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Transmission expansion planning (TEP) is a vital process of ensuring power systems’ reliable and
efficient operation. The optimization of TEP is a complex challenge, necessitating the application

of mathematical programming techniques and meta-heuristics. However, selecting the right
optimization algorithm is crucial, as each algorithm has its strengths and limitations. Therefore,
testing new optimization algorithms is essential to enhance the toolbox of methods. This paper
presents a comprehensive study on the application of ten recent meta-heuristic algorithms for
solving the TEP problem across three distinct power networks varying in scale. The ten meta-heuristic
algorithms considered in this study include Sinh Cosh Optimizer, Walrus Optimizer, Snow Geese
Algorithm, Triangulation Topology Aggregation Optimizer, Electric Eel Foraging Optimization, Kepler
Optimization Algorithm (KOA), Dung Beetle Optimizer, Sea-Horse Optimizer, Special Relativity
Search, and White Shark Optimizer (WSO). Three TEP models incorporating fault current limiters

and thyristor-controlled series compensation devices are utilized to evaluate the performance of the
meta-heuristic algorithms, each representing a different scale and complexity level. Factors such

as convergence speed, solution quality, and scalability are considered in evaluating the algorithms’
performance. The results demonstrated that KOA achieved the best performance across all tested
systems in terms of solution quality. KOA’s average value was 6.8% lower than the second-best
algorithm in some case studies. Additionally, the results indicated that WSO required approximately
2-3 times less time than the other algorithms. However, despite WSO's rapid convergence, its average
solution value was comparatively higher than that of some other algorithms. In TEP, prioritizing
solution quality is paramount over algorithm speed.

Keywords Meta-heuristic algorithms, Transmission expansion planning, Fault current limiters, Thyristor-
controlled series compensation devices

Transmission expansion planning (TEP) is the process of identifying and assessing the need for new transmission
lines, substations, transformers, and associated facilities. The aim is to ensure that the transmission system
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can accommodate current and future electricity demand while maintaining stability and minimizing costs.
This planning process takes various factors into account, including load growth projections, renewable energy
integration, regulatory requirements, technological advancements, and economic considerations. TEP is a critical
aspect of infrastructure development and investment decisions for electricity providers, policymakers, and system
operators’.

TEP models can be classified into two types: deterministic and stochastic models*®. Deterministic models
provide insights into cost-effective solutions under deterministic conditions. They require precise data about
future conditions and typically optimize the transmission system based on deterministic forecasts of load growth,
generation capacity additions, and other relevant parameters. While stochastic models account for uncertainties
and risk factors to enhance the reliability and resilience of plans. Stochastic models incorporate power network
uncertainties such as load variations, renewable energy generation, and equipment failures. These models use
stochastic optimization techniques such as stochastic programming, scenario-based optimization, and robust
optimization to generate robust and resilient expansion plans.

The application of DC and AC optimal power flow-based TEP models is prevalent for conducting load
flow analyses and evaluating the capabilities of generation units'. While DC models are commonly used,
AC models are recognized for their superior accuracy and flexibility, enabling the incorporation of various
technology models within the TEP framework. Abbasi et al.* introduced an AC-based TEP approach (ACTEP)
and compared its results with those of the DC model. Despite the higher costs associated with projects planned
using ACTEP, the AC model is considered more technically suitable and closely aligned with actual system
operations. Furthermore, the AC model facilitates the integration of reactive power planning and generation
and transmission network expansion planning (into a unified problem, leading to cost reduction and enhanced
system performance. Farrag et al.® introduced two DCTEP models and one ACTEP model, illustrating that
the AC model accurately represents power networks by appropriately considering factors such as generator
capacity curves, node voltage limits, reactive power flow, and network losses during the planning phase. Abdi
et al.® proposed a mixed DC and AC planning model for TEP and RPP, employing DC power flow for TEP and
AC power flow for RPP. Their findings highlight the superiority of the mixed model in reducing computational
time and improving plan accuracy.

The TEP problem is a complex and challenging task that requires careful consideration of various factors to
design an efficient and reliable transmission network’®. For instance, TEP commonly has a multi-objective nature
to balance conflicting objectives such as minimizing investment costs, reducing transmission losses, enhancing
system reliability, and accommodating renewable energy integration. Additionally, the TEP problem involves
a large number of decision variables such as the selection of new transmission lines, location of energy storage
systems, transformer capacities, and network configurations, which contribute to the combinatorial nature
of the problem. Furthermore, uncertainties related to future load patterns, generation availability, regulatory
changes, and economic conditions further increase the complexity of TEP. These uncertainties require the use
of probabilistic and scenario-based approaches in planning models to account for different potential scenarios
and ensure robustness in the designed transmission network®. Additionally, the interdependency between
transmission expansion and other aspects of power system planning, such as generation planning, grid operation,
and market dynamics, adds another layer of complexity that necessitates coordinated and integrated planning
approaches'®. Addressing these complexities in TEP requires advanced optimization techniques, computational
tools, data analytics, and stakeholder collaboration to develop optimal and resilient transmission network
expansion plans that meet the evolving needs of modern power systems.

In solving the TEP model, various types of optimization algorithms are employed to efficiently search for
optimal or near-optimal solutions within the complex and high-dimensional solution space!. These optimization
algorithms can be broadly categorized into classical mathematical programming techniques and meta-heuristic
algorithms. Classical mathematical programming techniques include linear programming, mixed-integer linear
programming, quadratic programming, and nonlinear programming. These techniques are widely used in TEP
to formulate and solve optimization problems with deterministic objectives and constraints, such as minimizing
investment costs while meeting reliability criteria and operational constraints.

Meta-heuristic algorithms provide alternative approaches for addressing TEP problems, particularly when
dealing with non-linear, non-convex, or large-scale optimization problems that involve uncertainties and
complexities'?'°. These algorithms are inspired by natural processes or social behavior and utilize heuristic
search strategies to efficiently navigate solution spaces. They commonly employ population-based or swarm-
based approaches to discover optimal solutions. Meta-heuristic algorithms are recognized for their adaptability,
resilience, and ability to solve complex optimization problems with diverse objectives and constraints. The
selection of an optimization algorithm is influenced by various factors, including the size and complexity of
the problem, as well as the constraints and objectives involved!”~**. Studies and benchmarking tests are often
conducted to evaluate the performance of different meta-heuristic algorithms in solving TEP models across
various scenarios and system conditions?*~?2. By utilizing a diverse set of optimization algorithms, TEP planners
can explore a wide range of solution possibilities and make informed decisions to design cost-effective, reliable,
and resilient transmission networks. Table 1 provides a summary of some meta-heuristic algorithms employed
for solving TEP.

Figure 1 provides a summary of some of the most common meta-heuristic optimization algorithms. Recent
advancements in meta-heuristic algorithms have been aimed at improving their efficiency, scalability, robustness,
and adaptability to handle increasingly complex optimization tasks?»**. These algorithms have been integrated
with other computational techniques like machine learning, deep learning, and optimization theory, giving
rise to a new class of hybrid and adaptive algorithms. These algorithms capitalize on the unique strengths
of each approach to solve complicated problems more efficiently than ever before. The ongoing research in
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Optimization algorithm Refs. Year | Testing model | Testing system Objective function
Ant colony optimization Leeprechanon etal.’> | 2010 | DC TEP Garver network Mml‘ml.zu.lg th? cost of newly installed
transmission lines
Harmony research Verma et al.1® 2010 | DCTEP IEEE 24-bu‘s'system Mlnlml'Z\lljlg thg cost of newly installed
South Brazilian 46 bus system transmission lines
Minimizing the cost of newly installed
Shuffled frog leaping algorithm Eghbal et al."* 2011 | DCTEP IEEE 24-bus system transmission lines .
Minimizing congestion cost
Minimizing load shedding values
Garver network Minimizing the expansion cost of
Differential evolution algorithm Alhamrouni et al.!® 2014 | ACTEP expanding the transmission network and
IEEE 24-bus system e . ;
adjusting generation capacity
Garver network Minimizing the cost of newly installed
Particle swarm optimization Fathy et al.'® 2017 | DCTEP The Egyptian West Delta network tran;mlis;ifn lines Wiyt
An Egyptian Extra High Voltage Network
. . . Minimizing investment costs
Non-dominated Sorting Genetic Abbasi et al.'” 2018 | DC TEP IEEE 24-bus system Minimizing congestion costs
Algorithm II Iranian 400 kV transmission network P
Minimizing risk costs
. - The Egyptian West Delta network Minimizing the expenses related to
- 18
Multi-Verse Optimizer Shaheen et al. 2019 | DCTEP An Egyptian Extra High Voltage Network | constructing new lines
Minimizing the cost of newly installed
L - lines
19
Grey wolf optimization Ghadimi et al. 2021 | ACTEP Garver network Minimizing the cost of load
disconnection penalties
Minimizing the expenses related to
« lévy flight distribution, constructing new lines, fault current
« Sine cosine algorithm, Refaat et al.?° 2021 | DCTEP Egyptian West Delta network limiters, and generation units
« LSHADE-SPACMA Minimizing generator operating costs
Minimizing load shedding values
Minimizing the cost of newly installed
« Gravitational search algorithm . 6 IEEE 24-bus system lines
« Imperialist competitive algorithm Abdietal. 2022 | DCTEP IEEE 118- bus system Minimizing the cost of the installed
reactive power sources
Minimizing the capital cost of newly
. . . installed lines, generation units, batteries
Hyb“d §nake optimization algorithm and Rawa et al.?! 2022 | ACTEP Garver network and fault current limiters
sine cosine algorithm IEEE 24-bus system Minimizi . .
inimizing the operating cost of
generation units and batteries
e . o . Improving the hosting capacity
Hybr}d sine cosine artificial rabbits Vellingiri et al.?? 2023 | ACTEP Garver network Minimizing the cost of newly installed
algorithm IEEE 24-bus system . L
lines and fault current limiters

Table 1. Some metaheuristic algorithms applied to solve the TEP problem.

meta-heuristic algorithms continues to explore innovative techniques, algorithms, and applications to further

advance optimization science and engineering

25-27

As discussed previously, the optimization of TEP presents multifaceted challenges. However, selecting the
most suitable optimization algorithm is crucial, considering that each algorithm has its own set of advantages
and constraints. Therefore, exploring novel optimization algorithms is imperative to enrich the repertoire of
available methodologies. The primary contributions of this paper are as follows:

A comprehensive exploration of ten recent meta-heuristic algorithms for solving the TEP problem across
three distinct power networks of varying scales.
The ten meta-heuristic algorithms examined include Sinh Cosh Optimizer®®, Walrus Optimizer?, Snow Geese
Algorithm™, Triangulation Topology Aggregation Optimizer®', Electric Eel Foraging Optimization®, Kepler
Optimization Algorithm®, Dung Beetle Optimizer**, Sea-Horse Optimizer®®, Special Relativity Search®, and
White Shark Optimizer®. These algorithms encompass a diverse array of search and optimization strategies,
demonstrating potential across various optimization domains.
Three distinct TEP models were proposed in this analysis to evaluate the performance of these algorithms. The
first model adhered to the standard TEP model, concentrating on determining the optimal locations for new
transmission lines and generation units. The second model expanded upon this by incorporating the planning
model of thyristor-controlled series compensator (TCSC), thereby introducing additional decision-making
variables. Finally, in the third model, the complexity was further heightened by integrating the planning
models of TCSCs and fault current limiters (FCLs), resulting in a larger set of variables to be considered.

