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Multi‑cohort analysis reveals 
immune subtypes and predictive 
biomarkers in tuberculosis
Ling Li , Tao Wang , Zhi Chen , Jianqin Liang  & Hong Ding *

Tuberculosis (TB) remains a significant global health threat, necessitating effective strategies for 
diagnosis, prognosis, and treatment. This study employs a multi-cohort analysis approach to unravel 
the immune microenvironment of TB and delineate distinct subtypes within pulmonary TB (PTB) 
patients. Leveraging functional gene expression signatures (Fges), we identified three PTB subtypes 
(C1, C2, and C3) characterized by differential immune-inflammatory activity. These subtypes exhibited 
unique molecular features, functional disparities, and cell infiltration patterns, suggesting varying 
disease trajectories and treatment responses. A neural network model was developed to predict 
PTB progression based on a set of biomarker genes, achieving promising accuracy. Notably, despite 
both genders being affected by PTB, females exhibited a relatively higher risk of deterioration. 
Additionally, single-cell analysis provided insights into enhanced major histocompatibility complex 
(MHC) signaling in the rapid clearance of early pathogens in the C3 subgroup. This comprehensive 
approach offers valuable insights into PTB pathogenesis, facilitating personalized treatment 
strategies and precision medicine interventions.
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Tuberculosis (TB) stands as a major global infectious disease, posing significant challenges to both human 
health and healthcare systems worldwide1,2. Currently, a primary challenge lies in identifying latent tuberculosis 
infection (LTBI), given that 90% of infected individuals exhibit no overt symptoms or signs, yet remain at risk of 
developing active tuberculosis in the future. The TB infection cycle entails numerous critical events, spanning 
from initial infection to the establishment of latency, involving a series of intricate processes within host cells. 
Mycobacterium tuberculosis engages in a protracted battle with the host, ensuring its survival by modulating 
metabolic environments and immune responses3–5. In this context, comprehending the clinical classification of 
TB and the behavior of the pathogen across different classifications is pivotal for predicting disease progression 
and determining the most appropriate treatment approach.

Generally, TB is classified based on several criteria including clinical features, pathological presentations, 
Mycobacterium tuberculosis drug resistance, and molecular epidemiology6. Clinically, it can be divided into 
primary and secondary forms, while pathologically, it may manifest as caseous, infiltrative, or fibrotic TB. 
Drug resistance classification includes identifying drug-resistant tuberculosis strains. Molecular epidemiology 
techniques are also employed for strain typing7,8. These classification methods collectively offer insights into the 
development, transmission, and treatment status of TB, guiding clinical treatment and disease control efforts. 
Although there’s no definitive transcriptomics-based classification system yet, some studies may categorize TB 
into subtypes based on patient immune responses, pathogen metabolism, and treatment responses9,10. Revealing 
these subtypes enhances understanding of TB progression and treatment response, facilitating personalized 
treatment and precision medicine. However, these classification systems are still in the research phase and haven’t 
seen widespread adoption in clinical practice.

The immune environment plays a critical role in the development of TB, influencing how the disease 
progresses11. After infection, the tuberculosis bacteria cause lung inflammation and immune cell buildup, creating 
an environment that promotes inflammation6,12,13. However, the bacteria also manipulate the immune response, 
making it harder for the body to clear them. This can lead to lung damage and recurring infections in some 
cases4,9. Understanding these changes in the immune system is crucial for finding better treatment strategies. 
Currently, studying the different types of immune environments in TB has some challenges. There isn’t a clear 
way to define or classify these types, making it hard to compare research findings5,14,15. Also, most studies focus 
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on the levels of different immune cells and proteins, without considering how these cells interact or how signaling 
pathways are regulated. Plus, because many factors can affect a TB patient’s immune system, it’s tough to create 
a complete model of immune environment types.

Using functional gene expression signatures (Fges) provided by Bagaev et al.16, which represent the main 
functional components of the TB microenvironment, we investigated how these gene sets are active in TB patients 
and how they relate to prognosis. By analyzing the diversity triggered by Fges enrichment scores, we focused on 
pulmonary tuberculosis (PTB) patients and successfully divided them into three distinct subtypes. This allowed 
us to explore the molecular characteristics and functional differences within the microenvironment, uncovering 
key molecular mechanisms behind the prognostic disparities among PTB subtypes. To ensure applicability to 
other PTB patient groups, we developed a dependable classification model using neural networks. Additionally, 
in conjunction with drug sensitivity analysis, we offered potential clinical guidance for treatment.

