details about Zt and α is presented in Zhao et al.32.

•	 Hunting behaviour

Once the hunting area is established, an electric eel initiates its hunting activities within that specific region. 
The hunting behaviour observed in EEFO algorithm includes a curling movement. This curling behaviour 
demonstrated by the eels during hunting can be summarized as follows:

where η denotes the curling factor. The calculation of η and Ht+1
prey is presented in Zhao et al.32.

•	 Migrating

The migration behaviour of eels from the resting area to the hunting area, when they detect prey, is expressed 
through:

r1 and r2 are random values in the range between 0 and 1. More details about Ht+1
r  and L can be found in Zhao 

et al.32.

Kepler optimization algorithm (KOA)
The KOA algorithm was developed by Abdel-Basset et al.33 in 2023. Kepler’s three laws of planetary motion 
describe key aspects of how planets move around the sun, focusing on elliptical orbits, equal areas swept out in 
equal time intervals, and the relationship between orbital period and semi-major axis. Inspired by these laws, 
Abdel Basset et al. developed the KOA metaheuristic algorithm, which represents planets and the sun as solutions 
to optimization problems. KOA utilizes the dynamic positional interactions between planets and the sun over 
time, guided by Kepler’s principles.

The updating mechanism of the KOA involves two distinct stages, outlined as follows. In the initial stage, 
KOA computes the planet’s updated position utilizing (47). The adjustment in the planet’s velocity direction, 
indicated by ∂, incorporates a random scalar, r, drawn from a standard normal distribution. Here, xts denotes 
the current position of the sun, serving as the benchmark for the optimal solution. Meanwhile, vti  signifies the 
velocity of the planet at time t, and f gi  represents the gravitational force. The computation formulas for vti  , f

g
i  , ∂ , 

and ∪  are detailed in Abdel-Basset et al.33.

In the second phase of the KOA, the adjustment of planet positions near the sun—regarded as the optimal 
solution—is executed using Eq. (48). Within this stage, the adaptive factor denoted as h, as defined in Abdel-
Basset et al.33, assumes a crucial role. The value of h changes gradually over time. When h is high, the exploration 
operator is used to increase the distance between the planets and the Sun. Conversely, when h is low, the 
exploitation operator is utilized to optimize areas near the current best solution if the distance between the Sun 
and the planets is short. The variables r and r4 respectively embody a random number adhering to a normal 
distribution and a random value spanning from 0 to 1. Additionally, xta and xtb represent two randomly generated 
solutions.

Dung Beetle Optimizer (DBO)
The DBO algorithm was developed by Xue et al.34 in 2022. It is an innovative population intelligence algorithm 
that takes inspiration from the diverse behaviours of dung beetles. The algorithm is renowned for its robust 
capability in seeking merit and achieving rapid convergence. It comprises four primary processes: ball rolling, 
breeding, foraging, and stealing.

•	 Ball rolling process

In scenarios where dung beetles encounter unhindered ball rolling, it is hypothesized that the intensity of 
light impacts the beetles’ positioning. As a result, the formula for updating the dung beetle’s position is expressed 
as follows:
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∣

∣
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The deflection coefficient’s constant value is represented by k, which falls within the range of (0, 0.2]. The 
constant value b is assigned a value of (0, 1), while α is assigned the natural coefficient of − 1 or 1. Xw represents 
the worst position of the ball.

When encountering an obstacle, the dung beetle adapts by performing a dance to locate an alternative route. 
The dancing behaviour is modelled using a tangent function in the algorithm. The angle tilted from the direction 
of [0, π] is represented by the symbol ∅ . After identifying a new direction and rolling the ball, the dung beetle’s 
location is updated as follows:

•	 Breeding process

Female dung beetles roll their dung balls to a secure location while concealing them in order to make them 
more suitable for laying their eggs in a favourable habitat. The limits of the area where the brood balls are placed 
can be described as follows:

where X∗ represents the current optimal solution, while LB* and UB* represent the spawning area’s lower and 
upper boundaries. R = 1−t/itermax. The spawning area is determined by the female dung beetle, and only one egg 
is laid at a time. The breeding behavior equation has been updated and can be expressed as follows:

The position of the brood ball at each iteration is denoted by Bt+1, where b1 and b2 are composed of random 
independent vectors. However, it is crucial to confine the position of brood balls within the spawning area.

•	 Foraging process

The adult dung beetles emerge from the ground to search for food after their growth from small beetles. 
Additionally, the foraging area is constantly updated with the number of iterations using the following equation:

The term Xg∗ represents the position of the best global solution, while the optimal foraging area’s lower and 
upper bounds are denoted by LBb and UBb , respectively. The location updating equation can be written as follows:

where C1 represents a random number that follows a normal distribution, while C2 is a random vector that is 
defined on the interval (0, 1).

•	 Stealing process

There are certain dung beetles that have been labelled as thieves within their population. These beetles steal 
dung balls from other beetles. It is possible for the position of these thieving beetles to change as follows:

The symbol σ represents a vector of random values that follows a normal distribution. The letter ρ represents 
a fixed value.

Sea‑Horse Optimizer (SHO)
The SHO was developed in 2022 by Zhao et al.35. SHO draws inspiration from the natural behaviours of seahorses, 
particularly their movement patterns, predation strategies, and breeding habits. These three intelligent behaviours 
are translated into mathematical expressions to ensure a balance between local exploitation and global exploration 
within the SHO algorithm.

•	 The movement behavior

The various movement patterns exhibited by sea horses roughly adhere to the normal distribution randn (0, 1). 
To balance the exploration and exploitation aspects, r1 is set to 0 as the threshold point, allocating half for local 
exploration and the remaining half for global search. The movements can be categorized into two cases. When 
the normal random value r1 falls on the right side of the cut-off point, the first case is employed. Conversely, 
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∣
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∣
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when the random value r1 falls on the left side of the cut-off point, the second case is executed. The generation 
of a sea horse’s new position can be mathematically formulated as follows:

where = 0.05e0.05ϑ × cos(ϑ) , y = 0.05e0.05ϑ × sin(ϑ) , and z = 0.05e0.05ϑ × ϑ .  ϑ is a random value that takes 
a value between 0 and 2π. levy(z) is Lévy flight distribution function. l  represents the constant coefficient, while 
βt denotes the random walk coefficient associated with Brownian motion.

•	 The predation behavior

The sea horse has two potential outcomes when preying on zooplankton and small crustaceans: success and 
failure. The random number r2 within SHO is configured to delineate these outcomes, set to a critical value of 
0.1. If r2 > 0.1, it signifies a successful predation; otherwise, it signifies a failed predation. The mathematical 
expression encapsulating this predation behaviour is as follows:

where α =
(

1− t
itermax

)
2t

itermax .

•	 The breeding behavior

The population is divided into male and female groups based on their fitness levels. It’s important to note 
that, given the breeding responsibility of male sea horses, the SHO algorithm selects half of the individuals with 
the highest fitness values as fathers and the remaining half as mothers. Male and female sea horses are paired 
randomly to generate offspring. To streamline the implementation of the proposed SHO algorithm, it is assumed 
that each pair of sea horses produces only one offspring. The expression for the offspring is as follows:

where r3 is a random number within the range [0, 1]. xfather and xmother denote randomly chosen individuals 
from the male and female populations, respectively.