The subsequent sections of this paper are organized as follows: section “TEP models” presents the testing
planning models used in this study. Section “Optimization algorithms” provides a summary of the operating
mechanisms of the considered optimization algorithms. Section “Implementation of metaheuristics in solving
TEP” delves into the strategy of implementing metaheuristics for solving TEP. In section “Testing systems”,
the testing power networks are introduced. Section “Results and discussion” presents the results, while section
“Conclusions” concludes the paper.
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Figure 1. Classification of most common meta-heuristic optimization algorithms.

TEP models

In this study, three TEP models are utilized to evaluate the performance of the optimization algorithms. These
models differ in scale and the quantity of decision-making variables. The initial model illustrates the conventional
TEP, which concentrates on identifying optimal locations for new transmission lines and generation facilities
to accommodate projected load growth. In the second model, the integration of TEP with TCSC planning
is examined. The third planning model integrates short-circuit current (SC) constraints and is designed to
encompass planning considerations for transmission lines, generation units, TCSC installations, and FCL.

Standard TEP model (model#1)
The conventional TEP methodology is formulated as a mixed-integer linear programming model, typically
represented by (1)-(7)'®. The primary goal of the objective function is to minimize the total investment cost
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associated with new transmission lines, alongside the operational and capital expenses related to generation
units. This objective function can be expressed as follows:

Min. O.F = 3 Ci(Nj=NJ)+ 3 (CimgNGPE™ + CopaNoPa) W
VijeQp YGeQg

While the problem constraints are explained by:

N§ < Nj; < NJ**; v{i,j € Qp} 2)

Ng™ < Ng < NE&*™; ¥{G € Qq) (3)

PE™" < Pg < PE™: {G € Q) (4)

NgPG —Pgj= Y Py ¥{j e Qp: G e Q) 5)
VjeQp

—N}jpg'”x < ﬂijN}j (6: — ) < N}].Pi;"“"; v{i,j e Q} (6)

/" < 6; < /" V{i € Qp) 7)

where Nilj and Ni(} denote the newly installed and existing circuits respectively, in a corridor between nodes i and
j. Qp represents a set comprising all buses within the system. The boxed Egs. (2)-(4) constrain the number of
newly installed circuits and dictate the location and size of generation units within prescribed limits. Ng signifies
the count of generation units installed at the Gth bus, while P;"**denotes the capacity of the new generation unit
in MW. Pg represents the power dispatched from the generation units.

The power balance equation, expressed as Eq. (5), stipulates that the net power injected at any node must
equate to the disparity between the power generated and consumed at that node. Equation (6) ensures that
active power flowing through any line remains below its thermal limits Pi"**, while Eq. (7) maintains the voltage
angles 6; of the buses within their designated thresholds. 8;; symbolizes the susceptance of the transmission lines
connecting bus i and bus j.

TEP with TCSC planning model (model#2)

In the second model, the integration of TEP with TCSC planning is presented. It is formulated as a mixed-integer
nonlinear programming model. The objective is to minimize the total investment cost associated with new
transmission lines and TCSCs, while also considering the operational and capital expenses related to generation
units. The objective function is given by:

Min. OF = Y Ci(Nj=Nj)+ >0 (€T sjesc2 4 cJO5C s]esC 4 c[e5C)

VijeQp VijeQrcesc (8)
+ Z (Cinvg NGPE" + Cop.6NG Pg)
VgeQe

The problem constraints are detailed in (2)-(7) and further supplemented by (9) and (10). The second term
in the objective function (8) accounts for the investment cost associated with installed TCSCs*. Introducing the

TCSC module in series along any given route amplifies the equivalent capacity of power flow through that route
1 ,TCSC
ii%ij ) TCSC
by 1_);,}T,csc- Here, ;;
K

between buses i and j.

represents the requisite compensation level for a TCSC installed within the circuit

2TCSC < ;Ngcsc < 2FCSCvlij e Qresc) (9)

e | P < < e viij e Qp 10
~Tesc | L ~Tesc | L

1] if (1 _ /15CSC>XI,], 1- A if (10)

TEP with TCSC and FCL planning model (model#3)

The model’s objective is delineated through (11). It encompasses the investment and operational costs associated
with various installed projects, whether they are FCLs, TCSCs, transmission lines, or newly installed generation
units.
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Min. OF;= Y G <N,§ - Nf}) + > (CITCSC spese2 4 gfese glesc C3TCSC>

VijeQp VijeQrcse
FCL FCL—-1 (11)
£ 3 (CigPi™ + Cops i)+ 3 (s = 1)
VgeQq VijeQp

The initial two terms aim to mitigate the investment expenses incurred in transmission and generation
projects, as elucidated in (11). Meanwhile, the investment outlay for newly installed TCSCs is encapsulated
in the third term. The fourth term accounts for the investment costs associated FCLs, necessary to maintain
short-circuit current levels below the designated threshold value. xf;CL represents the calculated size of the FCL
required between bus i and bus j to limit during abnormal operations.

The problem constraints are formulated in (2)-(7), along with Egs. (9) and (10). Additionally, constraints (12)
and (13) further restrict the problem. Short-circuit current constraints are delineated in (12) and (13). Various
faults, including single line-to-ground faults, double line-to-ground faults, and line-to-line faults, frequently
manifest in power networks. However, this study focuses on the worst-case scenario, the three-phase short-
circuit fault. The short-circuit current level of substations is regulated by (13). Calculation of the short-circuit

current is detailed in (14)%-4L
0 < x;F < xSk ¥{s € Qs,i,j € Qp} (12)
0 <I5¢ < 15C V(s € Qs,i € Qp) (13)
Vi(o)
‘= —— 14
= (14)

Vih (0) is the pre-fault voltage, and Z;; is the bus i diagonal value in the impedance matrix. When an FCL
module is installed in the route m-n, it is converted to a parallel impedance, which is obtained by (15)%.

_ o (Xt + Xoun)

Zp = (15)
—xECL

Optimization algorithms
Sinh Cosh Optimizer (SCHO)
Bai et al.”® introduced the SCHO approach in 2023, leveraging the mathematical principles of Sinh and Cosh.
SCHO comprises four key stages: two exploration phases, two exploitation phases, a bounded search strategy,
and a switching mechanism. The operational framework of SCHO can be summarized as follows:

Similar to other metaheuristic algorithms, SCHO begins by randomly setting up a group of candidate
solutions as provided in (16).

X = LB+ (UB — LB).rand (16)

SCHO?’s exploration stage is split into two phases during each iteration, and is necessary in the later iterations
to avoid getting trapped in local optima. In the first phase, the new solution’s positions are updated by (17). While,
in the second phase, the new solution’s positions are determined by (18). The threshold value (T) that triggers
the transition between these phases is calculated using (19).

XH—I — KXpest + 11 X W1 % Xt, lffz > 0.5 (17)
Xpest — 11 X W1 X Xt,,iﬁ‘z < 0.5
Xt — X'+ |e x Wy X Xpest — X*], ifrs > 0.5 as)
X' — |& X Wy X Xper — X*|,ifrs < 0.5
iterMax
T :ﬂOOT( o ) (19)

where iter™® represents the maximum value of iterations, floor is a MATLAB function that rounds down, and
ct is a coefficient used to set the switching point between the two phases. The weight coefficient W, determines
the influence of X" in the initial exploration stage, guiding potential solutions away from each other and towards
the optimal solution as calculated by (20). Meanwhile, W, represents the weight coefficient of X, during the
second exploration phase, determined by utilizing (21). u is a sensitive parameter that influences the precision of
exploration during the initial phase. The values for a, and a, are determined as described in Bai et al.?®. Whereas
random numbers r, to r, fall within the range of 0 to 1.

Wi =r4 X a1 X (coshrs + usinhrs — 1) (20)

Scientific Reports |

(2024) 14:13046 | https://doi.org/10.1038/s41598-024-63331-1 nature portfolio



www.nature.com/scientificreports/

Wz =T X dy (21)

The exploitation process is divided into two distinct phases that occur consistently across all iterations. In
the initial exploitation phase, exploitation is conducted in the proximity of X,, resulting in the formulation
of the exploitation formula as depicted in Eq. (22). On the other hand, in the subsequent exploitation phase,
candidate solutions delve further into exploiting the vicinity surrounding the currently best solution. The degree
of exploitation around this optimal solution escalates with each iteration. The equation representing the position
update function is presented in Eq. (23).

Xf-‘rl _ Xbest +r; X W3 X Xt,ifrg > 0.5 (22)
- Xpest — 17 X W3 X Xt,,i][rg < 0.5

sinh 110

Xt =X 419 x | W2 X Xpest — X'| (23)

cosh ryg

W; is the weight coefficient responsible for guiding candidate solutions during the initial exploitation phase

to explore the search space starting from nearby areas and extending towards farther regions. Its calculation is
determined using (24). Random numbers r, to r;; fall within the range of 0-1.

W3 =111 X a1 X (coshryy + usinhryy) (24)

To alternate between exploration and exploitation stages, a switching mechanism based on Sinh and Cosh
functions is introduced. When A > 1, SCHO engages in exploration, whereas when A <1, SCHO conducts
exploitation. The values of A are determined according to the method described in Bai et al.?.

To maximize the exploration of the potential search space, the bounded search strategy is implemented.
When SCHO employs the bounded search strategy consistently, the upper and lower bounds of optimization
problems are determined using (25) for the upper bound and (26) for the lower bound. When the bounded
search strategy is activated, all candidate solutions are randomly initialized within this potential space using
Eq. (16). The initiation of this strategy is governed by BS;. The calculation of BS, is detailed in Bai et al.?®. X, onq
is the second optimal solution.

iter

UBi = Xpest + (1 - iteTM”x) X |Xbest - Xsecond‘ (25)
iter

LBy = Xpest — (1 — W X | Xpest — Xsecond| (26)

Walrus Optimizer (WO)

WO was developed by Han et al.?? in 2023. It draws inspiration from the behaviours of walruses, which make
decisions such as migration, breeding, roosting, feeding, gathering, and escaping based on receiving critical
signals such as danger and safety signals. WO’s operating mechanism can be described as follows.