Materials and methods
Data source and preprocessing
This study presents an in-depth analysis of transcriptomic data obtained from the "curatedTBData" package, 
accessible at https://​github.​com/​wejlab/​curat​edTBD​ata. The datasets analyzed in this study comprise 49 
transcriptomic studies, which include gene expression profiles from patients diagnosed with TB as well as 
individuals with various other clinical conditions. To ensure the reliability and effectiveness of the analysis, 
stringent criteria were applied to exclude datasets with fewer than 15,000 genes or fewer than 10 samples.

Through this rigorous screening process, 31 high-quality datasets were identified, including GSE101705 
(n = 44), GSE107104 (n = 33), GSE112104 (n = 51), GSE19435 (n = 33), GSE19439 (n = 42), GSE19442 (n = 51), 
GSE19443 (n = 44), GSE19444 (n = 54), GSE22098 (n = 274), GSE25534 (n = 102), GSE28623 (n = 108), GSE29536 
(n = 15), GSE34608 (n = 44), GSE37250 (n = 537), GSE39939 (n = 157), GSE39940 (n = 334), GSE40553 (n = 204), 
GSE41055 (n = 27), GSE42825 (n = 42), GSE42826 (n = 102), GSE42830 (n = 95), GSE42832 (n = 90), GSE50834 
(n = 44), GSE54992 (n = 39), GSE56153 (n = 71), GSE62147 (n = 52), GSE62525 (n = 42), GSE69581 (n = 50), 
GSE73408 (n = 109), GSE83456 (n = 202), and GSE83892 (n = 116). Each dataset underwent standardization 
within the "curatedTBData" package to ensure uniformity and comparability across studies. For further details 
on expression values and associated metadata, please refer to Supplementary Table S1.

Calculation of enrichment score (ES) and signature score
To calculate the ESs of Fges gene sets in each TB sample (Table S2), the "gsva" function from the GSVA package 
(version 1.50.0)17 was employed. Then normalization was conducted to ensure that the ESs are non-negative, 
using the following formula.

ES is a matrix of ESs, where rows represent Fges sets and columns represent TB samples. S denotes the 
normalized ES (NES), with a range from 0 to 1.

For the signature scores of a gene list mentioned in the present study, the Seurat tool’s AddModuleScore 
function18 was utilized.

Quantifying heterogeneity with Jensen‑Shannon divergence
To quantify the heterogeneity of Fges-related ESs in the TB cohorts, Jensen-Shannon divergence (JSD) is 
employed as a metric for assessing the similarity between two probability distributions. The formula is as follows:

where P = Si.
∑n

j=1 Sij
 , Q =

[

1
n

]

n
 , and M = 1

2
(P + Q) . S is a matrix of NES mentioned previously, where rows 

represent Fges sets and columns represent TB samples.

Inference of PTB patient subtypes
Immune-related pathways (C7) were retrieved from the MsigDB database, consisting of 5214 functional gene 
sets representing cell states and immune system perturbations. GSVA was then applied to calculate the ESs of 
these pathways in PTB patients (n = 1728) from 31 TB datasets. Subsequently, the correlation between these 
pathway enrichment scores and the activity scores of cytokine signaling-related gene sets was computed, with 
only those exhibiting correlation coefficients greater than 0.5 being retained. Utilizing the resulting matrix of 
pathway enrichment scores in PTB patients, hierarchical clustering was performed on the TB patients using 
“Euclidean” distance and the “complete” linkage method. This analysis revealed three distinct subtypes, labeled 
as C1 (n = 432), C2 (n = 560), and C3 (n = 736).

Estimation of cellular compositions of PTB subgroups
To investigate the differences in cell type composition among various PTB subtypes, deconvolution analysis was 
separately performed on PTB patients using xCell19 and CIBERSORT20 to estimate their cellular compositions. 
xCell includes 64 default cell types, while CIBERSORT utilizes the LM22 base matrix, encompassing 22 crucial 
immune cell types. Default parameters were maintained for both tools during the analysis.

S =
ES −min(ES)

max(ES)−min(ES)

JSD(P,Q) =
1

2
(DKL(P||M)+ DKL(Q||M))

https://github.com/wejlab/curatedTBData
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Differentially expressed genes (DEGs) and functional enrichment analysis
Utilizing the FindMarkers function from the “Seurat” package (version 4.3.0)21, Wilcoxon Rank Sum tests were 
employed to identify significantly differentially expressed genes (DEGs) between each PTB subgroup and the 
remaining subgroups. Bonferroni correction was applied to the p-values for multiple testing, and genes with 
corrected p-values less than or equal to 0.05 were considered significant DEGs. These identified genes were 
subsequently used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
tests using the R package ClusterProfiler (version 4.0.5)22.