Special relativity search (SRS)
The SRS was developed in 2022 by Goodarzimehr et al.36. It draws its inspiration from the interactions observed 
among particles within an electromagnetic field. These interactions are assessed through the application of 
the Lorentz force, and the equation of motion is formulated utilizing angular frequency. The magnetic force 
acting between particles operates perpendicular to both the velocity of charged particles and the magnetic 
field, resulting in a circular trajectory for the particles. Uniquely, this approach incorporates principles from the 
theory of special relativity physics to calculate the coordinates of charged particles within each rotation for the 
first time. The primary equation of the SRS is derived by incorporating two key phenomena: length contraction 
and time dilation.

Mathematically, the SRS can be formulated as follows. The particle-to-particle distance ( Dt
ij ) in the magnetic 

field is calculated by employing the Euclidean norm as defined in (59).

Then, the charge of each particle ( Qt
i  ) can be expressed as:

where Fti,j represents the fitness value of particle xti  or the particle xtj  . F
t
gbest and Ftworst denote the global best and 

worst solutions in the population, respectively.
The frequency of the cyclotron is determined by employing (61). Where m is the particle’s mass.

The particles’ new coordinates can be obtained by:
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The new solutions of the population can determined by (63). In this algorithm, β is less than one and is set 
equal to a random number between 0 and 1.

White Shark Optimizer (WSO)
The WSO was developed in 2022 by Braik et al.37. The fundamental concepts and foundations of WSO draw 
inspiration from the behaviours exhibited by great white sharks. Specifically, their remarkable abilities in hearing 
and smelling during navigation and foraging serve as the basis for mathematical modelling. These behavioural 
aspects are incorporated to ensure a suitable equilibrium between exploration and exploitation within WSO. 
This enables the search agents to effectively explore and exploit various regions of the search space, ultimately 
facilitating optimization.

Identifying the optimal solutions is achieved through the following behaviours:

•	 Movement speed towards prey

A white shark identifies the location of its prey by detecting a pause in the waves caused by the prey’s 
movement, as depicted in (64).

where = 2
∣

∣

∣
2−τ−

√
τ 2−4τ

∣

∣

∣

 . τ indicates to the accelerating factor that is set to 4.125.  vti  represents the velocity vector 

of the ith white shark in the t iteration. xv
t
i
gbest represents the best-known position vector for the ith white shark 

within the swarm. Additionally, c1 and c2 are two randomly generated values uniformly distributed in the range 
[0, 1]. P1 and P2 are calculated using (65). The values for Pmin and Pmax are determined as 0.5 and 1.5, respectively.

•	 Movement towards optimal prey

In this particular context, the behaviour of white sharks approaching their prey was described using the 
position-updating strategy outlined as follows:

The symbol ⊕  represents a bitwise XOR operation. The frequency of the white shark’s wavy motion is denoted 
by f, and rand represents a randomly generated number uniformly distributed in the range [0, 1]. The parameter 
mv is introduced to quantify the intensity of the white shark’s sensory perception, specifically its hearing and 
olfactory abilities, which gradually increase with each iteration. More details can be found in Braik et al.37.

•	 Movement towards the best white shark

Great white sharks possess the ability to sustain their position towards the nearest best solution in proximity 
to the prey. This behaviour is mathematically formulated as:

where ′xt+1
i  represents the revised location of the ith white shark relative to the prey’s position. r1, r2, and rand 

are random values within the interval [0, 1]. ss is a parameter proposed to indicate the effectiveness of smell and 
sight senses in white sharks as they trail other white sharks near ideal prey.

•	 Fish school behaviour

The behaviour of fish schools of white sharks is characterized by the following formula:

The sharks can adapt their positions according to the leading shark that reaches the vicinity of the target, 
optimizing their location. The final destination of the sharks ideally surrounds the prey within the search area. 
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The collective behaviour of WSO is characterized by fish movements and the sharks’ alignment with the superior 
shark, enhancing both local and global search abilities.

Implementation of metaheuristics in solving TEP
The mechanism of operation of meta-heuristics in solving the TEP problem is described in Fig. 2. It comprises 
several pivotal stages. Initially, data concerning generation and transmission lines are collated, and their 
boundaries are defined. Subsequently, an initial population is randomly generated, ensuring adherence to these 
boundaries. Throughout each iteration, the positions of individuals are adjusted according to the algorithm’s 
updating scheme, while concurrently, the objective function is assessed to ascertain the optimal solution. 
Any deviations from operating constraints result in significant penalization. These procedures persist until a 
predefined stopping criterion, often the maximum iteration limit, is met. This iterative cycle is then reiterated 
until the specified number of runs is accomplished, ultimately culminating in the identification of the optimal 
network configuration yielded by the best run. The operating mechanism of TEP-based metaheuristics for solving 
strategies can be summarized as follows:

Step 1: The data for the generation and transmission lines of the network are first prepared, and their lower 
and upper bounds are set.

Step 2: The initial population is randomly generated considering the lower and upper bounds of the decision-
making variables as provided in (16).

Step 3: In each iteration, the following steps are carried out:

(a)	 The position of each individual in the population is updated using the updating scheme of the meta-
heuristic algorithm.

(b)	 The objective function is calculated, and the best solution is defined. If the candidate solutions do not meet 
the operating constraints, a high penal value is added to the objective function.

(c)	 Repeat a and b until the stopping criterion is achieved (i.e., the maximum number of iterations is 
conducted).

Initialize the population  of np individuals 

randomly

t=0

Update the individual positions using the updating 

scheme of the meta-heuristic algorithm.

Run the planning model and check the TEP’s constrains. 

Compute the fitness values then apply the penalty scheme if the  

constrains are violated.

Satisfy stopping 

criteria?

End

System 
parameters

t=t+1

Yes

No

run = 0

All runs executed?
No

Yes

run=run+1

Start

Figure 2.   Steps of the application of meta-heuristics in solving the TEP problem.
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Step 4: Repeat steps (1–3) until the maximum number of runs are conducted.
Step 5: Determine the best run that gives the best configuration of the network.

Testing systems
The optimization algorithms under consideration are tested using both the Garver Network, the Egyptian 
West Delta Network (WDN), and the IEEE 118-bus system. The initial configuration of the Garver Network is 
illustrated in Fig. 3, comprising 15 power routes and 6 nodes, with a total power demand of 760 MW. System data 
can be found in42. In Fig. 3, candidate routes are depicted by dotted lines, while existing routes are represented 
by solid lines.

The WDN serves as an Egyptian sub-transmission network, with its initial configuration shown in Fig. 4 and 
system data provided in16. It encompasses 52 buses and 55 routes, each equipped with two circuits. Plans include 
the installation of a new generation station at bus number 53 to accommodate anticipated load growth16. In Fig. 4, 
candidate routes are indicated by dotted lines, while existing routes are delineated by solid lines.

