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ECG autoencoder based 
on low‑rank attention
Shilin Zhang 1, Yixian Fang 2,3* & Yuwei Ren 1,3

The prevalence of cardiovascular disease (CVD) has surged in recent years, making it the foremost 
cause of mortality among humans. The Electrocardiogram (ECG), being one of the pivotal diagnostic 
tools for cardiovascular diseases, is increasingly gaining prominence in the field of machine learning. 
However, prevailing neural network models frequently disregard the spatial dimension features 
inherent in ECG signals. In this paper, we propose an ECG autoencoder network architecture 
incorporating low-rank attention (LRA-autoencoder). It is designed to capture potential spatial 
features of ECG signals by interpreting the signals from a spatial perspective and extracting 
correlations between different signal points. Additionally, the low-rank attention block (LRA-block) 
obtains spatial features of electrocardiogram signals through singular value decomposition, and 
then assigns these spatial features as weights to the electrocardiogram signals, thereby enhancing 
the differentiation of features among different categories. Finally, we utilize the ResNet-18 network 
classifier to assess the performance of the LRA-autoencoder on both the MIT-BIH Arrhythmia and 
PhysioNet Challenge 2017 datasets. The experimental results reveal that the proposed method 
demonstrates superior classification performance. The mean accuracy on the MIT-BIH Arrhythmia 
dataset is as high as 0.997, and the mean accuracy and F

1
-score on the PhysioNet Challenge 2017 

dataset are 0.850 and 0.843.

According to the World Health Organization (WHO) report, cardiovascular diseases (CVD) have emerged as 
the ”number one killer”, posing a significant threat to human health and accounting for up to one-third of all 
deaths1. To address the shortage of cardiologists and medical equipment2, the urgent need for pre-screening of 
suspected patients has arisen3. In recent years, propelled by intelligent technology and the internet of things, 
numerous automatic identification and analysis technologies for electrocardiograms (ECG)4 have emerged, 
marking a new research hotspot in the field of intelligent healthcare.

The detection and recognition of ECG signals carry substantial clinical significance, given the complexity 
and variability of cardiovascular diseases, which often require diagnosis by experienced physicians. However, 
the scarcity of experienced doctors or experts, combined with the challenging task of analyzing a large number 
of ECG recordings and the potential for diagnostic errors due to physician fatigue, underscores the necessity 
of computer-aided early diagnosis in clinical cardiovascular disease management as a prevailing trend. Simul-
taneously, to achieve improved results, contemporary machine learning networks often involve a substantial 
number of layers and learning parameters, resulting in low learning efficiency of the model and hindering direct 
application in a clinical setting. Addressing this challenge necessitates the development of an efficient feature 
extraction strategy for ECG signals.

In this paper, we proposed a low-rank attention autoencoder architecture incorporating low-rank attention, 
which is specifically designed to efficiently grasping spatial feature, enhance feature extraction accuracy, and 
significantly improve downstream tasks associated with ECG signals. By comprehending the spatial correlation 
among distinct points of the ECG signal, abnormalities in the ECG signal essentially give rise to multidimensional 
alterations, and capturing these spatial variations can precisely extract potential signal characteristics, ultimately 
enhancing the accuracy of cardiovascular disease detection and diagnosis. The main contribution of this paper 
can be summarized as twofold: 

(1)	 It offers a novel perspective for comprehending the correlation between ECG signal dimensions and spatial 
dimensions, effectively extracting the spatial dimension features of ECG signals, and seamlessly integrating 
them into the domain of ECG signal classification applications.
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(2)	 By incorporating the correlation between dimensions of the ECG signal into an autoencoder architecture 
and simultaneously optimizing data dimensionality, LRA-autoencoder model demonstrates superior per-
formance compared to other pure autoencoder models based on experimental results.

Related work
In recent years, there has been a significant surge in the application of deep learning across interdisciplinary fields, 
with a pronounced focus on its utilization in medical imaging. Simultaneously, there is noteworthy emphasis on 
the continual advancement of classification algorithms specifically designed for analyzing ECG signals. Deep 
learning demonstrates the ability to autonomously extract relevant features from data, eliminating the need for 
manual feature extraction by machine algorithms and thereby reducing potential human error that could affect 
classification accuracy. Convolutional Neural Networks (CNNs) and autoencoder networks have shown robust 
performance in ECG signal classification. Prominent CNN models such as VGG, AlexNet, and ResNet-18 have 
been widely employed for this purpose5.