Constructing biomarkers for PTB patient progression and predicting subgroups with neural 
network models
To develop biomarkers for predicting the disease progression status of PTB patients, a neural network model was 
employed with the following steps: First, a set of 1829 feature genes exhibiting significantly higher expression in 
C3 compared to C1 and C2 was identified. The average expression of these genes across different PTB subtypes 
was calculated, resulting in an expression profile of 1829 × 3. Using Spearman correlation analysis, the alignment 
of each gene’s expression trends with the cytokine signaling activity trends from C1 to C3 was assessed. Genes 
with a correlation of 1 were retained, yielding 43 differential expression genes. Subsequently, a neural network 
model was constructed using the expression profile of these 43 feature genes as input (1728 PTB samples × 43 
feature genes). The model comprised two hidden layers: one with 64 neurons and the other with 32 neurons, 
utilizing ReLU activation functions. To obtain predicted scores within the range of [− 1, 1], the tanh activation 
function was applied and passed to the output layer. Finally, the mean squared error (MSE) is utilized as the 
loss function.

Next, to further predict various subgroups among PTB patients, modifications were made to the neural 
network model used for predicting disease progression. These adjustments involved: randomly dividing 1728 PTB 
patient samples into training and independent testing sets with a 7:3 ratio; defining the feature genes in the input 
layer as all significantly differentially expressed genes obtained from C1, C2, and C3 (2314 genes); introducing 
a Dropout strategy (rate = 0.2) in the hidden layer to mitigate model overfitting and improve generalization; 
configuring three neurons in the output layer to represent three distinct PTB subtypes; using the softmax function 
as the activation function. Finally, the cross-entropy loss function was employed.

Deriving PTB insights from single‑cell RNA‑seq data
Given the scarcity of extensive single-cell data of PTB patients, HABERMANN et al.23 have provided a 
breakthrough by sharing single-cell data for 10 non-fibrotic control and 20 pulmonary fibrosis (PF) lungs 
(accession number: GSE135893). Despite the distinct nature of PF and PTB, they may share certain biological 
characteristics, such as irregular changes in lung cells. Hence, delving into PF data may yield valuable insights into 
PTB subtypes, particularly in terms of identifying and predicting cell subtypes. To accomplish this, a pre-trained 
neural network model was employed to forecast potential subtypes in these PF patients. The process involves 
calculating the average expression of each gene across all cells in each single-cell PF sample, generating a vector 
of average gene expression for each sample. These average expression signals from all single-cell samples are 
then amalgamated into a matrix, with rows representing genes and columns representing samples, depicting the 
average expression signals of genes in samples. Subsequently, the pre-trained neural network model is utilized to 
predict the classification of each sample. The final outcomes reveal: C1 (n = 13); C2 (n = 6); C3 (n = 11).

Cellchat for cell–cell communication analysis
For inferred potential ligand-receptor (L-R) pairs for regulating the differences among PTB subgroups, CellChat 
(version 1.6.1)24 was employed to identify cell–cell interactions based on the expression of known L-R pairs in 
different cell types. The input for CellChat comprised gene expression data of cells along with their assigned 
cell types. Initially, overexpressed ligands or receptors within specific cell groups were identified, and the gene 
expression data was projected onto a protein–protein interaction network. Subsequently, CellChat facilitated the 
inference of biologically significant cell–cell communication by assigning a probability value to each interaction 
and conducting a permutation test. Finally, the resulting communication networks were visualized using a circle 
plot, and the signaling pathways were visualized using a bubble plot.

Statistical analysis
Pearson correlations were utilized to evaluate concordance between groups. Various standard statistical tests, 
such as Student’s t-test, and Wilcoxon rank-sum test were employed to analyze both clinical and expression data 
within the study. Principal Component Analysis (PCA) is utilized to illustrate the distribution of samples from 
three distinct subtypes of PTB. All statistical analyses were performed using R version 4.3.2.