In the WO, the presence of a danger signal is utilized to determine whether the WO engages in exploration or
exploitation. If the absolute value of the danger signal is equal to or greater than 1, the walrus herd relocates to a
new area within the solution space, representing the exploration phase during the early stages of the algorithm.
Conversely, during the later stages of the algorithm, the walrus herd engages in reproduction, indicating the
exploitation phase. The security signal plays a crucial role in the exploitation phase as it influences the choice
between roosting behaviour and foraging behaviour for individual walruses. Foraging behaviour encompasses
two common actions, gathering and fleeing, both of which are regulated by the danger signals.

e Danger and safety signals

WO relies on danger and safety signals to determine the behaviour of walruses, which play a critical role in

the decision-making process. The danger (signal®®") and safety (signal*¥*?’) signals, an essential component
of WO, is defined as follows:

iter™ax

signald“”g” = 2(1 — 4) x (2rand, — 1)
: safet (27)
signal*¥* = rand,

where rand) and rand, are randomly generated variables located in the range between 0 and 1.

® Migration (exploration)

In the migration phase, which signifies the exploration stage of the algorithm, the walrus’s position is adjusted
based on various parameters, including a random number r;, and two randomly selected solutions (x/,, x,). The
equation used to update the walrus’s position is as follows:
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1
t+1 t t t 2
X =Xx; + (xm - xn) x| 1= iter™max X 13 (28)
—10( t- /2

1—e iterMax

e Reproduction (exploitation)

When the risk factors are low, walrus herds tend to engage in breeding activities. During the reproduction
phase, two main behaviours are observed: onshore roosting and underwater foraging. The mathematical model
representing these behaviours is as follows:

1. Roosting behaviour.

The population of walruses consists of three categories: male, female, and juvenile individuals. These walruses
update their positions using diverse methods:

(a) Dispersal of male walruses.

The Halton sequence distribution is employed for updating the position of male walruses. This distribution
enables a more extensive distribution of the population within the search space.

(b) Dispersal of female walruses.

The behaviour of female walruses is influenced by two key factors: the male walruses (male!) and the lead
walrus (x*). During the course of iterations, the influence of the female walrus’s companion diminishes, while
the influence of the leader becomes more prominent.

female! ™' = female! + a x (malef — female}) + (1 — ) x (x* — female}) (29)

i

(c) Dispersal of juvenile walruses.

Young walruses often face the threat of predation from polar bears and killer whales near the edges of their
colonies. Consequently, they must adapt their current positions in order to avoid being hunted.

young{*! = (O} — youngf) - P (30)

where young!*! denotes the updated position for the ith juvenile walrus. P signifies the distress coefficient of
the juvenile walrus, which is a random number between 0 and 1. O stands for the reference safety position as
provided in Han et al.?’.

2. Foraging behaviour.

(a) Fleeing behaviour.

This behaviour arises during the later stages of the WO, and introducing a certain level of disturbance to the
population aids walruses in engaging in worldwide exploration.

A = x! x (2randy — 1) + (x* — x!) x 12 (31)

where r, is a random number that falls within the interval of (0, 1).
(b) Gathering behaviour.

Walruses have the ability to collaborate in their search for food and navigation by taking cues from the
movements of fellow walruses within the group. Sharing information about their whereabouts can greatly assist
the entire herd in locating areas of the sea where food is more plentiful.

X1 + x
R (32)

2

where,

Scientific Reports |

(2024) 14:13046 | https://doi.org/10.1038/s41598-024-63331-1 nature portfolio



www.nature.com/scientificreports/

(33)

t —

{ x1 = x* — (Brs — B) x tan(®) x x*—xf|
X2 = Xecond (,37’5 - IB) X tan(@) x ‘xstecond - ‘xlt|

X, and X, represent two factors influencing the foraging behaviour of walruses, while Xt denotes the position of
the second walrus during the ongoing iteration. The variable r; represents a random number within the interval
(0, 1), and 0 ranges from 0 to .

Snow Geese Algorithm (SGA)

The SGA was developed in 2023 by Tian et al.*. The algorithm takes inspiration from the migratory patterns of
snow geese, replicating the unique “Herringbone” and “Straight Line” flight shapes observed during the geese’s
migration. The symbol § represents a hyper-parameter that applies a shift of the snow geese population from the
exploration phase (which has a herringbone shape) to the exploitation phase (which is a straight line).

® A herringbone shape (exploration)

When § is less than 77, the SGA enters the exploration stage. In this stage, individuals within the populations
are sorted based on their quality. Equation (34) is used to update the positions of individuals who exhibit
exceptional fitness values and belong to the top 20%.

X =x"+ (@ x rand —2) x (X* —x') + V! (34)
where V#*+1is the next generation velocity and is calculated as follows:

2.
4xt 1.29 x (V)" x sin8 x 1072
‘rt+1 ( ) (35)

— e X VX i -
iter™Max p irermas 2

Equation (36) is applied to update the positions of individuals who fall within the least fit quintile, including

those who are weaker, unwell, or incapacitated and are located in the midsection of the population. The updating
equation depends on the population central particle x’ beside the optimal solution at the cuurent iteration X*.

= x" + (4 x rand — 2) x (X* - xt) — (3 x rand — 1.5) x (xéf - xt) + vttt (36)

Finally, Eq. (37) is used to update the positions of individuals who remain in the population. The position
represented by x/, corresponds to the candidate solution. This candidate solution denotes the location of the
lowest-ranked snow goose following population sorting.

= x! + (4 x rand — 2) x (X* - xt) + (3 x rand — 1.5) x (xi fxt) — (2 x rand — 1) x (xfI +xt) + il
(37)

® A straight-line shape (exploitation)

During this stage, the algorithm places greater emphasis on avoiding local optima rather than exact navigation.
Two strategies are employed by snow geese as they adopt a straight-line flight pattern. The individuals’ new
position is determined as follows:

41 xt 41 x (xt—X*),ifr> 0.5

©= {X* + (x' = X*) x r @ Brownian(d)ifr < 0.5 (38)

where r is a random number, and @ indicates to entry wise multiplication.

Triangulation Topology Aggregation Optimizer (TTAO)
The TTAO was developed in 2023 by Zhao et al.’!. The TTAO algorithm uses similar triangles in its approach.
Through iterative evolution, new vertices are constantly generated to form similar triangles of varying sizes. Each
triangle in the TTAO algorithm is seen as a basic evolutionary unit, consisting of four agents—three vertices
of the triangle and one random vertex inside. Additionally, the algorithm utilizes aggregation to group vertices
with superior characteristics. The TTAO algorithm uses aggregation to collect vertexes with good information
within or between different topological units. Note that all constructed triangles in the algorithm are equilateral
and derived from the second theorem for constructing similar triangles.

The TTAO algorithm comprises of two techniques, namely the general aggregation and the local aggregation.
Both techniques work together to create multiple triangular topological units that are similar to each other,
through iterative processes. This helps to balance the exploration and exploitation in the algorithm.

® Generic aggregation

During the exploration phase of generic aggregation, the focus is put on gathering information of good
individuals in various triangular units, which is then combined to create new feasible solutions. The process
involves an exchange of information between the best individual in each triangular topological unit and the best
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individual in any randomly selected set of units. The better two-vertex connection produces the newly individual,
which can be expressed mathematically as follows:
X = x4+ (1= 1) x x (39)

mndom

where r is a randomly generated number within the range of 0 to 1. x/"* represents the best position for unit i,

while xmn Jom Tepresents a randomly chosen unit at that iteration.

® Local aggregation

Local aggregation primarily focuses on the exploitation stage. During this phase, triangular topological
components are grouped together internally. Following the earlier phase, a triangular structure was created
temporarily among the improved optimal or suboptimal individuals and the two vertices within the group
exhibiting high fitness levels. The new vertex is determined as follows:

t+1 L e—¢ 3 e—¢ t+ 1,
Finew2 = i i iter™ax — 1t+ “ iter™max — 1 X (40)
where x!T1* represents the individual with the best suboptimal performance at the i ™ iteration. It is equal to
t+1

X

F ot if the fitness value of x!

, +1 s better than the fitness value of x*. Otherwise, it equals x*

Electric Eel Foraging Optimization (EEFO)

The EEFO was developed in 2023 by Zhao et al.*. It takes inspiration from the collective foraging behaviours of
electric eels, aiming to mimic four essential foraging behaviours—interaction, resting, hunting, and migration—
in its mathematical model. This approach aims to facilitate both exploration and exploitation in the optimization
process.

The EEFO algorithm employs an energy factor to govern the search behaviours, facilitating a balanced
transition between exploration (Interacting behaviour) and exploitation (resting, hunting, and migration
behaviours) for enhanced optimization performance. The energy factor of an eel plays a crucial role in selecting
the appropriate strategy, whether it is exploration or exploitation. The energy factor is precisely defined as follows:

t 1
E'=4xsin{1——— | xIn( =
csin(1- ) () (a)

where r is a random number between 0 and 1. When E is greater thanl, the exploration stage is applied.
Otherwise, the exploration phase is employed.

e Interacting behaviour

When eels come across a group of fish, they engage in swimming and stirring movements together.
Subsequently, they form a large electrified loop in the water to ensnare multiple small fish at the centre of the
loop. This activity can be seen as the exploration phase. The updating equation for individuals in this stage can
be expressed as follows:

t+1 t —t ot
xi T =xt+Cx (x —x),ifp1 > 0.5
iF(x') < Fxt i j %i
ifF (x;) < F(xj) — {XH_I—-X +Cx (x - f) ifpy <05
. At =l +Cx (7 — 7 ) ifpa > 0.5 (42)
zﬂ?(x]?) = Fxp) — t+1 t
xiTh=xl+Cx x—x ,ifpy < 0.5
where X' = Z x!,and x! = LB+ r x (UP — LB). p; and p; represent random numbers between 0 and 1,

F(x}) denotes the fitness of the candidate position of the ith electric eel, x] is the position of an eel chosen
randomly from the current population, and r is a random vector ranging between 0 and 1. C represents the
random movement of eels, and it is calculated as explained in Zhao et al.>*.

® Resting behaviour

In order for electric eels to exhibit resting behaviour in EEFO, the resting area needs to be set up beforehand.
To improve the search efficiency, a designated resting area is set up in the area where a single dimension of the
eel’s position vector aligns with the main diagonal within the search space. Once the resting area is identified,
the eels will relocate to it for resting. An eel moves towards its resting spot by adjusting its position relative to its
designated resting area. The behaviour of resting can be described as:

At =y 4oy x (YiH'1 x round(rand) x xf) (43)

where,
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Yit+1=Zt+aX|Zt_x*‘ (44)

More details about Z? and « is presented in Zhao et al.*2.

e Hunting behaviour

Once the hunting area is established, an electric eel initiates its hunting activities within that specific region.
The hunting behaviour observed in EEFO algorithm includes a curling movement. This curling behaviour
demonstrated by the eels during hunting can be summarized as follows:

Xt = H;,j;)l, +nx (H;,j;)l, — round(rand) x xf) (45)

where n denotes the curling factor. The calculation of n and H, ;fe}l, is presented in Zhao et al.*

® Migrating

The migration behaviour of eels from the resting area to the hunting area, when they detect prey, is expressed
through:
A = x YT b x Y — Lox (HIP — &) (46)

r1and r; are random values in the range between 0 and 1. More details about H!*! and L can be found in Zhao
etal .