The 118-bus system encompasses 118 nodes, 54 thermal generation stations, and 186 pre-existing lines43. 
With a total load reaching 6.886 GW, the proposal entails installing a new circuit along each route.

Results and discussion
The simulations were executed on the MATLAB r2021a platform using a DELL PC model named OptiPlex7050, 
equipped with an Intel® Core™ i7 CPU running at 2.6 GHz and 16 GB RAM. In total, 20 simulation runs were 
executed to ensure a thorough analysis, thereby enhancing the statistical reliability of the results. The maximum 
number of iterations was set to 300. The capital and operation cost coefficients of generation units are given in44, 
while the cost coefficient parameters of the TCSC are provided in38. The cost coefficient of the FCL module is 
introduced in45.

The Garver network
Statistical analysis of the optimization algorithms
In this subsection, the TEP models are applied to evaluate the optimization capabilities of various algorithms 
on the Garver system. Table 2 presents the optimization results obtained from 20 runs, comprising metrics such 
as the best and worst fitnesses, average fitness, and computation time for each run. The results from model #1 
demonstrate that all algorithms successfully obtained the minimum cost value of 556 million USD. Among 
its counterparts in model #1, KOA demonstrated the minimum average value, followed by WSO and TTAO, 
respectively. This establishes KOA as a competitive algorithm in the optimization of the Garver system.

In model #2, KOA, DBO, and TTAO demonstrated their efficiency in obtaining the best solutions at 486.6 
million USD. However, KOA excelled in terms of the best average value over the executed runs. The average value 
of KOA was approximately 19.3 and 123 million USD units lower than that of TTAO and DBO, respectively, 
representing a reduction of about 3.7% and 19.7%, respectively.

When the planning model was expanded to incorporate FCL’s planning model (model #3), among other 
algorithms, KOA, WO, TTAO, and DBO were identified as the best algorithms for determining the optimal 
solutions. However, KOA outperformed all other algorithms in obtaining the best average value, as shown in 
Table 2. The best solution and average value were approximately 487.28 and 506.76 million USD, respectively. 
Regarding the acquisition of the best average values, WO ranked as the second-best algorithm, followed by EEFO 
and TTAO, respectively.

The time values presented in Table 2 represent the average duration obtained from conducting 20 distinct 
runs. Figure 5 illustrates the convergence curves of all algorithms concerning the best achieved score so far. 
While all algorithms achieved convergence, WSO exhibited the most rapid convergence rate. Despite WSO 
demonstrating the quickest iteration, its accuracy falls below that of KOA, DBO, and TTAO, as corroborated by 
the data amalgamated in Table 2. SRS, SCHO, WSO, SHO, SGA, and EEFO exhibit stagnation at local extremes, 

Table 2.   Optimization results of the optimization algorithms for the Garver system.

TEP model Measure SCHO WO SGA TTAO EEFO KOA DBO SHO SRS WSO

O.F1

Best 556.00 556.00 556.00 556.00 556.00 556.00 556.00 556.00 556.00 556.00

Worst 798.04 717.00 1007.0 617.00 690.00 586.00 931.00 919.00 677.75 604.00

Average 614.72 586.80 753.30 571.59 601.05 559.51 650.20 700.50 632.14 567.45

Time (s) 8.77 8.84 8.21 9.54 8.55 8.23 7.63 9.10 7.43 6.44

O.F2

Best 536.88 506.71 548.05 486.65 506.91 486.65 486.64 536.42 548.05 506.83

Worst 699.15 584.71 894.81 556.32 670.91 506.88 816.38 908.96 697.00 585.10

Average 583.17 538.10 710.01 520.07 536.61 500.78 623.74 646.68 627.96 535.36

Time (s) 12.17 12.05 11.44 12.34 11.72 11.35 10.84 12.22 10.35 8.94

O.F3

Best 536.90 487.28 625.16 487.28 507.27 487.28 487.28 566.75 600.73 507.88

Worst 993.43 598.14 873.69 766.26 637.29 537.47 779.42 963.02 795.13 852.92

Average 778.55 543.58 782.34 581.00 562.89 506.76 692.77 752.1831 642.24 616.61

Time (s) 13.9 13.81 13.47 14.02 13.25 13.17 12.65 13.84 11.71 10.12
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especially when applied to solve model #2 and model #3, affirming the effectiveness of the exploitation phase of 
KOA, DBO, and TTAO, which demonstrates reliable exploration potential.

In Fig. 6, a box plot illustrating the performance of the algorithms is presented. KOA stands out prominently, 
as evidenced by the smallest interquartile range displayed in the plot. Moreover, KOA attains the lowest worst 
objective value over the three models, outperforming other algorithms.

The result gathered from the Wilcoxon rank sum test provides a crucial metric known as the p-value, 
determining the significance of the evaluated algorithm’s superiority over its competitors. In this analysis, an 

Figure 5.   Convergence curve of the optimization algorithms for the Garver system: (a) model #1, (b) model #2, 
and (c) model #3.
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algorithm achieves statistical significance if its p-value is below 0.05. Table 3 presents the results of the Wilcoxon 
rank sum test. Complemented by data from 20 simulation runs, the symbols “+”, and “−” denote whether the 
algorithms achieve statistical significance or not, respectively. The results supported the data provided in Table 2, 
showing that KOA delivered the best performance in solving Model #1. Additionally, KOA, DBO, and TTAO 
consistently outperformed alternative algorithms, particularly in Model #2. For Model #3, the Wilcoxon rank 
sum test results confirmed the efficiency of KOA, WO, TTAO, and DBO compared to all other algorithms.

Figure 6.   Variations’ box chart of runs for the Garver network: (a) model #1, (b) model #2, and (c) model #3.
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Algorithm TEP model Measure SCHO WO SGA TTAO EEFO KOA DBO SHO SRS WSO

SCHO

O.F1
p-value NA 0.04102 0.00012 7.11E−03 0.59784 3.71E−05 0.18941 0.0143 6.20E−02 0.0008

H NA  +   +   +  −  +  −  +   +   + 

O.F2
p-value NA 0.0004 2.60E−05 1.92E−07 0.0007 6.80E-08 0.0385 0.017 5.12E−03 0.000104

H NA  +   +   +   +   +   +   +   +   + 

O.F3
p-value NA 9.25E−07 1.42E−01 3.21E−05 2.53E−05 6.24E−08 0.010812 0.712296 3.46E−02 0.001358

H NA  +  −  +   +   +   +  −  +   + 

WO

O.F1
p-value 0.04102 NA 3.04E−06 6.85E−01 0.16724 7.97E−04 0.0121 0.0002 4.13E−04 0.6257

H  +  NA  +  − −  +   +   +   +  −

O.F2
p-value 0.0004 NA 1.66E−07 2.56E-03 0.4734 7.95E−07 3.71E−05 5.87E−06 1.66E−07 0.473481