Results
Insights into tuberculosis immune microenvironment from multi‑cohort analysis
To delve into the immune microenvironment of TB, a meticulous selection of 29 functional gene sets (Fges) was 
made, encapsulating key functional elements of immune, stromal, and other cellular constituents. These gene 
sets were curated based on previous research endeavors24 (Tables S2). Subsequently, employing the Gene Set 
Variation Analysis (GSVA) method (method = "gsva")17, the enrichment scores (ESs) of Fges among a cohort 
of TB patients (n = 498) sourced from the GSE94438 dataset were scrutinized (see “Materials and methods”; 
Table S1). A prevailing uniformity in the pattern of Fges-associated ESs across TB patients was unearthed, hinting 
at a degree of consistency in immune, stromal, and other cellular responses within this population (Fig. 1A and 
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Figure 1.   Exploring enrichment scores of Fges-related gene sets in tuberculosis cohorts. (A) Circular plot 
illustrating the distribution of enrichment scores (ESs) for 29 Fges-related gene sets in the GSE94438 TB cohort 
(n = 498). Each bar represents an individual sample, and the color code indicates varying ESs of gene sets. (B) 
Boxplot presenting the scaled distribution of ESs for the 29 Fges-related gene sets (referred to as Fges). The 
median value is depicted by the black line within the box, while outliers are indicated by black points outside the 
box. (C) Bar plot displaying the Jessen-Shannon divergence (JSD) scores for the Fges, arranged in descending 
order from left to right. (D) Heatmap depicting the ESs of the Fges across 34 TB cohorts. The annotation bar 
plot shows the JSD scores of the Fges. Rows in the heatmap are clustered using hierarchical clustering. (E) Violin 
plots illustrating the distribution of cytokine scores between different groups: normal controls vs. TB patients 
(left) and TB patients with negative vs. positive progression (right), with p-values obtained through t-tests. (F) 
Violin plot presenting the distribution of cytokine scores along the progression time of PTB exposure, from 
baseline to exposure greater than 1 year. P-value was obtained through t-test.
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B). Such consistency may suggest a relative stability in the interactions or regulatory mechanisms among diverse 
cell types within this specific TB patient cohort.

Notwithstanding the overall semblance in the ESs of these distinctive gene sets among TB patients, a certain 
level of heterogeneity was discerned (Fig. 1A and B). To quantify this heterogeneity, Jensen-Shannon divergence 
(JSD) scores were introduced, with higher scores indicating greater heterogeneity (see “Materials and methods”). 
Findings revealed that cytokine signaling exhibited the highest average heterogeneity level, whereas fibroblasts 
(CAF) showcased the lowest (Fig. 1C). The pronounced heterogeneity in cytokine signaling may imply significant 
inter-patient disparities in the immune system, reflective of the heterogeneous nature of immune responses 
across different patients. Conversely, the fibroblast-related gene set, renowned for their supportive and reparative 
roles in lung tissue, exhibited low heterogeneity, suggesting relative stability in the function and characteristics 
of these cells in TB patients. To validate these findings further, an additional analysis was conducted on data 
from 34 additional TB patient cohorts (Table S2). Similarly, the analysis illuminated the highest heterogeneity 
(JSD) in cytokine signaling among these cohorts, and CAF with the lowest (Fig. 1D). This underscores the 
pivotal role of cytokine-related gene sets in the onset and progression of TB. Consequently, an exploration of 
the disparities in cytokine signaling among distinct TB patient statuses was embarked upon. Both the normal 
control group and PTB cohorts showcased a higher ES in PTB relative to the normal control group, indicating 
significant distinctions (Fig. 1E). In the progression of TB patients, cytokine scores of TB-positive patients were 
notably higher than those of TB-negative patients (Fig. 1E). Notably, fluctuations in the time elapsed from PTB 
onset revealed that PTB patients exhibited peak cytokine enrichment scores at the exposure stages (baseline), 
gradually waning as the temporal distance from PTB onset increased (Fig. 1F). This suggests that exposure-stage 
PTB patients exhibit heightened immune responses, potentially serving as a pivotal indicator of PTB patient 
progression.

Cytokine signaling heterogeneity reveals distinct subtypes in pulmonary tuberculosis
Within TB patients, there’s a notable heterogeneity in cytokine signaling, indicating potential variations in 
TB clinical subtypes. Given the predominance of PTB within TB cases relative to other types, encompassing 
LTBI, EPTB (Extrapulmonary tuberculosis), OD (Organ-specific tuberculosis), and Subclinical (Subclinical 
tuberculosis), our focus was on uncovering potential subtypes within PTB patients (Table 1). To delve into 
this, immune-related pathways (C7) from the MsigDB database were selected and GSVA tool was employed to 
compute their ESs across 31 TB datasets specifically in PTB patients. Subsequently, their correlations with the ESs 
of cytokine signaling-related gene sets were examined. Retaining the pathways from C7 with Pearson correlation 
coefficients surpassing 0.5, we proceeded to hierarchically cluster PTB patients from the TB cohorts based on the 
ESs of these pathways, which unveiled three distinct subgroups denoted as C1, C2, and C3 (Fig. 2A; Table S3). 
Notably, C1 exhibited the lowest immune-inflammatory activity, in contrast to C3, which displayed the highest. 
Figure 2B demonstrated the distribution of these subgroups across various PTB cohorts (Fig. 2B). Additionally, 
by further validating these subgroup distributions, principal components analysis (PCA) underscored their 
disparities (Fig. 2C). The activity levels of cytokines in the three distinct subgroups corresponded to the 
immunoreactivity revealed by hierarchical clustering, with C3 being the highest and C1 the lowest (Fig. 2D). 
Furthermore, the associations between different subgroups and stages of disease progression in PTB patients 
were examined, with C3 prevalent during the outbreak phase, while C1 showed gradual increases during the 
recovery phase (Fig. 2E). Over time, these discrepancies diminished, indicating evolving inherent variability 
among subtypes during disease progression.