Kepler optimization algorithm (KOA)

The KOA algorithm was developed by Abdel-Basset et al.** in 2023. Kepler’s three laws of planetary motion
describe key aspects of how planets move around the sun, focusing on elliptical orbits, equal areas swept out in
equal time intervals, and the relationship between orbital period and semi-major axis. Inspired by these laws,
Abdel Basset et al. developed the KOA metaheuristic algorithm, which represents planets and the sun as solutions
to optimization problems. KOA utilizes the dynamic positional interactions between planets and the sun over
time, guided by Kepler’s principles.

The updating mechanism of the KOA involves two distinct stages, outlined as follows. In the initial stage,
KOA computes the planet’s updated position utilizing (47). The adjustment in the planet’s velocity direction,
indicated by 9, incorporates a random scalar, r, drawn from a standard normal distribution. Here, x§ denotes
the current position of the sun, serving as the benchmark for the optimal solution. Meanwhile, v! signifies the
velocity of the planet at time t, and f¥ represents the gravitational force. The computation formulas for v, f%,3,
and U are detailed in Abdel-Basset et al.*>.

xl?“:xf-f-axvf—l-(ﬁg-i-lfl)XUX(xst_xit) (47)

In the second phase of the KOA, the adjustment of planet positions near the sun—regarded as the optimal
solution—is executed using Eq. (48). Within this stage, the adaptive factor denoted as h, as defined in Abdel-
Basset et al.*, assumes a crucial role. The value of & changes gradually over time. When £ is high, the exploration
operator is used to increase the distance between the planets and the Sun. Conversely, when  is low, the
exploitation operator is utilized to optimize areas near the current best solution if the distance between the Sun
and the planets is short. The variables r and r4 respectively embody a random number adhering to a normal
distribution and a random value spanning from 0 to 1. Additionally, x/ and x represent two randomly generated
solutions.

xb+ x4+« xb+xl + xf
xf“:xfxul-l-(l—ul)x((%)-}—hx(%—xi)) (48)

Dung Beetle Optimizer (DBO)

The DBO algorithm was developed by Xue et al.** in 2022. It is an innovative population intelligence algorithm
that takes inspiration from the diverse behaviours of dung beetles. The algorithm is renowned for its robust
capability in seeking merit and achieving rapid convergence. It comprises four primary processes: ball rolling,
breeding, foraging, and stealing.

e Ball rolling process

In scenarios where dung beetles encounter unhindered ball rolling, it is hypothesized that the intensity of
light impacts the beetles” positioning. As a result, the formula for updating the dung beetle’s position is expressed
as follows:

X = X' x kX! + b X" - X"| (49)
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The deflection coefficient’s constant value is represented by k, which falls within the range of (0, 0.2]. The
constant value b is assigned a value of (0, 1), while a is assigned the natural coefficient of — 1 or 1. X" represents
the worst position of the ball.

When encountering an obstacle, the dung beetle adapts by performing a dance to locate an alternative route.
The dancing behaviour is modelled using a tangent function in the algorithm. The angle tilted from the direction
of [0, 7] is represented by the symbol ¥. After identifying a new direction and rolling the ball, the dung beetle’s
location is updated as follows:

X = xt 4 tan X' — Xt71| (50)

® Breeding process

Female dung beetles roll their dung balls to a secure location while concealing them in order to make them
more suitable for laying their eggs in a favourable habitat. The limits of the area where the brood balls are placed
can be described as follows:

LB* = max(X* x (1 — R), LB)
UB* = max(X* x (1 — R), UB) (51

where X* represents the current optimal solution, while LB" and UB’ represent the spawning area’s lower and
upper boundaries. R= I—t/iter"*. The spawning area is determined by the female dung beetle, and only one egg
is laid at a time. The breeding behavior equation has been updated and can be expressed as follows:

B! = X* 4+ by x (B' — LB*) + b, x (B' — UB*) (52)
The position of the brood ball at each iteration is denoted by B**!, where b, and b, are composed of random
independent vectors. However, it is crucial to confine the position of brood balls within the spawning area.

® Foraging process

The adult dung beetles emerge from the ground to search for food after their growth from small beetles.
Additionally, the foraging area is constantly updated with the number of iterations using the following equation:

{ LB" = max(X¢* x (1 - R),LB) (>3)

UBY = max(X8* x (1 —R), UB)

The term X&* represents the position of the best global solution, while the optimal foraging area’s lower and
upper bounds are denoted by LB and UB?, respectively. The location updating equation can be written as follows:

#l=xt +C x (xt - LBh> + by x (Bt - UBh> (54)

where C1 represents a random number that follows a normal distribution, while C2 is a random vector that is
defined on the interval (0, 1).

® Stealing process

There are certain dung beetles that have been labelled as thieves within their population. These beetles steal
dung balls from other beetles. It is possible for the position of these thieving beetles to change as follows:

X=X 4 p x o x (|x = X*| + [« — X&) (55)

The symbol o represents a vector of random values that follows a normal distribution. The letter p represents
a fixed value.

Sea-Horse Optimizer (SHO)

The SHO was developed in 2022 by Zhao et al.*>. SHO draws inspiration from the natural behaviours of seahorses,
particularly their movement patterns, predation strategies, and breeding habits. These three intelligent behaviours
are translated into mathematical expressions to ensure a balance between local exploitation and global exploration
within the SHO algorithm.

® The movement behavior

The various movement patterns exhibited by sea horses roughly adhere to the normal distribution randn (0, 1).
To balance the exploration and exploitation aspects, r1 is set to 0 as the threshold point, allocating half for local
exploration and the remaining half for global search. The movements can be categorized into two cases. When
the normal random value r1 falls on the right side of the cut-oft point, the first case is employed. Conversely,
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when the random value r1 falls on the left side of the cut-off point, the second case is executed. The generation
of a sea horse’s new position can be mathematically formulated as follows:

X,

1 _ {xt + levy(z) x ((x* = X') x m x y x z +x*),ifr; >0 (56)

newl x' +rand x | x By(x* — By x X')ifr1 <0

where = 0.05¢0057 x cos(¥), y = 0.05¢%957 sin(®), and z = 0.05¢%0°? x . ¥ is a random value that takes
a value between 0 and 2. levy(z) is Lévy flight distribution function. I represents the constant coefficient, while
B denotes the random walk coefficient associated with Brownian motion.

® The predation behavior

The sea horse has two potential outcomes when preying on zooplankton and small crustaceans: success and
failure. The random number r2 within SHO is configured to delineate these outcomes, set to a critical value of
0.1. If r2>0.1, it signifies a successful predation; otherwise, it signifies a failed predation. The mathematical
expression encapsulating this predation behaviour is as follows:

a x (x* — rand x x'*1 ) + (1 —a) x x*,ifr, > 0.1

t+1 newl
new2 — . (57)
(1—a)x (x;jvil — rand X x*) +axxtt ifr, < 0.1
¢ _ 2t
wherea = (1 — = ) @™

® The breeding behavior

The population is divided into male and female groups based on their fitness levels. It’s important to note
that, given the breeding responsibility of male sea horses, the SHO algorithm selects half of the individuals with
the highest fitness values as fathers and the remaining half as mothers. Male and female sea horses are paired
randomly to generate offspring. To streamline the implementation of the proposed SHO algorithm, it is assumed
that each pair of sea horses produces only one offspring. The expression for the offspring is as follows:

xofspring _ 3 X xfather +(1 =13 x xmother (58)

xfather

where 73 is a random number within the range [0, 1] and x™™"¢" denote randomly chosen individuals

from the male and female populations, respectively.

Special relativity search (SRS)
The SRS was developed in 2022 by Goodarzimehr et al.*°. It draws its inspiration from the interactions observed
among particles within an electromagnetic field. These interactions are assessed through the application of
the Lorentz force, and the equation of motion is formulated utilizing angular frequency. The magnetic force
acting between particles operates perpendicular to both the velocity of charged particles and the magnetic
field, resulting in a circular trajectory for the particles. Uniquely, this approach incorporates principles from the
theory of special relativity physics to calculate the coordinates of charged particles within each rotation for the
first time. The primary equation of the SRS is derived by incorporating two key phenomena: length contraction
and time dilation.

Mathematically, the SRS can be formulated as follows. The particle-to-particle distance (ij) in the magnetic

field is calculated by employing the Euclidean norm as defined in (59).
ij = norm (xf - xj) (59)

Then, the charge of each particle (Q!) can be expressed as:

t t
r Fi,j - Fworst (60)
L T ot t
/ ngest - Fwo’rst

where F} j represents the fitness value of particle x! or the particle xjt .F!, _and F!,_ denote the global best and

gbest worst
worst solutions in the population, respectively.
The frequency of the cyclotron is determined by employing (61). Where m is the particle’s mass.

QQ D
wy = pdis Vj 61
mDij
The particles’ new coordinates can be obtained by:
v —w,D; ©OnDij
xj =%+ — X sin (wy) —v=onDij 270 sin (w,) = Djj sin (wn) (62)

Wy Wy
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The new solutions of the population can determined by (63). In this algorithm, f is less than one and is set
equal to a random number between 0 and 1.

t Nt

Q!
=t s () VIR TR o
ij

White Shark Optimizer (WSO)

The WSO was developed in 2022 by Braik et al.””. The fundamental concepts and foundations of WSO draw
inspiration from the behaviours exhibited by great white sharks. Specifically, their remarkable abilities in hearing
and smelling during navigation and foraging serve as the basis for mathematical modelling. These behavioural
aspects are incorporated to ensure a suitable equilibrium between exploration and exploitation within WSO.
This enables the search agents to effectively explore and exploit various regions of the search space, ultimately
facilitating optimization.

Identifying the optimal solutions is achieved through the following behaviours:

e Movement speed towards prey

A white shark identifies the location of its prey by detecting a pause in the waves caused by the prey’s
movement, as depicted in (64).

t
t+1 Vi
Vil =e (vf +P <x§best - xl’) X1+ P, (xgbest - wf) X cz) (64)
where = % 7 indicates to the accelerating factor that is set to 4.125. v/ represents the velocity vector
‘2717«/1' —4t y
of the ith white shark in the ¢ iteration. Xghest TEPTeEsents the best-known position vector for the ith white shark

within the swarm. Additionally, ¢; and ¢, are two randomly generated values uniformly distributed in the range
[0, 1]. Py and P; are calculated using (65). The values for PmMin and Pmax gre determined as 0.5 and 1.5, respectively.