H  +  NA  +   +  −  +   +   +   +  −

O.F3
p-value 9.25E−07 NA 4.94E−08 3.29E−01 0.063195 3.75E−05 0.000111 1.08E−07 6.28E−08 0.000602

H  +  NA  +  − −  +   +   +   +   + 

SGA

O.F1
p-value 0.00012 3.04E−06 NA 1.20E−06 9.74E−06 1.20E−06 0.00332 1.81E−01 0.0001 4.51E−07

H  +   +  NA  +   +   +   +   +   +   + 

O.F2
p-value 2.60E−05 1.66E−07 NA 7.90E−08 3.42E−07 6.80E−08 2.14E−03 2.75E−02 0.002 1.23E−07

H  +   +  NA  +   +   +   +   +   +   + 

O.F3
p-value 1.42E−01 4.94E−08 NA 9.89E−07 7.28E−08 5.37E−08 1.72E−02 3.46E−01 5.65E−06 1.76E−05

H − − NA  +   +   +   +  −  +   + 

TTAO

O.F1
p-value 7.11E-03 6.85E−01 1.20E−06 NA 2.31E−02 0.45695 1.01E−03 2.04E−05 1.20E−06 1.10E−01

H  +  −  +  NA  +  −  +   +   +  −

O.F2
p-value 1.92E−07 2.56E−03 7.90E−08 NA 9.79E−03 1.44E−02 2.36E−06 1.66E−07 7.90E−08 1.12E−03

H  +   +   +  NA  +   +   +   +   +   + 

O.F3
p-value 3.21E−05 3.29E−03 9.89E−07 NA 9.68E−03 4.83E−06 1.67E−03 5.08E−05 3.75E−04 1.02E−04

H  +   +   +  NA  +   +   +   +   +   + 

EEFO

O.F1
p-value 0.59784 0.16724 9.74E−06 2.31E−02 NA 5.09E−04 0.04366 0.00148 6.22E−04 0.0020

H − −  +   +  NA  +   +   +   +   + 

O.F2
p-value 0.0007 0.4734 3.42E−07 9.79E−03 NA 6.80E−08 4.17E−05 1.25E−05 1.38E−06 0.655

H  +  −  +   +  NA  +   +   +   +  -

O.F3
p-value 2.53E−05 0.063195 7.28E−08 9.68E−03 NA 6.92E−07 0.000989 4.95E−06 5.87E−06 0.027483

H  +  −  +   +  NA  +   +   +   +   + 

KOA

O.F1
p-value 3.71E−05 7.97E−04 1.20E−06 0.45695 5.09E−04 NA 2.21E−04 1.58E−06 1.20E−06 9.89E−03

H  +   +   +  −  +  NA  +   +   +   + 

O.F2
p-value 6.80E−08 7.95E−07 6.80E−08 1.44E−02 6.80E−08 NA 1.20E−06 6.80E−08 6.80E−08 1.23E−07

H  +   +   +   +   +  NA  +   +   +   + 

O.F3
p-value 6.24E−08 3.75E−05 5.37E−08 4.83E−06 6.92E−07 NA 1.08E−05 6.41E−08 6.80E−08 1.66E−07

H  +   +   +   +   +  NA  +   +   +   + 

DBO

O.F1
p-value 0.18941 0.0121 0.00332 1.01E−03 0.04366 2.21E−04 NA 0.18045 9.03E−01 0.0004

H −  +   +   +   +   +  NA  +  −  + 

O.F2
p-value 0.0385 3.71E−05 2.14E−03 2.36E−06 4.17E−05 1.20E−06 NA 0.0350 3.94E−04 2.04E−05

H  +   +   +   +   +   +  NA  +   +   + 

O.F3
p-value 0.010812 0.000111 1.72E−02 1.67E−03 0.000989 1.08E−05 NA 0.0411583 2.24E−03 0.025901

H  +   +   +   +   +   +  NA  +   + 

SHO

O.F1
p-value 0.01436 0.00024 1.81E−01 2.04E−05 0.00148 1.58E−06 0.18045 NA 1.48E−01 3.05E−06

H  +   +  −  +   +   +  − NA  +   + 

O.F2
p-value 0.0179 5.87E−06 2.75E−02 1.66E−07 1.25E−05 6.80E−08 0.03507 NA 7.97E−01 5.87E−06

H  +   +   +   +   +   +   +  NA −  + 

O.F3
p-value 0.712296 1.08E−07 3.46E−01 5.08E−05 4.95E−06 6.41E−08 0.0411583 NA 7.15E−03 1.32E−03

H −  +  −  +   +   +   +  NA  +   + 

SRS

O.F1
p-value 6.20E−02 4.13E−04 0.00014 1.20E−06 6.22E−04 1.20E−06 9.03E−01 1.48E−01 NA 1.19E−06

H −  +   +   +   +   +  − − NA  + 

O.F2
p-value 5.12E−03 1.66E−07 0.0020 7.90E−08 1.38E−06 6.80E−08 3.94E−04 7.97E−01 NA 1.23E−07

H  +   +   +   +   +   +   +  − NA  + 

O.F3
p-value 3.46E−02 6.28E−08 5.65E−06 3.75E−04 5.87E−06 6.80E−08 2.24E−03 7.15E−03 NA 1.20E−01

H  +   +   +   +   +   +  −  +  NA −

Continued
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The Garver network configuration
Table 4 outlines the incorporation of new components necessary to expand the Garver network in order to meet 
electrical demand. These components are selected from the best-performing runs in each model. As indicated 
in Table 4, in model #1, five circuits are crucial for supplying the loads, located along routes 2–3, 3–5, and 
4–6. In model #2, the integration of the TCSCS planning model into the TEP model reduces the number of 
installed circuits from 5 to 2, consequently lowering the overall planning cost. Furthermore, Table 4 highlights 
the significance of installing FCLs to restrict short-circuit currents to below 6.5 p.u.

The WDN
Statistical analysis of the optimization algorithms
In this subsection, the performance of the algorithms is evaluated on the WDN. Each algorithm undergoes 20 
independent runs for each test, and the statistical findings are synthesized in Table 5. The results of model #1 
showed that KOA, TTAO, and SHO succeeded in obtaining the best solution, valued at 401.22 million USD. 
Despite the increased scale of the system, KOA still provides the minimum average value. It was observed that 
KOA provided the best average value of 402.11 million USD, which was lower by about 17.44 million USD than 
SGA, representing the worst value.

In model #2, KOA continues to prove its efficiency in obtaining the best solutions as shown in Table 5. The 
lowest cost function was 393.35 million USD. TTAO is the second-best algorithm, followed by SHO, WO, and 
DBO, respectively. In terms of average values, KOA still provides the best value at 395.81 million USD, followed 
by TTAO and WO, respectively. The average value of KOA was lower by about 2.39 and 6.11 million USD for 
TTAO and WO, respectively.