Subsequent differential expression analysis revealed over 2000 differences among C1, C2, C3 (Fig. 2F). 
Particularly, there was substantial overlap in differential genes between C2 and C1, suggesting similarity in PTB 
development. Conversely, C3 demonstrated less overlap with C1 and C2, implying significant distinctions. This 
trend was further confirmed by examining the top 20 highly expressed genes, with C3 displaying pronounced 
differences compared to C1 and C2 (Fig. 2G). Noteworthy genes such as IFIT3, TAPBP, and CSF3R play pivotal 

Table 1.   Clinical characteristics of various tuberculosis disease states. Control normal control, PTB pulmonary 
tuberculosis, LTBI latent tuberculosis infection, EPTB extrapulmonary tuberculosis, OD organ-specific 
tuberculosis, Subclinical subclinical tuberculosis.

Characteristic Description Control PTB LTBI EPTB OD Subclinical

Symptoms
Presence of symptoms such as 
persistent cough, fever, night sweats, 
weight loss, and fatigue

Absent Present Absent Variable Variable Variable

Tuberculin skin test (TST) or 
interferon-gamma release assay 
(IGRA)

Positive result indicating exposure to 
tuberculosis bacteria Negative Positive Positive Positive Positive Positive

Chest X-ray Abnormal findings such as infiltrates, 
cavities, or consolidations Normal Abnormal Normal Abnormal Abnormal Abnormal

Bacteriological confirmation
Presence of acid-fast bacilli in 
sputum smear or positive culture for 
Mycobacterium tuberculosis

Absent Present Absent Variable Variable Variable

Site of infection Infection primarily in the lungs or 
other sites Not applicable Pulmonary Not applicable Extra-pulmonary Variable Not applicable

Progression to active TB Likely progression to active 
tuberculosis disease Unlikely Likely Possible Possible Possible Possible
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roles in the host immune response to TB, exhibiting expression patterns consistent with the immunological 
validation trends observed in all three subgroups (Fig. 2H). For instance, IFIT3 participates in interferon-induced 
antiviral immune responses, impacting host clearance of tuberculosis and inflammation regulation25. TAPBP is 
involved in antigen processing and presentation, influencing the immune response and antimicrobial capability 
in TB patients26. Meanwhile, CSF3R regulates bone marrow hematopoiesis and immune cell proliferation and 
differentiation, potentially affecting the host’s ability to clear tuberculosis27.

Functional analysis further revealed associations of C1 with ATP synthesis coupled electron transport and 
oxidative phosphorylation pathways, C2 with receptor degradation processes, and metabolism-related amino 
sugar and nucleotide sugar metabolism, and C3 with cytokine-mediated signaling pathways related to anti-
inflammatory processes (Figs. 2I and J; Tables S4 and S5). These findings underscore that C1, C2, and C3 exhibit 
distinct molecular features and functional differences, reflecting diverse immunological subtypes in tuberculosis 
pathology.

Characterizing cellular compositions and immune pathway activity across PTB subgroups
Utilizing the CIBERSORT20 and xCell19 deconvolution tools, we conducted an extensive analysis of cell infiltration 
patterns in three distinct PTB subgroups. Noteworthy discrepancies were observed across the majority of cell 
types (55 out of 64 for xCell; 20 out of 22 for CIBERSORT) among these subgroups (Fig. 3A and B). Particularly 
intriguing was the consistent elevation of CD8 + T cell abundance in C1/C2 compared to C3, a trend consistently 
identified in both xCell and CIBERSORT results. Additionally, C3 showed the highest proportions of myeloid 
cells, including monocytes and macrophages. All these suggest that during the early stages of PTB (subgroup 
C3; Fig. 2E), patients have a high load of active Mycobacterium tuberculosis, leading to increased infiltration 
of innate immune cells like myeloid cells. Conversely, in the recovery stages (subgroups C1/C2; Fig. 2E), with 
lower bacterial levels, the immune system favors CD8 + T cells, which are important for clearing pathogens and 
building immunity, resulting in higher levels of these cells.