; i Maxy2
P, = pmax | (pmax _ pmin) e—(4t/1ter )

P, = pmin + (Pmax _ Pmin) x e*(4t/iter"‘”‘x)2

e Movement towards optimal prey

In this particular context, the behaviour of white sharks approaching their prey was described using the
position-updating strategy outlined as follows:

Xi

xl. = @®x, + w.a+ Lb; ifrand < my
(66)

xl + Vf/f; ifrand > mv

The symbol @ represents a bitwise XOR operation. The frequency of the white shark’s wavy motion is denoted
by f, and rand represents a randomly generated number uniformly distributed in the range [0, 1]. The parameter
mv is introduced to quantify the intensity of the white shark’s sensory perception, specifically its hearing and
olfactory abilities, which gradually increase with each iteration. More details can be found in Braik et al.*’.

e Movement towards the best white shark
Great white sharks possess the ability to sustain their position towards the nearest best solution in proximity
to the prey. This behaviour is mathematically formulated as:

X = ébest +r % ’rand X (xébm - xf)‘ x sgn(ry — 0.5); if rand < s, (67)

where'x! ™! represents the revised location of the ith white shark relative to the prey’s position. r1, r2, and rand
are random values within the interval [0, 1]. s, is a parameter proposed to indicate the effectiveness of smell and
sight senses in white sharks as they trail other white sharks near ideal prey.

® Tish school behaviour

The behaviour of fish schools of white sharks is characterized by the following formula:

t 7 t+1
x; +'x;
xlg+1 _ ki +x (68)
2 x rand
The sharks can adapt their positions according to the leading shark that reaches the vicinity of the target,
optimizing their location. The final destination of the sharks ideally surrounds the prey within the search area.
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Figure 2. Steps of the application of meta-heuristics in solving the TEP problem.

The collective behaviour of WSO is characterized by fish movements and the sharks’ alignment with the superior
shark, enhancing both local and global search abilities.

Implementation of metaheuristics in solving TEP
The mechanism of operation of meta-heuristics in solving the TEP problem is described in Fig. 2. It comprises
several pivotal stages. Initially, data concerning generation and transmission lines are collated, and their
boundaries are defined. Subsequently, an initial population is randomly generated, ensuring adherence to these
boundaries. Throughout each iteration, the positions of individuals are adjusted according to the algorithm’s
updating scheme, while concurrently, the objective function is assessed to ascertain the optimal solution.
Any deviations from operating constraints result in significant penalization. These procedures persist until a
predefined stopping criterion, often the maximum iteration limit, is met. This iterative cycle is then reiterated
until the specified number of runs is accomplished, ultimately culminating in the identification of the optimal
network configuration yielded by the best run. The operating mechanism of TEP-based metaheuristics for solving
strategies can be summarized as follows:

Step 1: The data for the generation and transmission lines of the network are first prepared, and their lower
and upper bounds are set.

Step 2: The initial population is randomly generated considering the lower and upper bounds of the decision-
making variables as provided in (16).

Step 3: In each iteration, the following steps are carried out:

(a) The position of each individual in the population is updated using the updating scheme of the meta-
heuristic algorithm.

(b) The objective function is calculated, and the best solution is defined. If the candidate solutions do not meet
the operating constraints, a high penal value is added to the objective function.

(c) Repeat a and b until the stopping criterion is achieved (i.e., the maximum number of iterations is
conducted).
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Figure 3. Single-line diagram of the Garver system.
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Figure 4. Single-line diagram of WDN.
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Step 4: Repeat steps (1-3) until the maximum number of runs are conducted.
Step 5: Determine the best run that gives the best configuration of the network.

Testing systems

The optimization algorithms under consideration are tested using both the Garver Network, the Egyptian
West Delta Network (WDN), and the IEEE 118-bus system. The initial configuration of the Garver Network is
illustrated in Fig. 3, comprising 15 power routes and 6 nodes, with a total power demand of 760 MW. System data
can be found in*2. In Fig. 3, candidate routes are depicted by dotted lines, while existing routes are represented
by solid lines.

The WDN serves as an Egyptian sub-transmission network, with its initial configuration shown in Fig. 4 and
system data provided in'®. It encompasses 52 buses and 55 routes, each equipped with two circuits. Plans include
the installation of a new generation station at bus number 53 to accommodate anticipated load growth'S. In Fig. 4,
candidate routes are indicated by dotted lines, while existing routes are delineated by solid lines.

The 118-bus system encompasses 118 nodes, 54 thermal generation stations, and 186 pre-existing lines*.
With a total load reaching 6.886 GW, the proposal entails installing a new circuit along each route.

Results and discussion

The simulations were executed on the MATLAB r2021a platform using a DELL PC model named OptiPlex7050,
equipped with an Intel® Core™ i7 CPU running at 2.6 GHz and 16 GB RAM. In total, 20 simulation runs were
executed to ensure a thorough analysis, thereby enhancing the statistical reliability of the results. The maximum
number of iterations was set to 300. The capital and operation cost coeflicients of generation units are given in*,
while the cost coefficient parameters of the TCSC are provided in*. The cost coefficient of the FCL module is
introduced in*.

The Garver network

Statistical analysis of the optimization algorithms

In this subsection, the TEP models are applied to evaluate the optimization capabilities of various algorithms
on the Garver system. Table 2 presents the optimization results obtained from 20 runs, comprising metrics such
as the best and worst fitnesses, average fitness, and computation time for each run. The results from model #1
demonstrate that all algorithms successfully obtained the minimum cost value of 556 million USD. Among
its counterparts in model #1, KOA demonstrated the minimum average value, followed by WSO and TTAO,
respectively. This establishes KOA as a competitive algorithm in the optimization of the Garver system.

In model #2, KOA, DBO, and TTAO demonstrated their efficiency in obtaining the best solutions at 486.6
million USD. However, KOA excelled in terms of the best average value over the executed runs. The average value
of KOA was approximately 19.3 and 123 million USD units lower than that of TTAO and DBO, respectively,
representing a reduction of about 3.7% and 19.7%, respectively.

When the planning model was expanded to incorporate FCLs planning model (model #3), among other
algorithms, KOA, WO, TTAO, and DBO were identified as the best algorithms for determining the optimal
solutions. However, KOA outperformed all other algorithms in obtaining the best average value, as shown in
Table 2. The best solution and average value were approximately 487.28 and 506.76 million USD, respectively.
Regarding the acquisition of the best average values, WO ranked as the second-best algorithm, followed by EEFO
and TTAO, respectively.

The time values presented in Table 2 represent the average duration obtained from conducting 20 distinct
runs. Figure 5 illustrates the convergence curves of all algorithms concerning the best achieved score so far.
While all algorithms achieved convergence, WSO exhibited the most rapid convergence rate. Despite WSO
demonstrating the quickest iteration, its accuracy falls below that of KOA, DBO, and TTAO, as corroborated by
the data amalgamated in Table 2. SRS, SCHO, WSO, SHO, SGA, and EEFO exhibit stagnation at local extremes,

TEP model Measure | SCHO | WO SGA TTAO | EEFO | KOA DBO SHO SRS WSO
Best 556.00 | 556.00 556.00 | 556.00 | 556.00 | 556.00 |556.00 |556.00 556.00 | 556.00
Worst 798.04 |717.00 | 1007.0 |617.00 |690.00 |586.00 |931.00 |919.00 677.75 | 604.00
OF Average | 614.72 | 586.80 753.30 | 571.59 | 601.05 | 559.51 |650.20 |700.50 632.14 | 567.45
Time (s) 8.77 8.84 8.21 9.54 8.55 8.23 7.63 9.10 7.43 6.44
Best 536.88 | 506.71 548.05 | 486.65 | 506.91 | 486.65 |486.64 |536.42 548.05 | 506.83
Worst 699.15 | 584.71 894.81 | 556.32 | 670.91 | 506.88 |816.38 |908.96 697.00 | 585.10
OF2 Average |583.17 |538.10 710.01 | 520.07 | 536.61 | 500.78 |623.74 | 646.68 627.96 | 535.36
Time (s) 12.17 12.05 1144 | 12.34 11.72 11.35 10.84 12.22 10.35 8.94
Best 536.90 |487.28 625.16 | 487.28 | 507.27 | 487.28 |487.28 |566.75 600.73 | 507.88
Worst 993.43 | 598.14 873.69 | 766.26 | 637.29 | 537.47 |779.42 |963.02 795.13 | 852.92
08 Average | 77855 |543.58 782.34 | 581.00 | 562.89 |506.76 |692.77 |752.1831 |642.24 |616.61
Time (s) 13.9 13.81 13.47 | 14.02 13.25 13.17 12.65 13.84 11.71 10.12

Table 2. Optimization results of the optimization algorithms for the Garver system.
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Figure 5. Convergence curve of the optimization algorithms for the Garver system: (a) model #1, (b) model #2,
and (c) model #3.

especially when applied to solve model #2 and model #3, affirming the effectiveness of the exploitation phase of
KOA, DBO, and TTAO, which demonstrates reliable exploration potential.

In Fig. 6, a box plot illustrating the performance of the algorithms is presented. KOA stands out prominently,
as evidenced by the smallest interquartile range displayed in the plot. Moreover, KOA attains the lowest worst
objective value over the three models, outperforming other algorithms.

The result gathered from the Wilcoxon rank sum test provides a crucial metric known as the p-value,
determining the significance of the evaluated algorithm’s superiority over its competitors. In this analysis, an
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Figure 6. Variations’ box chart of runs for the Garver network: (a) model #1, (b) model #2, and (c) model #3.