When the planning model was expanded to incorporate the planning model of FCLs (model #3), among 
other algorithms, KOA emerged as the top-performing algorithm in determining optimal solutions and achieving 
the lowest average value, as depicted in Table 5. The optimal solution and average value stood at approximately 
394.85 and 396.45 million USD, respectively. Following closely in terms of both optimal solution and average 
values, TTAO ranked as the second-best algorithm, trailed by SHO and WO, respectively. Their optimal solutions 

Algorithm TEP model Measure SCHO WO SGA TTAO EEFO KOA DBO SHO SRS WSO

WSO

O.F1
p-value 0.00083 0.62577 4.51E−07 1.10E−01 0.00203 9.89E−03 0.00047 3.05E−06 1.19E−06 NA

H  +  −  +  −  +   +   +   +   +  NA

O.F2
p-value 0.0001 0.4734 1.23E−07 1.12E−03 0.6553 1.23E−07 2.04E−05 5.87E−06 1.23E−07 NA

H  +  −  +   +  −  +   +   +   +  NA

O.F3
p-value 0.001358 0.000602 1.76E−05 1.02E−03 0.027483 1.66E−07 0.025901 1.32E−03 1.20E−01 NA

H  +   +   +   +   +   +   +   +  − NA

Table 3.   Wilcoxon rank sum test between the algorithms for the Garver system.

Table 4.   Installed projects required for the Garver system.

TEP model Added circuits No. of added TCSCs No. added FCLs

Model #1 2–3 (1); 3–5(1); 4–6 (3) – –

Model #2 4–6 (2) 6 –

Model #32 4–6 (2) 6 3

Table 5.   Optimization results of the optimization algorithms for the WDN.

TEP model Measure SCHO WO SGA TTAO EEFO KOA DBO SHO SRS WSO

O.F1

Best 401.96 402.67 404.94 401.22 401.84 401.22 402.37 401.22 406.72 402.34

Worst 416.02 410.12 434.92 407.11 416.98 405.46 420.07 412.07 423.21 414.92

Average 408.69 406.59 419.55 402.78 408.03 402.11 407.76 405.94 418.05 407.56

Time (s) 64.20 67.79 61.86 118.52 74.52 66.23 58.63 91.02 56.21 27.35

O.F2

Best 400.09 396.84 404.25 395.69 400.42 393.35 397.36 396.72 418.35 400.62

Worst 411.38 407.72 438.28 402.45 410.64 400.39 412.56 406.82 429.92 413.58

Average 404.72 401.92 421.79 398.20 405.30 395.81 404.39 402.97 424.56 406.94

Time (s) 76.4 81.61 70.169 131.72 88.24 77.63 67.43 103.88 66.54 35.4

O.F3

Best 401.91 397.30 403.41 396.74 400.73 394.85 398.11 397.12 407.52 401.5497

Worst 414.48 411.54 431.62 401.67 413.86 403.33 413.77 406.94 429.69 411.0904

Average 406.71 402.89 414.10 397.98 406.60 396.45 404.72 401.87 422.38 406.5078

Time (s) 81.04 85.06 75.63 134.05 92.89 81.84 70.22 105.17 70.05 38.33
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exceeded KOA’s by approximately 1.89, 2.27, and 2.45 million USD, respectively, while their average values 
surpassed KOA’s by about 1.53, 5.42, and 6.44 million USD, respectively.

The data presented in Table 5 shows the average duration obtained by running the WDN for 20 iterations. 
Similar to the Garver network, it is apparent that six algorithms require less computational time than KOA, while 
the remaining algorithms (WO, TTAO, EEFO, SHO) take longer. Figure 7 displays the convergence curves of the 
best run for all the algorithms. Table 5 also highlights that the WSO also demonstrated the shortest computational 
times, approximately 2–3 times faster than those of other algorithms. Despite its rapid convergence, the average 
solution value obtained is higher compared to KOA, TTAO, and SHO. In TEP, prioritizing the quality of solutions 
is paramount over the speed of the algorithm.

Figure 7.   Convergence curve of the optimization algorithms for the WDN: (a) model #1, (b) model #2, and (c) 
model #3.
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The performance of the algorithms is depicted in Fig. 8 through a box plot, offering a comprehensive visual 
representation of their comparative efficacy. Remarkably, KOA emerges as the leading performer, characterized by 
the smallest interquartile range observed in the plot. This narrow range signifies a more consistent performance 
across different scenarios, reflecting the algorithm’s robustness and reliability. Moreover, KOA achieves the lowest 
worst objective value among all algorithms evaluated, underscoring its exceptional capability in finding optimal 
solutions even under challenging conditions. This standout performance further solidifies KOA’s position as a 
promising algorithm for addressing complex optimization problems such as TEP.

Figure 8.   Variations’ box chart of runs for the WDN: (a) model #1, (b) model #2, and (c) model #3.
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Algorithm TEP model Measure SCHO WO SGA TTAO EEFO KOA DBO SHO SRS WSO

SCHO

O.F1
p-value NA 0.123 0.00041 5.46E−06 0.542 5.42E−07 0.3793 0.0273 3.07E−06 0.440

H NA −  +   +  −  +  −  +   +  −

O.F2
p-value NA 0.00655 3.42E−07 2.96E−07 0.56085 7.90E−08 0.65536 0.11985 6.80E−08 0.0256

H NA  +   +   +  −  +  − −  +   + 

O.F3
p-value NA 0.000305 2.14E−03 6.80E−08 0.924573 9.17E−08 0.053103 0.000144 2.22E−07 0.946084

H NA  +   +   +  −  +  −  +   +  −

WO

O.F1
p-value 0.123091 NA 3.71E−05 7.06E−06 0.273285 7.74E−07 0.456951 0.35025 2.56E−07 0.516168

H − NA  +   +  −  +  − −  +  −

O.F2
p-value 0.00655 NA 1.06E−07 1.61E−04 0.00162 1.92E−07 0.0909 0.15557 6.80E−08 0.0001

H  +  NA  +   +   +   +  − −  +   + 

O.F3
p-value 0.00030 NA 2.36E−06 3.99E−06 0.00101 5.17E−06 0.23932 0.35070 9.17E−08 0.0002

H  +   +   +   +   +  − −  +   + 

SGA

O.F1
p-value 0.000416 3.71E−05 NA 1.14E−07 0.000179 8.90E−08 0.000144 1.86E−05 0.635945 0.000104

H  +   +  NA  +   +   +   +   +  −  + 

O.F2
p-value 3.42E−07 1.06E−07 NA 6.80E−08 4.54E−07 6.80E−08 2.56E−07 2.22E−07 0.096 7.95E−07

H  +   +  NA  +   +   +   +   +  −  + 

O.F3
p-value 2.14E−03 2.36E−06 NA 6.80E−08 2.34E−03 6.80E−08 3.38E−04 4.54E−07 0.007 9.21E−04

H  +   +  NA  +   +   +   +   +   +   + 

TTAO

O.F1
p-value 5.47E−06 7.06E−06 1.14E−07 NA 6.63E−06 0.03719 3.71E−06 0.00013 7.83E−08 2.58E−05

H  +   +   +  NA  +   +   +   +   +   + 

O.F2
p-value 2.96E−07 1.61E−04 6.80E−08 NA 3.42E−07 2.92E−05 5.87E−06 8.60E−06 6.80E−08 1.66E−07