Further meticulous examination revealed a pronounced upregulation of genes associated with the Type I 
IFN and IFN-γ pathways in C3 relative to C1 and C2 (Fig. 3C). These pivotal pathways play a pivotal role in 
orchestrating the immune response to PTB infection, potentially fostering robust immunity against pathogens 
while concurrently posing the risk of immune exhaustion and tissue damage28,29. The robust activation of the 
positive regulation of hemopoiesis pathway in C3 hints at a tightly intertwined interaction between the body’s 
immune system and hematopoietic system during PTB infection (Fig. 3D). The increased activity observed 
in C3 suggests an augmented demand for blood cells throughout the disease process, driven by heightened 
immune responses and inflammation, which potentially leads to escalated blood cell consumption and demand30. 
Additionally, the closely intertwined relationship between reactive oxygen species (ROS) and oxidative stress 
pathways with macrophages in tuberculosis underscores the pivotal role of these pathways in combating PTB 
infection (Fig. 3E)31. Macrophages, as pivotal constituents of the immune system, execute vital functions 
such as phagocytosis and pathogen elimination32, consistent with the highest relative proportion estimated 
by CIBERSORT in C3 (Fig. 3B). The diminished activity observed in PTB subgroups (C1 and C2) potentially 
hints at a less aggressive disease progression or the implementation of more efficacious immune regulation 
mechanisms. Additionally, the active involvement of Toll-like receptor (TLR) and chemokine pathways in C3 
underscores their crucial role in recognizing and responding to PTB, while also orchestrating the migration and 
aggregation of immune cells (Fig. 3F)33,34.

Taken together, the heightened activity exhibited by these pathways in the C3 subtype serves to enhance the 
interaction between immune cells and pathogens, thereby expediting pathogen phagocytosis and clearance.

Biomarker development for predicting PTB progression based on neural network model
Considering the strong correlation between the C3 subgroup in PTB patients and the early onset and progression 
of the disease, an effort was made to construct a biomarker capable of predicting PTB patient progression. To 
achieve this, a set of 43 genes highly consistent with trends in C1, C2, and C3 within C3 was utilized as features, 
and a neural network model was employed to build a scoring system for PTB patients (Fig. 4A; Table S6). This 
model comprises two hidden layers, with the output layer utilizing a tanh activation function to ensure scores fall 
within the range of [-1, 1] (Figs. 4A and B; see “Materials and methods”). Based on model scores, the distribution 
at various time points relative to PTB onset was observed, revealing the highest scores at baseline, gradually 
declining over time, closely correlating with heightened immune-inflammatory activity in the early stages of 
PTB (Fig. 4C). Additionally, exploration of the distribution of predicted scores under different treatment statuses 
showed the highest average scores in the NotCured group, followed by the PossibleCure and ProbableCure groups, 
and the lowest in the DefiniteCure group, indicating better pathogen clearance in treated patients (Fig. 4D). 
Further analysis of predicted score distribution across genders revealed higher scores in females than males, 
possibly linked to biological differences (Fig. 4E). This indicates that female immune systems might display 
distinct response profiles, potentially posing a heightened likelihood of progressing to more severe disease stages 
compared to their male counterparts upon infection. Analysis also revealed a negative correlation between 
predicted scores and age, with younger ages (< 10 years) corresponding to higher predicted scores (Fig. 4F). The 
immune systems of young children may not be fully developed, making them more susceptible to TB pathogens 
and exhibiting more severe symptoms. Finally, considering the potential wider application of PTB subtyping 
inferred, adjustments were made to the feature variables of the neural network model (i.e. significant differentially 
expressed genes for each subtype), and the output layer was modified for classification prediction, achieving 
an accuracy of 92.36% on a reserved 30% validation dataset (Fig. 4G; see “Materials and methods”). This offers 
broader possibilities for the extension of PTB subtyping based on Cytokine signals.
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Figure 3.   Distribution of cell infiltration and expression patterns of gene sets related to PTB progression across 
Fges-derived subgroups. (A) Boxplot illustrating the distribution of cell infiltration estimated by the xCell 
tool across PTB subgroups. Not significant (ns): p > 0.05; *p < 0.01; **p < 0.001; ***p < 0.0001; ****p < 0.00001. 
P-values were obtained through t-test. (B) Boxplot displaying the infiltration of 22 immune cell types in PTB 
subgroups, as estimated by CIBERSORT. Not significant (ns): p > 0.05; *p < 0.01; **p < 0.001; ***p < 0.0001; 
****p < 0.00001. P-values were obtained through t-test. (C) Bubble plot depicting the expression of Type I IFN 
and IFN-gamma pathway-related genes among PTB subgroups. The size of each point represents the percentage 
of samples expressing that gene, while the color reflects the variation in gene expression among the subgroups. 
(D) Bubble plot illustrating the expression of genes related to the positive regulation of hemopoiesis among 
PTB subgroups. The size of each point indicates the percentage of samples expressing that gene, and the color 
denotes the variation in gene expression across clusters. (E) Bubble plot demonstrating the expression of genes 
related to the response to reactive oxygen species and oxidative stress among PTB subgroups. The size of each 
point corresponds to the percentage of samples expressing that gene, while the color represents the variation in 
gene expression across clusters. (F) Bubble plot displaying the expression of Toll-like receptor and chemokine 
pathway-related genes among PTB subgroups. The size of each point indicates the percentage of samples 
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Single‑cell analysis reveals enhanced MHC signaling promotes the rapid clearance of early 
pathogens in PTB C3 subgroup
Due to the current lack of sufficient available single-cell PTB data, HABERMANN et al.23 released single-cell data 
from 10 nonfibrotic control and 20 pulmonary fibrosis (PF) lungs, along with annotation information for cell 
types (see “Materials and methods”). Despite PF and PTB being two different lung diseases, they may share some 
biological features, such as abnormal changes in lung cells. Therefore, by analyzing PF data, useful information 
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for PTB subtypes may still be acquired. Initially, the most significant top 5 marker genes for different cell types 
were analyzed using a differential expression strategy, showing that most of these genes are classic markers 
corresponding to the cell types carried in the single-cell data, implying reliable annotation results (Fig. 5A and 
B). To extend PTB classification to single-cell samples, a previously trained neural network model was used to 
predict the single-cell data sample, resulting in C1 (n = 13), C2 (n = 6), C3 (n = 11) (Fig. 5C). Clinical information 
of C1, C2, and C3 was compared with PF patients, showing that 61.5% of samples in C1 came from nonfibrotic 
control, 33.3% in C2 came from nonfibrotic control, while 100% in C3 were PF patients. This is consistent with 
the clinical status trends represented by C1, C2, and C3. Furthermore, using genes related to Cytokine signaling 
to score single cells in PF patients, single cells from C3 showed the highest signal score, followed by C2, and C1 
had the lowest (Fig. 5D). This further validates that C3 has higher inflammatory activity.
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Based on the single-cell classification of PF patients, the abundance distribution of different cell types in each 
classification was observed, showing that Macrophages were highest in C3 and lowest in C1, with similar trends 
observed for B Cells, T Cells, Monocytes, and cDCs (Fig. 5E). Considering that Macrophages are one of the main 
phagocytic cells in the body, they can clear Mycobacterium tuberculosis by engulfing and digesting pathogens. 
They transform pathogens into vesicles through phagocytosis and internalization, then degrade them. Therefore, 
changes in the interaction of Macrophages with B Cells, T Cells, Monocytes, and cDCs in C3 and C1&2 were 
analyzed, showing significantly enhanced communication between Macrophages and these cell types in C3 
(Fig. 5F). Furthermore, the underlying molecular mechanism of this enhanced communication was analyzed, and 
it was interesting to note that the signal between MHC molecules and their receptors was stronger in C3 than in 
C1&2 (Fig. 5G); scoring of MHC expression in single cells showed the highest score in C3 (Fig. 5H). This implies 
that MHC molecule expression and antigen presentation capability lead to the activation and expansion of T 
cells in C3, thereby rapidly strengthening the attack and clearance of PTB during the outbreak phase. To facilitate 
comprehension, the characteristics and discoveries of PTB subgroups were ultimately consolidated in Table 2.