Currently, the end-to-end model is widely adopted by researchers as it enables direct mapping of raw data to 
classification results. Singh, P et al.6 proposes attention-based convolutional denoising autoencoder (ACDAE) 
effectively denoises the low SNR ECG signal while integrating channel attention. The method combines sparse 
representation with neural networks to propose an interpretable denoising network. Simultaneously, a weight 
allocation module is designed to enhance the efficiency of hyperparameter selection. This network exhibits 
excellent interpretability7. The autoencoder network has garnered significant attention from researchers in the 
field of ECG classification and detection, with the improved model based on this network being widely utilized 
for ECG classification tasks8.

With the remarkable performance of transformer in natural language processing, attention mechanisms 
have garnered extensive attention from researchers and have been applied across multiple domains. The paper 
introduces an automated ECG classification method that combines convolutional and attention mechanisms, 
referred to as the Non-Local Convolutional Block Attention Module (NCBAM)9. Jing Zhang et al.10 combines 
convolutional recurrent networks with attention mechanisms to more effectively capture the temporal features of 
electrocardiogram signals. Sajad Mousavi et al.11 proposes a hybrid model named HAN-ECG, which integrates 
three levels of attention (Wave attention, Beat Attention, and Window Attention) with RNN for AF detection, 
showcasing promising performance. Tianqi Fan et al.12 introduces a network architecture called Convolution 
Block Attention Module (CRAM), which integrates deep neural networks with channel attention. Most existing 
networks employ attention mechanisms to highlight the temporal and morphological features of electrocardio-
gram (ECG) signals, but often overlook the spatial characteristics within ECG signals and inter-signal features. 
This paper introduces a low-rank attention mechanism that prioritizes spatial features, enriches inter-class diver-
sity, and enhances the accuracy of cardiovascular disease detection.

Materials and methods
In this paper, we propose an innovative model for ECG classification, illustrated in Fig. 1, which consists of three 
distinct stages. The LRA-block is utilized to extract spatial features from ECG signals, which are then used as 
weights to emphasize the class-specific characteristics of the signals.

ResNet‑18
Residual networks have exhibited substantial potential in the domain of image classification, with their funda-
mental residual concept offering researchers a novel strategy to tackle the challenge of network performance 
degradation with increasing layer depth. The incorporation of this residual concept into neural networks has 

Figure 1.   Model structure.
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produced impressive results, prompting researchers to extend its application to the field of ECG signal analysis 
as shown in Fig. 1.

In this paper, the residual concept is utilized along with the lightest version of ResNet-18 in the ResNet net-
work as the classifier. Through experimentation, it was discovered that ResNet-18 has fewer parameters, thereby 
reducing the hardware requirements for experiments. Moreover, the overall accuracy of cardiovascular disease 
detection is on par with other deep models, yet ResNet-18 demonstrates notably enhanced training efficiency. For 
example, the decision not to choose the recent and popular transformer model was based on the observation that, 
under equivalent accuracy conditions, ResNet-18 boasts fewer network parameters, higher learning efficiency, 
requires less demanding training conditions, and is more readily applicable in clinical settings. However, since 
ResNet was originally designed for the 2D image classification task, we made some changes for the 1D ECG 
signal detection task. The parameters of the ResNet-18 framework used in this paper are shown in the Fig. 2b. 
Since ECG is a one dimensional signal, the input in this paper consists of one channel. Subsequently, this single 
channel is transformed into three channels through a convolution operation for further processing.

Proposed network architecture
This paper introduces a network that incorporates low-rank attention based on an autoencoder to enhance 
the categorization of ECG signals. As illustrated in Fig. 1, we integrated the low-rank attention mechanism to 
facilitate attentive weighting on our data, thereby augmenting the model’s ability to capture salient information 
within the input. The process initiates with the incorporation of low-rank attentive data, acquired through the 
low-rank attention block, into the autoencoder network. The resulting features, indicative of the spatially-attentive 
characteristics, are subsequently transmitted to the ResNet-18 network for the final classification stage.

 Low‑rank attention block
The self-attention mechanism is employed to process sequential data, wherein each element in the sequence 
is assigned a weight to measure its correlation with other elements, resulting in a comprehensive and detailed 
correlation. In contrast to traditional RNNs that solely consider the relationship between adjacent elements, 
self-attention offers a more holistic and intricate approach. We first review the self-attention mechanism13. Given 
an input features X ∈ Rn×d , where n is the number of samples and d is the number of feature dimensions. The 
self-attention mechanism recodes the input into a query matrix Q ∈ Rn×d′ , a key matrix K ∈ Rn×d′ and a value 
matrix V ∈ Rn×d through three trainable weights WQ , WK , WV . The attention coefficient A can be calculated as:

where A is the attention matrix and aij indicates the similarity between the i-th element and the j-th element.The 
dimension of vector dk serves as both a query and key.