H  +   +   +  NA  +   +   +   +   +   + 

O.F3
p-value 6.80E−08 3.99E−06 6.80E−08 NA 9.17E−08 3.34E−03 1.38E−06 1.44E−04 6.80E−08 7.90E−08

H  +   +   +  NA  +   +   +   +   +   + 

EEFO

O.F1
p-value 0.5427 0.2732 0.00017 6.63E−06 NA 8.89E−07 0.839232 0.1132 1.20E−06 0.675

H − −  +   +  NA  +  − −  +  −

O.F2
p-value 0.56085 0.00162 4.54E−07 3.42E−07 NA 6.80E−08 0.32348 0.0239 6.80E−08 0.0909

H −  +   +   +  NA  +  −  +   +  −

O.F3
p-value 0.92457 0.00101 2.34E−03 9.17E−08 NA 2.22E−07 0.09090 0.00024 1.66E−07 0.8817

H − −  +   +  NA  +  −  +   +  −

KOA

O.F1
p-value 5.42E−07 7.74E−07 8.90E−08 0.037195 8.89E−07 NA 3.56E−07 1.44E−05 6.59E−08 1.54E−06

H  +   +   +   +   +  NA  +   +   +   + 

O.F2
p-value 7.90E−08 1.92E−07 6.80E−08 2.92E−05 6.80E−08 NA 1.23E−07 1.43E−07 6.80E−08 6.80E−08

H  +   +   +   +   +  NA  +   +   +   + 

O.F3
p-value 9.17E−08 5.17E−06 6.80E−08 3.34E−03 2.22E−07 NA 2.06E−06 1.41E−05 6.80E−08 1.43E−07

H  +   +   +   +   +   +   +   +   + 

DBO

O.F1
p-value 0.37933 0.45695 0.00014 3.71E−06 0.83923 3.56E−07 NA 0.10714 2.36E−06 0.9892

H − −  +   +  −  +  NA −  +  −

O.F2
p-value 0.65536 0.09090 2.56E−07 5.87E−06 0.32348 1.23E−07 NA 0.49033 6.80E−08 0.063

H − −  +   +  −  +  NA −  +  −

O.F3
p-value 0.05310 0.23932 3.38E−04 1.38E−06 0.09090 2.06E−06 NA 0.06389 1.23E−07 0.0565

H − −  +   +  −  +  NA −  +  −

SHO

O.F1
p-value 0.027338 0.35025 1.86E−05 0.000132 0.113213 1.44E−05 0.107148 NA 2.16E−07 0.2179

H  +  −  +   +  −  +  − NA  +  −

O.F2
p-value 0.11985 0.15557 2.22E-07 8.60E-06 0.02390 1.43E-07 0.49033 NA 6.80E-08 0.0003

H − −  +   +   +   +  − NA  +   + 

O.F3
p-value 0.00014 0.35070 4.54E-07 1.44E-04 0.00024 1.41E-05 0.06389 NA 6.80E-08 9.28E-05

H  +  −  +   +   +   +  − NA  +   + 

SRS

O.F1
p-value 3.07E-06 2.56E-07 0.635945 7.83E-08 1.20E-06 6.59E-08 2.36E-06 2.16E-07 NA 9.12E-07

H  +   +  −  +   +   +   +   +  NA  + 

O.F2
p-value 6.80E-08 6.80E-08 0.09619 6.80E-08 6.80E−08 6.80E−08 6.80E−08 6.80E−08 NA 6.80E−08

H  +   +  −  +   +   +   +   +  NA  + 

O.F3
p-value 2.22E−07 9.17E−08 0.00711 6.80E−08 1.66E−07 6.80E−08 1.23E−07 6.80E−08 NA 1.66E−07

H  +   +   +   +   +   +   +   +  NA  + 

Continued
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The Wilcoxon rank sum test results are presented in Table 6, providing a detailed comparison of the 
performance of different algorithms. The symbols “+”, and “−” denote whether the algorithms achieve 
statistical significance or not, respectively. The results supported the data provided in Table 5, showing that 
KOA delivered the best performance in solving across all tested models. The results indicate that the KOA 
algorithm demonstrates superior performance, consistent with the statistical analyses conducted. Notably, the 
KOA algorithm shows exceptional effectiveness in tackling TEP issues, as evidenced by its consistently high 
performance across different models. These findings suggest that the KOA algorithm could be a suitable choice 
for addressing TEP problems, given its superior performance in terms of accuracy and reliability.

The WDN configuration
Table 7 gives a summary of the new components that are required to expand the WDN. These components 
are chosen from the best-performing runs in each model. As shown in Table 7, in model #1, seven circuits are 
required to supply the loads that are located along routes 5–6, 33–53, 5–53, 36–53, and 20–53. In model #2, the 
incorporation of the TCSCS planning model into the TEP model reduces the number of installed circuits from 
7 to 4, resulting in a decrease in the overall planning cost. Additionally, Table 7 highlights the significance of 
installing four FCLs to limit short-circuit currents to below 9 p.u.

The IEEE 118‑bus system
Statistical analysis of the optimization algorithms
Table 8 presents the optimization results. In Model #1, all algorithms except SRS and WSO achieved the minimum 
cost value of 348.62 million USD. Notably, KOA demonstrated the lowest average value among the algorithms, 
followed by SHO and WO. KOA’s average cost was 348.81 million USD, which is approximately 2.74% and 3.63% 
lower than those of SHO and WO, respectively.

In Model #2, KOA, DBO, SGA, and SHO were effective in reaching the optimal solution of 333.96 million 
USD. However, KOA distinguished itself by achieving the best average value across all runs. KOA’s average was 

Algorithm TEP model Measure SCHO WO SGA TTAO EEFO KOA DBO SHO SRS WSO

WSO

O.F1
p-value 0.440728 0.516168 0.000104 2.58E−05 0.675 1.54E−06 0.989208 0.217952 9.12E−07 NA

H − −  +   +  −  +  − −  +  NA

O.F2
p-value 0.02563 0.00010 7.95E−07 1.66E−07 0.09090 6.80E−08 0.06389 0.00037 6.80E−08 NA

H  +   +   +   +  −  +  −  +   +  NA

O.F3
p-value 0.94608 0.00024 9.21E−04 7.90E−08 0.88173 1.43E−07 0.05651 9.28E−05 1.66E−07 NA

H −  +   +   +  −  +  −  +   +  NA

Table 6.   Wilcoxon rank-sum test between the algorithms for the WDN.

Table 7.   Installed projects required for the WDN.

TEP model Added circuits No. of added TCSCs No. added FCLs

Model #1 5–6 (1); 33–53 (1); 5–53(2); 36–53 (2); 20–53 (1) – –

Model #2 6–34 (1); 5–53 (1); 36–53 (2) 6 –

Model #32 6–34 (1); 5–53 (1); 36–53 (2) 6 4

Table 8.   Optimization results of the optimization algorithms for the IEEE 118-bus system.