Discussion
TB poses a significant global health challenge, necessitating a thorough understanding of its immunological 
dynamics and clinical manifestations7,8. In this study, we conducted a comprehensive analysis to elucidate 
the complex interplay between TB and the host immune system, with a focus on identifying distinct clinical 
subtypes within PTB patients. PTB pathogenesis is intricately linked to the immune microenvironment, where 
Mycobacterium tuberculosis modulates host immune responses to establish infection.

By analyzing transcriptomic data from multiple TB cohorts, we revealed a nuanced immune gene expression 
profile characterized by both consistency and heterogeneity across TB patients. Notably, cytokine signaling 
pathways exhibited significant variability, highlighting the diverse immune profiles among TB patients. 
Building upon these findings, we sought to delineate distinct clinical subtypes within PTB patients. Based on 
the immune-related pathways and cytokine signaling activity, hierarchical clustering analysis identified three 
discrete PTB subgroups: C1, C2, and C3. These subtypes displayed differential immune-inflammatory activity, 
with C3 demonstrating the highest cytokine signaling and immune reactivity. Further molecular and functional 
characterization unveiled unique pathogenic mechanisms associated with each subtype. Deconvolution analysis 
of cellular compositions revealed significant differences among PTB subtypes, particularly in CD8 + T cell 
abundance. Functional pathway analysis elucidated distinct molecular profiles, with each subtype associated with 
specific biological processes. Notably, the robust activation of Type I IFN and IFN-γ pathways in C3 underscored 
its heightened immune response and potential implications for disease progression.