algorithm achieves statistical significance if its p-value is below 0.05. Table 3 presents the results of the Wilcoxon
rank sum test. Complemented by data from 20 simulation runs, the symbols “+”, and “~” denote whether the
algorithms achieve statistical significance or not, respectively. The results supported the data provided in Table 2,
showing that KOA delivered the best performance in solving Model #1. Additionally, KOA, DBO, and TTAO
consistently outperformed alternative algorithms, particularly in Model #2. For Model #3, the Wilcoxon rank
sum test results confirmed the efficiency of KOA, WO, TTAO, and DBO compared to all other algorithms.
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Algorithm TEP model | Measure | SCHO wo SGA TTAO EEFO KOA DBO SHO SRS WSO
OF1 p-value NA 0.04102 0.00012 7.11E-03 0.59784 3.71E-05 0.18941 0.0143 6.20E-02 0.0008
H NA + + + - + - + + +
SCHO OF2 p-value NA 0.0004 2.60E-05 1.92E-07 0.0007 6.80E-08 0.0385 0.017 5.12E-03 0.000104
H NA + + + + + + + + +
p-value NA 9.25E-07 1.42E-01 3.21E-05 2.53E-05 6.24E-08 0.010812 0.712296 3.46E-02 0.001358
OF3 H NA + - + + + + - + +
OF1 p-value 0.04102 NA 3.04E-06 | 6.85E-01 0.16724 7.97E-04 | 0.0121 0.0002 4.13E-04 0.6257
H + NA + - - + + + + -
p-value 0.0004 NA 1.66E-07 2.56E-03 0.4734 7.95E-07 3.71E-05 5.87E-06 1.66E-07 0.473481
wo OF2 H + NA + + - + + + + -
OF3 p-value 9.25E-07 NA 4.94E-08 3.29E-01 0.063195 3.75E-05 0.000111 1.08E-07 6.28E-08 0.000602
H + NA + - - + + + + +
OF1 p-value 0.00012 3.04E-06 NA 1.20E-06 9.74E-06 1.20E-06 0.00332 1.81E-01 0.0001 4.51E-07
H + + NA + + + + + + +
p-value 2.60E-05 1.66E-07 NA 7.90E-08 3.42E-07 6.80E-08 2.14E-03 2.75E-02 0.002 1.23E-07
SGA OF2 H + + NA + + + + + + +
OF3 p-value 1.42E-01 4.94E-08 NA 9.89E-07 7.28E-08 5.37E-08 1.72E-02 3.46E-01 5.65E-06 1.76E-05
H - - NA + + + + - + +
OF1 p-value 7.11E-03 6.85E-01 1.20E-06 NA 2.31E-02 0.45695 1.01E-03 2.04E-05 1.20E-06 1.10E-01
H + - + NA + - + + + -
TTAO OF2 p-value 1.92E-07 2.56E-03 7.90E-08 NA 9.79E-03 1.44E-02 2.36E-06 1.66E-07 7.90E-08 1.12E-03
H + + + NA + + + + + +
OF3 p-value 3.21E-05 3.29E-03 9.89E-07 | NA 9.68E-03 4.83E-06 1.67E-03 5.08E-05 3.75E-04 1.02E-04
H + + + NA + + + + + +
OFI p-value 0.59784 0.16724 9.74E-06 2.31E-02 NA 5.09E-04 | 0.04366 0.00148 6.22E-04 | 0.0020
H - - + + NA + + + + +
EEFO OF2 p-value 0.0007 0.4734 3.42E-07 9.79E-03 NA 6.80E-08 4.17E-05 1.25E-05 1.38E-06 0.655
H + - + + NA + + + + -
OF3 p-value 2.53E-05 0.063195 7.28E-08 9.68E-03 NA 6.92E-07 0.000989 4.95E-06 5.87E-06 0.027483
H + - + + NA + + + + +
OF1 p-value 3.71E-05 7.97E-04 1.20E-06 0.45695 5.09E-04 NA 2.21E-04 1.58E-06 1.20E-06 9.89E-03
H + + + - + NA + + + +
KOA OF2 p-value 6.80E-08 7.95E-07 | 6.80E-08 1.44E-02 6.80E-08 NA 1.20E-06 6.80E-08 6.80E-08 1.23E-07
H + + + + + NA + + + +
OF3 p-value 6.24E-08 3.75E-05 5.37E-08 4.83E-06 6.92E-07 NA 1.08E-05 6.41E-08 6.80E-08 1.66E-07
H + + + + + NA + + + +
OFI p-value 0.18941 0.0121 0.00332 1.01E-03 0.04366 2.21E-04 NA 0.18045 9.03E-01 0.0004
H - + + + + + NA + - +
DBO oOF2 p-value 0.0385 3.71E-05 2.14E-03 2.36E-06 4.17E-05 1.20E-06 NA 0.0350 3.94E-04 2.04E-05
H + + + + + + NA + + +
OF3 p-value 0.010812 0.000111 1.72E-02 1.67E-03 0.000989 1.08E-05 NA 0.0411583 2.24E-03 0.025901
H + + + + + + NA + +
. p-value 0.01436 0.00024 1.81E-01 2.04E-05 0.00148 1.58E-06 0.18045 NA 1.48E-01 3.05E-06
H + + - + + + - NA + +
SHO OF2 p-value 0.0179 5.87E-06 2.75E-02 1.66E-07 1.25E-05 6.80E-08 0.03507 NA 7.97E-01 5.87E-06
H + + + + + + + NA - +
p-value 0.712296 1.08E-07 3.46E-01 5.08E-05 4.95E-06 6.41E-08 0.0411583 NA 7.15E-03 1.32E-03
083 H - + - + + + + NA + +
p-value 6.20E-02 4.13E-04 0.00014 1.20E-06 6.22E-04 1.20E-06 9.03E-01 1.48E-01 NA 1.19E-06
oF H - + + + + + - - NA +
SRS OF p-value 5.12E-03 1.66E-07 0.0020 7.90E-08 1.38E-06 6.80E-08 3.94E-04 7.97E-01 NA 1.23E-07
H + + + + + + + - NA +
p-value 3.46E-02 6.28E-08 5.65E-06 3.75E-04 5.87E-06 6.80E-08 2.24E-03 7.15E-03 NA 1.20E-01
oF H + + + + + + - + NA -
Continued
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Algorithm TEP model | Measure | SCHO wo SGA TTAO EEFO KOA DBO SHO SRS WSO
OF1 p-value 0.00083 0.62577 4.51E-07 | 1.10E-01 0.00203 9.89E-03 | 0.00047 3.05E-06 1.19E-06 | NA
’ H + - + - + + + + + NA
p-value 0.0001 0.4734 1.23E-07 | 1.12E-03 | 0.6553 1.23E-07 | 2.04E-05 5.87E-06 1.23E-07 | NA
WSO O.F2
H + - + + - + + + + NA
OF3 p-value 0.001358 0.000602 1.76E-05 | 1.02E-03 | 0.027483 1.66E-07 | 0.025901 1.32E-03 1.20E-01 | NA
’ H + + + + + + + + - NA

Table 3. Wilcoxon rank sum test between the algorithms for the Garver system.

TEP model | Added circuits No. of added TCSCs | No. added FCLs
Model #1 2-3(1);3-5(1);4-6 (3) | - -
Model #2 4-6 (2) 6 -
Model #32 | 4-6 (2) 6 3

Table 4. Installed projects required for the Garver system.

TEP model Measure | SCHO | WO SGA TTAO | EEFO | KOA DBO SHO SRS WSO
Best 401.96 |402.67 |404.94 |401.22 |401.84 |401.22 |402.37 |401.22 |406.72 |402.34
Worst 416.02 | 410.12 |434.92 |407.11 |416.98 |405.46 |420.07 |412.07 |423.21 |414.92
OH Average | 408.69 |406.59 |419.55 |402.78 |408.03 |402.11 |407.76 |405.94 |418.05 |407.56
Time (s) 64.20 67.79 61.86 | 118.52 74.52 66.23 58.63 91.02 56.21 27.35
Best 400.09 |396.84 |404.25 |395.69 |400.42 |393.35 |397.36 |396.72 |418.35 |400.62
Worst 411.38 | 407.72 |438.28 |402.45 |410.64 |400.39 |412.56 |406.82 |429.92 |413.58
OF2 Average |404.72 |401.92 |421.79 |398.20 |405.30 |395.81 |404.39 |402.97 |424.56 |406.94
Time (s) 76.4 81.61 70.169 | 131.72 88.24 77.63 67.43 | 103.88 66.54 35.4
Best 401.91 |397.30 |403.41 |396.74 |400.73 |394.85 |[398.11 |397.12 |407.52 |401.5497
Worst 414.48 | 411.54 |431.62 |401.67 |413.86 |403.33 |413.77 |406.94 |429.69 |411.0904
OF3 Average | 406.71 |402.89 |414.10 |397.98 |406.60 |396.45 |404.72 |401.87 |422.38 |406.5078
Time (s) 81.04 85.06 75.63 | 134.05 92.89 81.84 70.22 | 105.17 70.05 38.33

Table 5. Optimization results of the optimization algorithms for the WDN.

The Garver network configuration

Table 4 outlines the incorporation of new components necessary to expand the Garver network in order to meet
electrical demand. These components are selected from the best-performing runs in each model. As indicated
in Table 4, in model #1, five circuits are crucial for supplying the loads, located along routes 2-3, 3-5, and
4-6. In model #2, the integration of the TCSCS planning model into the TEP model reduces the number of
installed circuits from 5 to 2, consequently lowering the overall planning cost. Furthermore, Table 4 highlights
the significance of installing FCLs to restrict short-circuit currents to below 6.5 p.u.

The WDN

Statistical analysis of the optimization algorithms

In this subsection, the performance of the algorithms is evaluated on the WDN. Each algorithm undergoes 20
independent runs for each test, and the statistical findings are synthesized in Table 5. The results of model #1
showed that KOA, TTAO, and SHO succeeded in obtaining the best solution, valued at 401.22 million USD.
Despite the increased scale of the system, KOA still provides the minimum average value. It was observed that
KOA provided the best average value of 402.11 million USD, which was lower by about 17.44 million USD than
SGA, representing the worst value.

In model #2, KOA continues to prove its efficiency in obtaining the best solutions as shown in Table 5. The
lowest cost function was 393.35 million USD. TTAO is the second-best algorithm, followed by SHO, WO, and
DBO, respectively. In terms of average values, KOA still provides the best value at 395.81 million USD, followed
by TTAO and WO, respectively. The average value of KOA was lower by about 2.39 and 6.11 million USD for
TTAO and WO, respectively.

When the planning model was expanded to incorporate the planning model of FCLs (model #3), among
other algorithms, KOA emerged as the top-performing algorithm in determining optimal solutions and achieving
the lowest average value, as depicted in Table 5. The optimal solution and average value stood at approximately
394.85 and 396.45 million USD, respectively. Following closely in terms of both optimal solution and average
values, TTAO ranked as the second-best algorithm, trailed by SHO and WO, respectively. Their optimal solutions
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Figure 7. Convergence curve of the optimization algorithms for the WDN: (a) model #1, (b) model #2, and (c)
model #3.

exceeded KOA’s by approximately 1.89, 2.27, and 2.45 million USD, respectively, while their average values

465 == @= == SCHO == = = WO = == == SGA TTAO = == == EEFO

ass o= o= wm KOA o= om oe DBO == o= == SHO == == == SRS - o= == WSO

surpassed KOA’s by about 1.53, 5.42, and 6.44 million USD, respectively.

The data presented in Table 5 shows the average duration obtained by running the WDN for 20 iterations.
Similar to the Garver network, it is apparent that six algorithms require less computational time than KOA, while
the remaining algorithms (WO, TTAO, EEFO, SHO) take longer. Figure 7 displays the convergence curves of the
best run for all the algorithms. Table 5 also highlights that the WSO also demonstrated the shortest computational
times, approximately 2-3 times faster than those of other algorithms. Despite its rapid convergence, the average
solution value obtained is higher compared to KOA, TTAO, and SHO. In TEP, prioritizing the quality of solutions

is paramount over the speed of the algorithm.
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Figure 8. Variations’ box chart of runs for the WDN: (a) model #1, (b) model #2, and (c) model #3.