TEP model Measure SCHO WO SGA TTAO EEFO KOA DBO SHO SRS WSO

O.F1

Best 348.62 348.62 348.62 348.62 348.62 348.62 348.62 348.62 358.52 364.92

Worst 387.72 383.12 670.92 604.02 374.82 349.34 578.72 374.82 474.82 469.924

Average 364.14 361.93 522.81 463.11 361.07 348.81 464.53 358.63412 412.44 443.5401

Time (s) 120.45 128.21 116.45 226.5 142.31 127.02 110.7 172.79 107.02 77.21

O.F2

Best 354.01 351.52 333.96 338.60 353.20 333.96 333.96 333.96 362.20 361.46

Worst 394.17 355.14 648.58 710.94 354.38 345.01 783.26 369.77 672.70 719.43

Average 362.68 353.03 390.13 493.26 353.92 340.38 410.55 345.74 502.25 490.23

Time (s) 132.02 1.38.4 124.66 239.21 154.21 132.4 119.45 184.03 112.33 80.11

O.F3

Best 355.25 351.97 337.03 367.43 355.48 337.03 337.03 338.57 341.12 341.12

Worst 376.94 359.40 1807.6 649.23 356.18 347.71 941.11 377.92 367.83 365.20

Average 364.18 354.78 551.15 487.94 355.84 341.98 422.80 351.33 353.60 351.51

Time (s) 141.56 147.35 133.07 256.56 163.45 144.03 124.89 195.12 119.32 85.9



26

Vol:.(1234567890)

Scientific Reports |        (2024) 14:13046  | https://doi.org/10.1038/s41598-024-63331-1

www.nature.com/scientificreports/

approximately 5.36 million USD lower than that of SHO, which ranked second, representing a reduction of 
about 1.55%.

In Model #3, KOA, SGA, and DBO remained effective in obtaining the optimal solution of 337.03 million 
USD. Among these, KOA excelled, achieving the best average value, as shown in Table 8. The optimal average 
value was approximately 341.98 million USD, which is 2.66% lower than that of SHO, which obtained the 
second-best value.

Figure 9.   Convergence curve of the optimization algorithms for the IEEE 118-bus system: (a) model #1, (b) 
model #2, and (c) model #3.



27

Vol.:(0123456789)

Scientific Reports |        (2024) 14:13046  | https://doi.org/10.1038/s41598-024-63331-1

www.nature.com/scientificreports/

Figure 9 illustrates the convergence curves of all algorithms concerning the best achieved score to date. 
While all algorithms converged, WSO exhibited the most rapid convergence rate. Figure 10 presents a box 
plot comparing the performance of the algorithms. KOA stands out prominently, evidenced by the smallest 
interquartile range displayed in the plot.

Figure 10.   Variations’ box chart of runs for the IEEE 118-bus system: (a) model #1, (b) model #2, and (c) 
model #3.
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Algorithm TEP model Measure SCHO WO SGA TTAO EEFO KOA DBO SHO SRS WSO

SCHO

O.F1
p-value NA 0.1799 0.0001 7.42E−03 0.2274 7.58E−06 2.30E−05 0.027 4.67E−02 5.23E−07

H NA −  +   +  −  +   +   +   +   + 

O.F2
p-value NA 1.23E−07 7.11E−03 1.58E−06 2.96E−07 6.80E−08 0.0071 2.30E−05 4.36E−06 5.23E−07

H NA  +   +   +   +   +   +   +   +   + 

O.F3
p-value NA 2.06E−06 4.60E−04 2.21E−07 1.25E−05 6.80E−08 0.394171 0.000275 1.79E−04 1.05E−06

H NA  +   +   +   +   +  −  +   +   + 

WO

O.F1
p-value 0.1799 NA 2.10E−05 5.45E−03 0.8051 7.03E−03 7.82E−06 0.967 2.51E−03 1.98E−07

H − NA  +   +  −  +   +  -  +   + 

O.F2
p-value 1.23E−07 NA 7.11E−03 1.20E−06 0.0008 6.80E−08 0.0071 0.001 6.53E−08 6.80E−08

H  +  NA  +   +   +   +   +   +   +   + 

O.F3
p-value 2.06E−06 NA 2.80E−03 6.79E−08 0.0114 6.80E−08 0.6359 0.004 3.23E−01 0.007

H  +  NA  +   +   +   +  −  +  −  + 

SGA

O.F1
p-value 0.0001 2.10E−05 NA 4.55E−02 1.40E−05 1.20E−06 0.1165 1.49E−05 0.007 0.147

H  +   +  NA  +   +   +  − −  +  −

O.F2
p-value 7.11E−03 7.11E−03 NA 5.09E−04 7.11E−03 5.48E−03 3.72E−01 4.90E−01 0.0001 2.47E−04

H  +   +  NA  +   +   +  − −  +   + 

O.F3
p-value 4.60E−04 2.80E−03 NA 1.61E−04 1.23E−03 4.96E−05 8.29E−01 7.97E−01 0.107511 2.29E−01

H  +   +  NA  +   +   +  − − − −

TTAO

O.F1
p-value 7.42E−03 5.45E−03 4.55E−02 NA 2.13E−03 0.0068 8.38E−01 0.006 3.06E−02 1.41E−01

H  +   +   +  NA  +   +  −  +   +  −

O.F2
p-value 1.58E−06 1.20E−06 5.09E−04 NA 1.20E−06 6.92E−07 2.92E−03 5.23E−07 9.46E−01 9.03E−01

H  +   +   +  NA  +   +   +   +  − -

O.F3
p-value 2.21E−07 6.79E−08 1.61E−04 NA 6.79E−08 6.79E−08 3.06E−03 1.06E−07 7.89E−08 6.79E−08

H  +   +   +  NA  +   +   +   +   +   + 

EEFO

O.F1
p-value 0.2274 0.8051 1.40E−05 2.13E−03 NA 6.96E−03 7.53E−06 0.902 1.63E−02 9.86E−08

H − −  +   +  NA  +   +  −  +   + 

O.F2
p-value 2.96E−07 0.0008 7.11E−03 1.20E−06 NA 6.80E−08 0.0071 0.000275 6.53E−08 6.80E−08

H  +   +   +   +  NA  +   +   +   +   + 

O.F3
p-value 1.25E−05 0.0114 1.23E−03 6.79E−08 NA 6.80E−08 0.5978 0.001 1.08E−01 0.000161

H  +   +   +   +  NA  +  −  +  −  + 

KOA

O.F1
p-value 7.58E−06 7.03E−03 1.20E−06 0.0068 6.96E−03 NA 1.20E−06 5.98E−04 6.69E−08 6.80E−08

H  +   +   +   +   +  NA  +   +   +   + 

O.F2
p-value 6.80E−08 6.80E−08 5.48E−03 6.92E−07 6.80E−08 NA 2.13E−04 4.33E−04 6.53E−08 6.80E−08