Driven by the associations between PTB subtypes and disease progression, we developed a predictive 
biomarker using neural network modeling. This biomarker demonstrated promising accuracy in predicting 
disease progression and treatment response, offering potential utility in guiding personalized treatment strategies 
for PTB patients. While existing literatures35–38 commonly highlight male susceptibility to PTB, the observed 
higher risk of severe disease progression among females, despite infection in both sexes, underscores the 
complexity of gender-specific immune responses to TB infection and merits further investigation. Expanding 
our analysis to single-cell data, we leveraged insights from pulmonary fibrosis (PF) patients to infer potential 
subtypes in PTB. Single-cell classification revealed distinct immune profiles corresponding to PTB subtypes, 
with enhanced MHC signaling identified in C3, indicative of rapid pathogen clearance during the early stages 
of infection. Our study provides a comprehensive understanding of TB immunopathogenesis and clinical 
heterogeneity, offering insights into disease progression and treatment response. By integrating multi-omics data 
and advanced analytical techniques, we unveil the intricate interplay between PTB and the host immune system, 
paving the way for personalized treatment strategies tailored to individual patient subtypes. These findings hold 
promise for enhancing PTB management and control efforts on a global scale. Notably, in clinical practice, it is 
imperative to comprehensively evaluate the overall condition of patients rather than solely focusing on the disease 
itself. Factors such as genetic susceptibility, comorbid symptoms, nutritional status, and psychological state can all 

Figure 5.   Utilizing single-cell investigation to unravel the intrinsic mechanisms underlying the three subgroups 
of PTB patients. (A) Uniform manifold approximation and projection (UMAP) visualization depicting the 
single-cell atlas of lung tissue from patients with fibrotic pulmonary tuberculosis. Different colors represent 
annotated cell types, with annotation information derived from corresponding literature reports; points 
represent individual cells. (B) Bubble plots display the average expression and positive expression proportion 
of the top five signature genes expressed in each cell type. Point color indicates expression level, and point size 
represents the percentage of expression of the gene in a specific cell type. (C) UMAP visualization displays the 
distribution of cell types in three different subtypes of PTB predicted by a neural network model. (D) Violin 
plots show the distribution of Cytokine signaling signature scores inferred from single-cell samples in different 
subgroups. (E) Box plots display the distribution of different cell types across the three predicted subtypes of 
PTB in single-cell samples; the black line within the box represents the median cell proportion, and points 
outside the box represent outlier samples. (F) Network diagrams illustrate the interactions between different 
cell types; the thickness of the lines indicates the strength of interaction between cell types. Red indicates 
enhancement of C3 relative to C1 & 2, while blue indicates weaker interaction. (G) Bubble plots demonstrate 
significant ligand-receptor interactions between Macrophages and B cells, T Cells, Monocytes, and cDCs. 
Points represent significant ligand-receptor interactions, with point color indicating the significance level of the 
interaction. (H) Violin plots depict the signature score of MHC molecules among three distinct subgroups of 
PTB.
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alter a patient’s prognosis and response to treatment39–41. Therefore, when assessing disease trends and selecting 
appropriate treatment strategies, it is essential to consider a combination of classification information, pathogen 
characteristics, and these "comorbid" factors unique to each patient.

Overall, while our study has yielded promising outcomes, it is crucial to acknowledge the inherent challenges 
in predicting disease trajectory based on immune-inflammatory activity in clinical practice. Firstly, immune 
inflammation, although a natural response to disease, exhibits significant variability in intensity and pattern 
among individuals. Secondly, changes in immune-inflammatory activity often lag behind other disease 
indicators, presenting obstacles to timely assessment. Thirdly, disease progression is influenced by a multitude 
of physiological and pathological factors, making it difficult for any singular immune-inflammatory marker to 
comprehensively capture the intricacies of the situation. Moreover, different subtypes and stages may manifest 
distinct patterns of immune-inflammatory responses, further complicating prediction efforts. Nevertheless, 
immune-inflammatory reactions remain essential as the body’s primary defense against diseases, with alterations 
in immune cells and cytokines reflecting the body’s complex interactions with pathogens and influencing 
disease control or exacerbation. Despite these challenges, comprehensive immune molecule analysis for subtype 
investigation and employing predictive modeling to forecast the disease trajectory of PTB patients can still 
provide valuable insights for personalized assessment of disease progression risk.

Data availability
Transcriptomic data and pertinent clinical information for the tuberculosis cohorts were obtained from publicly 
available databases, as detailed in Tables S1 and S2, also mentioned in the “Materials and methods” section. LL 
authored and reviewed all the code, which is available upon request from the corresponding author.
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