(1)











Q = WQX,K = WKX,V = WVX;
A = (aij) = softmax(Qk

T
√
dk
);

Xout = AV .

Figure 2.   ResBlock and ResNet-18 Architecture.
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When dealing with one dimensional data, the dimensions of both the query and key vectors are set to one. 
The simplified version of self-attention allows for calculating attention directly using the input features X:

Here, the attention is acquired by computing the similarity among all samples within the feature space.
However, the high computational complexity O(n2d) of self-attention remains a significant drawback for 

large sample size datasets, even with simplification. Moreover, this attention mechanism solely captures inter-
sample similarity and fails to consider the similarity between feature attributes, hampers its overall capability 
and flexibility. Notably, differences in attribute dimensions play a crucial role in classification detection. In light 
of these limitations, we propose calculating attention based on the properties across different samples.

The sample covariance is widely recognized as a measure of the correlation between feature dimensions in a 
sample. Considering that the left singular vector in SVD represents the frequency of correlation between feature 
dimensions, and the right singular vector represents the occurrence count of each key dimension, we utilize the 
product of these vectors to capture the correlation weights effectively, thereby highlighting differences between 
dimensions. This product is then standardized as dimension attention weight to enhance dissimilarity among 
original sample dimensions, facilitating subsequent algorithmic classification. The external law-rank attention 
can be formulated as:

where X is the original data, XT is the transpose of X, U is the left singular value matrix and V is the right singular 
value matrix, svd expresses singular value decomposition.

The attention calculation in this case involves the multiplication of left and right singular matrices obtained 
from matrix singular value decomposition. Therefore, softmax normalization is not suitable for this type of 
attention, and thus we employ the double normalization method14. Therefore, the Norm() function in Eq. 3 is 
defined as:

The LRA-block proposed in this paper combines the low-rank attention mechanism with singular value 
decomposition and modifies the norm function to capture spatial features between dimensions of ECG signals. 
Utilizing this spatial information as weights enhances the original data to incorporate more informative content. 
As a result, the reconstructed data can better capture the correlations among the same data in different dimensions 
and among different data. The LRA-block assumes a critical role in extracting spatial potential features 
across multiple dimensions of the ECG signal. Their features are subsequently combined to augment signal 
representation. The spatial potential characteristics of the final ECG signal can be derived by computing the inner 
product between the left and right singular value matrices. By scrutinizing the intrinsic spatial characteristics 
of the ECG signal, a more thorough comprehension of its intricate features can be attained. Consequently, this 
process facilitates an improved extraction of features for subsequent tasks, including classification and detection.

Low‑rank attention autoencoder
The autoencoder model employs an encoder structure to diminish the dimensionality of ECG signals, eliminate 
noise and non-significant features, and facilitate feature extraction while concurrently reducing model parameters 
for accelerated convergence. The raw data passes through the LRA-block to obtain the weight F(X) as shown in 
Eq. 3, which is then assigned to the data as input into the autoencoder. As depicted in the figure, the output of 
each layer of the autoencoder’s encoder undergoes the LRA-block operation to acquire the corresponding weight, 
which is subsequently added to the original output as input for the next layer. The encoder of the autoencoder 
facilitates data compression and reduction of data dimensions. Following dimensionality reduction, data of 
varying dimensions contain slightly different information; hence, we incorporate the LRA-block to the output 
of each encoder layer to obtain the weights for different dimensions. Evidently, this approach enables more 
comprehensive extraction of spatial features from the data. The training process of ECG signals in the network 
and the parameters used are shown in Eq. 5. The tanh activation function Tanh(x) = ex−e−x

ex+e−x  is capable of mapping 
the entire real number interval to the range of (−1, 1).

where X represent the output of the original data subsequent to the application of the LRA-block, On is the 
output of LRA-autoencoder layer ( n = (1, 2, 3, 4, 5) ), Wi represents the weights of layer i in the network, while 
bi represents the biases of layer i in the network ( i = (1, 2, 3, 4)).

(2)
{

A = (aij) = softmax(XXT );
Xout = AX.