The performance of the algorithms is depicted in Fig. 8 through a box plot, offering a comprehensive visual
representation of their comparative efficacy. Remarkably, KOA emerges as the leading performer, characterized by
the smallest interquartile range observed in the plot. This narrow range signifies a more consistent performance
across different scenarios, reflecting the algorithm’s robustness and reliability. Moreover, KOA achieves the lowest
worst objective value among all algorithms evaluated, underscoring its exceptional capability in finding optimal
solutions even under challenging conditions. This standout performance further solidifies KOA’s position as a
promising algorithm for addressing complex optimization problems such as TEP.
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Algorithm TEP model | Measure | SCHO wo SGA TTAO EEFO KOA DBO SHO SRS WSO
OF1 p-value NA 0.123 0.00041 5.46E-06 0.542 5.42E-07 0.3793 0.0273 3.07E-06 0.440
H NA - + + - + - + + -
SCHO OF2 p-value NA 0.00655 3.42E-07 2.96E-07 0.56085 7.90E-08 0.65536 0.11985 6.80E-08 0.0256
H NA + + + - + - - + +
p-value NA 0.000305 2.14E-03 6.80E-08 0.924573 9.17E-08 0.053103 0.000144 2.22E-07 0.946084
OFs H NA + + + - + - + + -
OF1 p-value 0.123091 NA 3.71E-05 7.06E-06 0.273285 7.74E-07 0.456951 0.35025 2.56E-07 0.516168
H - NA + + - + - - + -
p-value 0.00655 NA 1.06E-07 1.61E-04 0.00162 1.92E-07 0.0909 0.15557 6.80E-08 0.0001
wo OF2 H + NA + + + + - - + +
OF3 p-value 0.00030 NA 2.36E-06 3.99E-06 0.00101 5.17E-06 0.23932 0.35070 9.17E-08 0.0002
H + + + + + - - + +
OF1 p-value 0.000416 3.71E-05 NA 1.14E-07 0.000179 8.90E-08 0.000144 1.86E-05 0.635945 0.000104
H + + NA + + + + + - +
p-value 3.42E-07 1.06E-07 NA 6.80E-08 4.54E-07 6.80E-08 2.56E-07 2.22E-07 0.096 7.95E-07
SGA OF2 H + + NA + + + + + - +
p-value 2.14E-03 2.36E-06 NA 6.80E-08 2.34E-03 6.80E-08 3.38E-04 4.54E-07 0.007 9.21E-04
OF3 H + + NA + + + + + + +
OF1 p-value 5.47E-06 7.06E-06 1.14E-07 NA 6.63E-06 0.03719 3.71E-06 0.00013 7.83E-08 2.58E-05
H + + + NA + + + + + +
TTAO OF2 p-value 2.96E-07 1.61E-04 6.80E-08 NA 3.42E-07 2.92E-05 5.87E-06 8.60E-06 6.80E-08 1.66E-07
H + + + NA + + + + + +
OF3 p-value 6.80E-08 3.99E-06 6.80E-08 NA 9.17E-08 3.34E-03 1.38E-06 1.44E-04 6.80E-08 7.90E-08
H + + + NA + + + + + +
OF1 p-value 0.5427 0.2732 0.00017 6.63E-06 NA 8.89E-07 0.839232 0.1132 1.20E-06 0.675
H - - + + NA + - - + -
EEFO OF2 p-value 0.56085 0.00162 4.54E-07 3.42E-07 NA 6.80E-08 0.32348 0.0239 6.80E-08 0.0909
H - + + + NA + - + + -
OF3 p-value 0.92457 0.00101 2.34E-03 9.17E-08 NA 2.22E-07 0.09090 0.00024 1.66E-07 0.8817
H - - + + NA + - + + -
OFI p-value 5.42E-07 7.74E-07 8.90E-08 0.037195 8.89E-07 NA 3.56E-07 1.44E-05 6.59E-08 1.54E-06
H + + + + + NA + + + +
p-value 7.90E-08 1.92E-07 6.80E-08 2.92E-05 6.80E-08 NA 1.23E-07 1.43E-07 6.80E-08 6.80E-08
KoA OF2 H + + + + + NA + + + +
p-value 9.17E-08 5.17E-06 6.80E-08 3.34E-03 2.22E-07 NA 2.06E-06 1.41E-05 6.80E-08 1.43E-07
OF3 H + + + + + + + + +
p-value 0.37933 0.45695 0.00014 3.71E-06 0.83923 3.56E-07 NA 0.10714 2.36E-06 0.9892
OF H - - + + - + NA - + -
DBO OF2 p-value 0.65536 0.09090 2.56E-07 5.87E-06 0.32348 1.23E-07 NA 0.49033 6.80E-08 0.063
H - - + + - + NA - + -
p-value 0.05310 0.23932 3.38E-04 1.38E-06 0.09090 2.06E-06 NA 0.06389 1.23E-07 0.0565
OF3 H - - + + - + NA - + -
p-value 0.027338 0.35025 1.86E-05 0.000132 0.113213 1.44E-05 0.107148 NA 2.16E-07 0.2179
OF H + - + + - + - NA + -
SHO OF2 p-value 0.11985 0.15557 2.22E-07 8.60E-06 0.02390 1.43E-07 0.49033 NA 6.80E-08 0.0003
H - - + + + + - NA + +
OF3 p-value 0.00014 0.35070 4.54E-07 1.44E-04 0.00024 1.41E-05 0.06389 NA 6.80E-08 9.28E-05
H + - + + + + - NA + +
p-value 3.07E-06 2.56E-07 0.635945 7.83E-08 1.20E-06 6.59E-08 2.36E-06 2.16E-07 NA 9.12E-07
oF H + + - + + + + + NA +
SRS OF2 p-value 6.80E-08 6.80E-08 0.09619 6.80E-08 6.80E-08 6.80E-08 6.80E-08 6.80E-08 NA 6.80E-08
H + + - + + + + + NA +
OF3 p-value 2.22E-07 9.17E-08 0.00711 6.80E-08 1.66E-07 6.80E-08 1.23E-07 6.80E-08 NA 1.66E-07
H + + + + + + + + NA +
Continued
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Algorithm TEP model | Measure | SCHO WO SGA TTAO EEFO KOA DBO SHO SRS WSO
OF1 p-value | 0.440728 | 0516168 | 0.000104 | 2.58E-05 | 0.675 1.54E-06 | 0.989208 |0.217952 | 9.12E-07 | NA
H - - + + - + - - + NA
Wso o p-value | 0.02563 0.00010 7.95E-07 | 1.66E-07 | 0.09090 6.80E-08 | 0.06389 0.00037 6.80E-08 | NA
H + + + + - + - + + NA
p-value 0.94608 0.00024 9.21E-04 | 7.90E-08 | 0.88173 1.43E-07 | 0.05651 9.28E-05 | 1.66E-07 | NA
OFs H - + + + - + - + + NA
Table 6. Wilcoxon rank-sum test between the algorithms for the WDN.
TEP model | Added circuits No. of added TCSCs | No. added FCLs
Model #1 5-6 (1); 33-53 (1); 5-53(2); 36-53 (2); 20-53 (1) | - -
Model #2 6-34 (1); 5-53 (1); 36-53 (2) 6 -
Model #32 6-34 (1); 5-53 (1); 36-53 (2) 6 4

Table 7. Installed projects required for the WDN.

The Wilcoxon rank sum test results are presented in Table 6, providing a detailed comparison of the
performance of different algorithms. The symbols “+”, and “~” denote whether the algorithms achieve
statistical significance or not, respectively. The results supported the data provided in Table 5, showing that
KOA delivered the best performance in solving across all tested models. The results indicate that the KOA
algorithm demonstrates superior performance, consistent with the statistical analyses conducted. Notably, the
KOA algorithm shows exceptional effectiveness in tackling TEP issues, as evidenced by its consistently high
performance across different models. These findings suggest that the KOA algorithm could be a suitable choice
for addressing TEP problems, given its superior performance in terms of accuracy and reliability.

The WDN configuration

Table 7 gives a summary of the new components that are required to expand the WDN. These components
are chosen from the best-performing runs in each model. As shown in Table 7, in model #1, seven circuits are
required to supply the loads that are located along routes 5-6, 33-53, 5-53, 3653, and 20-53. In model #2, the
incorporation of the TCSCS planning model into the TEP model reduces the number of installed circuits from
7 to 4, resulting in a decrease in the overall planning cost. Additionally, Table 7 highlights the significance of
installing four FCLs to limit short-circuit currents to below 9 p.u.

The IEEE 118-bus system
Statistical analysis of the optimization algorithms
Table 8 presents the optimization results. In Model #1, all algorithms except SRS and WSO achieved the minimum
cost value of 348.62 million USD. Notably, KOA demonstrated the lowest average value among the algorithms,
followed by SHO and WO. KOA’s average cost was 348.81 million USD, which is approximately 2.74% and 3.63%
lower than those of SHO and WO, respectively.

In Model #2, KOA, DBO, SGA, and SHO were effective in reaching the optimal solution of 333.96 million
USD. However, KOA distinguished itself by achieving the best average value across all runs. KOA’s average was

TEP model Measure | SCHO | WO SGA TTAO | EEFO | KOA DBO SHO SRS WSO
Best 348.62 | 348.62 348.62 | 348.62 | 348.62 | 348.62 | 348.62 | 348.62 358.52 | 364.92
Worst 387.72 | 383.12 670.92 | 604.02 | 374.82 | 349.34 |578.72 |374.82 474.82 | 469.924
OF Average | 364.14 |361.93 522.81 | 463.11 | 361.07 | 348.81 |464.53 |358.63412 |412.44 |443.5401
Time (s) |120.45 |128.21 116.45 | 226.5 142.31 | 127.02 |110.7 172.79 107.02 77.21
Best 354.01 |351.52 333.96 | 338.60 | 353.20 |333.96 |333.96 |333.96 362.20 |361.46
Worst 394.17 |355.14 648.58 | 710.94 | 354.38 | 345.01 |783.26 |369.77 672.70 | 719.43
OF2 Average |362.68 |353.03 390.13 | 493.26 |353.92 | 340.38 |410.55 |345.74 502.25 |490.23
Time (s) | 132.02 1.38.4| 124.66 | 239.21 |154.21 | 1324 119.45 | 184.03 112.33 80.11
Best 35525 |351.97 337.03 | 367.43 | 355.48 |337.03 |337.03 |338.57 341.12 | 341.12
Worst 376.94 |359.40 |1807.6 |649.23 |356.18 |347.71 |941.11 |377.92 367.83 | 365.20
OF Average |364.18 |354.78 551.15 | 487.94 |355.84 |341.98 |422.80 |351.33 353.60 |351.51
Time (s) |141.56 |147.35 133.07 | 256.56 | 163.45 | 144.03 |124.89 |195.12 119.32 85.9

Table 8. Optimization results of the optimization algorithms for the IEEE 118-bus system.
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Figure 9. Convergence curve of the optimization algorithms for the IEEE 118-bus system: (a) model #1, (b)
model #2, and (¢) model #3.

approximately 5.36 million USD lower than that of SHO, which ranked second, representing a reduction of
about 1.55%.