H  +   +   +   +   +  NA  +   +   + 

O.F3
p-value 6.80E−08 6.80E−08 4.96E−05 6.79E−08 6.80E−08 NA 2.04E−03 2.47E−04 1.38E−06 1.58E−06

H  +   +   +   +   +  NA  +   +   +   + 

DBO

O.F1
p-value 2.30E−05 7.82E−06 0.1165 8.38E−01 7.53E−06 1.20E−06 NA 9.75E−06 2.07E−02 0.285

H  +   +  − −  +   +  NA  +   +  −

O.F2
p-value 0.0071 0.0071 3.72E−01 2.92E−03 0.0071 2.13E−04 NA 0.516 9.07E−04 0.001

H  +   +  −  +   +   +  NA −  +   + 

O.F3
p-value 0.3941 0.6359 8.29E−01 3.06E−03 0.5978 2.04E−03 NA 0.755 9.25E−01 0.967

H − − −  +  −  +  NA − − −

SHO

O.F1
p-value 0.0274 0.9675 1.49E−5 0.0068 0.9028 5.98E−04 9.75E−06 NA 5.06E−04 1.92E−07

H  +  −  +   +  −  +   +  NA  +   + 

O.F2
p-value 2.30E−05 0.0014 4.90E−01 5.23E−07 0.0002 4.33E−04 0.5161 NA 1.19E−07 1.23E−07

H  +   +  −  +   +   +  − NA  +   + 

O.F3
p-value 0.0002 0.0043 7.97E−01 1.06E−07 0.0012 2.47E−04 0.7557 NA 1.20E−01 2.73E−01

H  +   +  −  +   +   +  − NA − −

SRS

O.F1
p-value 4.67E−02 2.51E−03 0.007 3.06E−02 1.63E−02 6.69E−08 2.07E−02 5.06E−04 NA 1.07E−01

H  +   +   +   +   +   +   +  NA

O.F2
p-value 4.36E−06 6.53E−08 0.000141 9.46E−01 6.53E−08 6.53E−08 9.07E−04 1.19E−07 NA 9.68E−01

H  +   +   +  −  +   +   +   +  NA −

O.F3
p-value 1.79E−04 3.23E−01 0.107511 7.89E−08 1.08E−01 1.38E−06 9.25E−01 1.20E−01 NA 3.30E−01

H  +  − −  +  −  +  − − NA −

Continued
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Table 9 presents the results of the Wilcoxon rank-sum test, based on data from 20 simulation runs. The 
results confirm the efficiency of KOA, SGA, SHO, and DBO in system planning. However, KOA emerged as the 
superior algorithm.

The IEEE 118 bus system configuration
Table 10 outlines the incorporation of new components necessary to expand the system to meet electrical 
demand. These components were selected from the best-performing runs in each model. As indicated in Table 10, 
Model #1 requires the addition of two circuits to supply the loads, specifically along routes 77–78 and 99–100. In 
contrast, Model #2 did not require the installation of new circuits due to the integration of the TCSCS planning 
model into the TEP model. Furthermore, Table 10 highlights the importance of installing FCLs to restrict short-
circuit currents to below 28 p.u.

Conclusions
In this study, ten recent metaheuristic algorithms developed in the years 2022 and 2023 for solving the TEP 
problem were evaluated across three distinct power network systems: the Garver network and the IEEE 118-bus 
system, a well-established benchmark system, and the Egyptian West Delta network.

Three distinct TEP models were used to conduct this analysis. The first TEP model adhered to the standard 
TEP model, focusing on the optimal placement of new transmission lines and generation units. Subsequently, 
the model was expanded by incorporating the planning model of TCSCs in the second model, thereby increasing 
the number of decision-making variables. In the third model, the problem was further augmented in complexity 
by integrating the planning models of TCSCs and FCLs, thus encompassing a higher number of variables. A 
comprehensive comparative analysis of the considered algorithms was carried out through evaluation metrics, 
including assessment of best and worst solutions, average, and running time.

The findings derived from simulations and statistical analysis, including the Wilcoxon rank-sum test, revealed 
nuanced insights into the performance of the metaheuristic algorithms. Notably, KOA, DBO, and TTAO emerged 
as the top-performing algorithms, exhibiting superior performance in terms of both the best solutions when 
applied to solve the three models over the Garver network. However, KOA was superior in obtaining the best 
average value. It was lower than the best second algorithm by 1.4% for Model #1, 3.7% for Model #2, and 6.8 
for Model #3%.

When the algorithms were applied to expand the WDN across the three models, KOA emerged as superior 
among other algorithms, excelling in both providing the best solution and achieving a lower average value. Its 
average value was 0.95% lower than the best second algorithm for Model #1, 0.59% for Model #2, and 0.39% 
for Model #3.

For the 118-bus system, KOA, SGA, and DBO were the best algorithms in obtaining the best solutions across 
all models. However, KOA was superior in terms of the best average value. KOA’s average value was lower than 
the best second algorithm by about 2.74%, 1.55%, and 2.6% for Model #1, Model #2, and Model #3, respectively.

The WSO exhibited the shortest computational times, being approximately 2–3 times faster than those of 
other algorithms. Despite its rapid convergence, the average solution value obtained is higher compared to KOA. 
In TEP, prioritizing the quality of solutions is paramount over the speed of the algorithm.

The results also demonstrated that integrating the planning model of TCSCs into the TEP was cost-effective. 
The planning cost was reduced by about 12.47% for the Garver network, 1.96% for the WDN, and 4.2% for the 
118-bus system.

Future work will concentrate on assessing the considered algorithms in solving TEP with the presence of 
renewable energy sources and energy storage systems. Additionally, a new hybrid meta-heuristic algorithm will 
be developed to tackle the TEP problem. Furthermore, the future work will entail investigating and validating 

Algorithm TEP model Measure SCHO WO SGA TTAO EEFO KOA DBO SHO SRS WSO

WSO

O.F1
p-value 0.4407 0.5161 0.0001 2.58E−05 0.675 1.54E−06 0.9892 0.217 9.12E−07 NA

H − −  +   +  −  +  − −  +  −

O.F2
p-value 5.23E−07 6.80E−08 2.47E−04 9.03E−01 6.80E−08 6.80E−08 0.001782 1.23E−07 9.68E−01 NA

H  +   +   +  −  +   +   +   +  − NA

O.F3
p-value 1.05E−06 0.0071 2.29E−01 6.79E−08 0.0001 1.58E−06 0.9676 2.73E−01 3.30E−01 NA

H  +   +  −  +   +   +  − − − NA

Table 9.   Wilcoxon rank sum test between the algorithms for the IEEE 118-bus system.

Table 10.   Installed projects required for the IEEE 118-bus system.

TEP model Added circuits No. of added TCSCs No. added FCLs

Model #1 77–78 (1); 99–100 (1) – –

Model #2 No additional circuits 3 –

Model #32 No additional circuits 8 10
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these algorithms across various scenarios and real-world datasets to strengthen these findings and ease their 
adoption in operational settings.

Data availability
The datasets generated during the current study are not publicly available due to their large size but are available 
from the corresponding author upon reasonable request.
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