In Model #3, KOA, SGA, and DBO remained effective in obtaining the optimal solution of 337.03 million
USD. Among these, KOA excelled, achieving the best average value, as shown in Table 8. The optimal average
value was approximately 341.98 million USD, which is 2.66% lower than that of SHO, which obtained the
second-best value.
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Figure 10. Variations’ box chart of runs for the IEEE 118-bus system: (a) model #1, (b) model #2, and (c)
model #3.

Figure 9 illustrates the convergence curves of all algorithms concerning the best achieved score to date.
While all algorithms converged, WSO exhibited the most rapid convergence rate. Figure 10 presents a box
plot comparing the performance of the algorithms. KOA stands out prominently, evidenced by the smallest
interquartile range displayed in the plot.
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Algorithm TEP model | Measure | SCHO wo SGA TTAO EEFO KOA DBO SHO SRS WSO
OF1 p-value NA 0.1799 0.0001 7.42E-03 0.2274 7.58E-06 2.30E-05 0.027 4.67E-02 5.23E-07
H NA - + + - + + + + +
SCHO OF2 p-value NA 1.23E-07 7.11E-03 1.58E-06 2.96E-07 6.80E-08 0.0071 2.30E-05 4.36E-06 5.23E-07
H NA + + + + + + + + +
p-value NA 2.06E-06 4.60E-04 2.21E-07 1.25E-05 6.80E-08 0.394171 0.000275 1.79E-04 1.05E-06
OFs H NA + + + + + - + + +
OF1 p-value 0.1799 NA 2.10E-05 5.45E-03 0.8051 7.03E-03 7.82E-06 0.967 2.51E-03 1.98E-07
H - NA + + - + + - + +
p-value 1.23E-07 NA 7.11E-03 1.20E-06 0.0008 6.80E-08 0.0071 0.001 6.53E-08 6.80E-08
wo OF2 H + NA + + + + + + + +
OF3 p-value 2.06E-06 NA 2.80E-03 6.79E-08 0.0114 6.80E-08 0.6359 0.004 3.23E-01 0.007
H + NA + + + + - + - +
OF1 p-value 0.0001 2.10E-05 NA 4.55E-02 1.40E-05 1.20E-06 0.1165 1.49E-05 0.007 0.147
H + + NA + + + - - + -
SGA O p-value 7.11E-03 7.11E-03 NA 5.09E-04 7.11E-03 5.48E-03 3.72E-01 4.90E-01 0.0001 2.47E-04
H + + NA + + + - - + +
OF3 p-value 4.60E-04 2.80E-03 NA 1.61E-04 1.23E-03 4.96E-05 8.29E-01 7.97E-01 0.107511 2.29E-01
H + + NA + + + - - - -
OF1 p-value 7.42E-03 5.45E-03 4.55E-02 NA 2.13E-03 0.0068 8.38E-01 0.006 3.06E-02 1.41E-01
H + + + NA + + - + + -
TTAO OF2 p-value 1.58E-06 1.20E-06 5.09E-04 NA 1.20E-06 6.92E-07 2.92E-03 5.23E-07 9.46E-01 9.03E-01
H + + + NA + + + + - -
OF3 p-value 2.21E-07 6.79E-08 1.61E-04 NA 6.79E-08 6.79E-08 3.06E-03 1.06E-07 7.89E-08 6.79E-08
H + + + NA + + + + + +
OF1 p-value 0.2274 0.8051 1.40E-05 2.13E-03 NA 6.96E-03 7.53E-06 0.902 1.63E-02 9.86E-08
H - - + + NA + + - + +
EEFO OF2 p-value 2.96E-07 0.0008 7.11E-03 1.20E-06 NA 6.80E-08 0.0071 0.000275 6.53E-08 6.80E-08
H + + + + NA + + + + +
OF3 p-value 1.25E-05 0.0114 1.23E-03 6.79E-08 NA 6.80E-08 0.5978 0.001 1.08E-01 0.000161
H + + + + NA + - + - +
OFI p-value 7.58E-06 7.03E-03 1.20E-06 0.0068 6.96E-03 NA 1.20E-06 5.98E-04 6.69E-08 6.80E-08
H + + + + + NA + + + +
p-value 6.80E-08 6.80E-08 5.48E-03 6.92E-07 6.80E-08 NA 2.13E-04 4.33E-04 6.53E-08 6.80E-08
KoA OF2 H + + + + + NA + + +
p-value 6.80E-08 6.80E-08 4.96E-05 6.79E-08 6.80E-08 NA 2.04E-03 2.47E-04 1.38E-06 1.58E-06
OF3 H + + + + + NA + + + +
p-value 2.30E-05 7.82E-06 0.1165 8.38E-01 7.53E-06 1.20E-06 NA 9.75E-06 2.07E-02 0.285
OF H + + - - + + NA + + -
DBO OF2 p-value 0.0071 0.0071 3.72E-01 2.92E-03 0.0071 2.13E-04 NA 0.516 9.07E-04 0.001
H + + - + + + NA - + +
p-value 0.3941 0.6359 8.29E-01 3.06E-03 0.5978 2.04E-03 NA 0.755 9.25E-01 0.967
OF3 H - - - + - + NA - - -
p-value 0.0274 0.9675 1.49E-5 0.0068 0.9028 5.98E-04 9.75E-06 NA 5.06E-04 1.92E-07
OF H + - + + - + + NA + +
SHO OF2 p-value 2.30E-05 0.0014 4.90E-01 5.23E-07 0.0002 4.33E-04 0.5161 NA 1.19E-07 1.23E-07
H + + - + + + - NA + +
p-value 0.0002 0.0043 7.97E-01 1.06E-07 0.0012 2.47E-04 0.7557 NA 1.20E-01 2.73E-01
o8 H + + - + + + - NA - -
p-value 4.67E-02 2.51E-03 0.007 3.06E-02 1.63E-02 6.69E-08 2.07E-02 5.06E-04 NA 1.07E-01
oF H + + + + + + + NA
SRS OF2 p-value 4.36E-06 6.53E-08 0.000141 9.46E-01 6.53E-08 6.53E-08 9.07E-04 1.19E-07 NA 9.68E-01
H + + + - + + + + NA -
OF3 p-value 1.79E-04 3.23E-01 0.107511 7.89E-08 1.08E-01 1.38E-06 9.25E-01 1.20E-01 NA 3.30E-01
H + - - + - + - - NA -
Continued

Scientific Reports |

(2024) 14:13046 |

https://doi.org/10.1038/s41598-024-63331-1

nature portfolio




www.nature.com/scientificreports/

Algorithm TEP model | Measure | SCHO wo SGA TTAO EEFO KOA DBO SHO SRS WSO
OF1 p-value 0.4407 0.5161 0.0001 2.58E-05 | 0.675 1.54E-06 | 0.9892 0.217 9.12E-07 | NA
' H - + + - + - - + -
p-value 5.23E-07 | 6.80E-08 |2.47E-04 |9.03E-01 6.80E-08 | 6.80E-08 | 0.001782 1.23E-07 | 9.68E-01 NA
WSO O.F2
H + + + - + + + + - NA
OF3 p-value 1.05E-06 | 0.0071 2.29E-01 6.79E-08 | 0.0001 1.58E-06 | 0.9676 2.73E-01 3.30E-01 NA
’ H + + - + + + - - - NA

Table 9. Wilcoxon rank sum test between the algorithms for the IEEE 118-bus system.

TEP model | Added circuits No. of added TCSCs | No. added FCLs
Model #1 77-78 (1); 99-100 (1) | - -

Model #2 No additional circuits | 3 -

Model #32 No additional circuits | 8 10

Table 10. Installed projects required for the IEEE 118-bus system.

Table 9 presents the results of the Wilcoxon rank-sum test, based on data from 20 simulation runs. The
results confirm the efficiency of KOA, SGA, SHO, and DBO in system planning. However, KOA emerged as the
superior algorithm.

The IEEE 118 bus system configuration

Table 10 outlines the incorporation of new components necessary to expand the system to meet electrical
demand. These components were selected from the best-performing runs in each model. As indicated in Table 10,
Model #1 requires the addition of two circuits to supply the loads, specifically along routes 77-78 and 99-100. In
contrast, Model #2 did not require the installation of new circuits due to the integration of the TCSCS planning
model into the TEP model. Furthermore, Table 10 highlights the importance of installing FCLs to restrict short-
circuit currents to below 28 p.u.

Conclusions

In this study, ten recent metaheuristic algorithms developed in the years 2022 and 2023 for solving the TEP
problem were evaluated across three distinct power network systems: the Garver network and the IEEE 118-bus
system, a well-established benchmark system, and the Egyptian West Delta network.

Three distinct TEP models were used to conduct this analysis. The first TEP model adhered to the standard
TEP model, focusing on the optimal placement of new transmission lines and generation units. Subsequently,
the model was expanded by incorporating the planning model of TCSCs in the second model, thereby increasing
the number of decision-making variables. In the third model, the problem was further augmented in complexity
by integrating the planning models of TCSCs and FCLs, thus encompassing a higher number of variables. A
comprehensive comparative analysis of the considered algorithms was carried out through evaluation metrics,
including assessment of best and worst solutions, average, and running time.

The findings derived from simulations and statistical analysis, including the Wilcoxon rank-sum test, revealed
nuanced insights into the performance of the metaheuristic algorithms. Notably, KOA, DBO, and TTAO emerged
as the top-performing algorithms, exhibiting superior performance in terms of both the best solutions when
applied to solve the three models over the Garver network. However, KOA was superior in obtaining the best
average value. It was lower than the best second algorithm by 1.4% for Model #1, 3.7% for Model #2, and 6.8
for Model #3%.

When the algorithms were applied to expand the WDN across the three models, KOA emerged as superior
among other algorithms, excelling in both providing the best solution and achieving a lower average value. Its
average value was 0.95% lower than the best second algorithm for Model #1, 0.59% for Model #2, and 0.39%
for Model #3.

For the 118-bus system, KOA, SGA, and DBO were the best algorithms in obtaining the best solutions across
all models. However, KOA was superior in terms of the best average value. KOA’s average value was lower than
the best second algorithm by about 2.74%, 1.55%, and 2.6% for Model #1, Model #2, and Model #3, respectively.

The WSO exhibited the shortest computational times, being approximately 2-3 times faster than those of
other algorithms. Despite its rapid convergence, the average solution value obtained is higher compared to KOA.
In TEP, prioritizing the quality of solutions is paramount over the speed of the algorithm.

The results also demonstrated that integrating the planning model of TCSCs into the TEP was cost-effective.
The planning cost was reduced by about 12.47% for the Garver network, 1.96% for the WDN, and 4.2% for the
118-bus system.

Future work will concentrate on assessing the considered algorithms in solving TEP with the presence of
renewable energy sources and energy storage systems. Additionally, a new hybrid meta-heuristic algorithm will
be developed to tackle the TEP problem. Furthermore, the future work will entail investigating and validating
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these algorithms across various scenarios and real-world datasets to strengthen these findings and ease their
adoption in operational settings.

Data availability
The datasets generated during the current study are not publicly available due to their large size but are available
from the corresponding author upon reasonable request.
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