(3)F(X) =
{

(U , S,V) = svd
(

XTX
)

;
A = (aij) = Norm(UV);

(4)



















āij = (UV)ij;
ãij = exp(āij)

�

i
exp(āij)

;

aij = ãij
�

j
ãij
.

(5)



















O1 = Tanh(W1(XF(X))+ b1);
O2 = Tanh(W2(O

1F(O1))+ b2);
O3 = Tanh(W3(O

2F(O2))+ b3);
O3 = Tanh(W3(O

2F(O2))+ b3);
O5 = Tanh(W5(Tanh(W4O

3 + b4)+ b5).
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In this study, the LRA-block is utilized to extract the spatial dimension features inherent in ECG signals and 
subsequently allocate them as weights to the signals. The principal objective of this approach is to bestow upon 
the ECG space feature, consequently bolstering the precision of classification tasks. In the LRA-block operation, 
we deliberately choose not to involve the resulting weights in the gradient updating (F(X), F(O1) and F(O2) ) and 
backpropagation process, but rather to attach them as weights to the ECG signal. The advantage of this decision is 
that we only allow the extracted spatial features to influence the representation of the ECG signal, without altering 
the spatial feature information obtained. By setting the gradient’s requires_ grad attribute to false, we ensure that 
for the weights in the LRA-block, the gradient is not updated, but only exists as a weight assignment. During 
the network training process, we emphasize the extraction and utilization of spatial features while avoiding the 
error propagation of weights, thus maintaining stability throughout the network. This approach not only enables 
our model to concentrate more on learning categorical features but also ensures the purity of spatial features, 
thereby improving the overall performance of the classification task.

O3 is the output of the encoder after LRA-autoencoder. Noise in complex ECG signals can be eliminated and 
important features for downstream tasks can be captured by changing the data dimensions with the autoencoder. 
As an input to the ResNet-18 network, O3 passes through two convolution layers(Conv1,Conv2), BachNorm, four 
ResBlocks(ResBlock[i], i = (1, 2, 3, 4), and average pooling(AvgPool) (Eq. 6). Finally, it enters the ECG signal 
classification via the fully connected layer.

where f1 is the distilled feature by applying two convolution layers and batchnorm with O3 as input, f2 is the 
output result obtained after two ResBlocks, with f1 as input. and f3 is the four category prediction probabilities 
obtained after an two ResBlocks, average pooling layer, and finally a fully connected layer with f2 as input.

We focus on the interrelationship between various ECG signal points, approach it from a spatial perspective, 
and utilize the changes induced by abnormal signals in dimensions and inter-dimensions as potential spatial 
features. Subsequently, we overlay the features obtained from time series to accomplish ECG signal classification. 
The LRA-autoencoder network is capable of classifying ECG signals based on both spatial and temporal 
information, thereby providing a comprehensive understanding of the signal’s characteristics. As a result, the 
LRA-autoencoder network exhibits superior classification performance.

The proposed LRA-autoencoder network model captures the interconnections between different ECG 
signal points by extracting their spatial dimensional characteristics. The important spatial dimensional features 
obtained through the LRA-block are utilized as weights to reconstruct the features of the encoder’s output, 
which in turn serve as the input to the next layer of the encoder. In this paper, the proposed LRA-autoencoder 
applies weighted LRA-block processing to the original data and the output of each layer of the encoder. This is 
aimed at more comprehensively extracting spatial characteristics of electrocardiogram signals across different 
dimensions to capture variations among different categories. Therefore, this paper provides a more comprehensive 
understanding of ECG signals in the spatial dimension, which facilitates the classification of ECG signals and 
enables convenient clinical application for doctors to aid in diagnosis.

Experiments
Dataset
In this study, the proposed algorithm underwent training and validation utilizing two datasets: the MIT-BIH 
Arrhythmia database (MIT-BIH)15 and the PhysioNet Challenge 2017 dataset (PhysioNet 2017)16.

The MIT-BIH database encompasses approximately 4,000 long-term electrocardiogram records, with 60% 
representing inpatient data and 40% outpatient data. Each record spans a sampling duration of 30 minutes, with 
a frequency of 360 Hz, and is recorded in the two leads as shown in Table 1. It encompasses four types of cardiac 
rhythms: normal sinus rhythm (N), left bundle branch block (L), right bundle branch block (R), and premature 
ventricular contractions (V). These specific rhythm types were chosen for model training and evaluation.

The PhysioNet 2017 dataset constitutes a classification set of single-lead ECG recordings designed for the 
identification of atrial fibrillation. The recordings have a sampling time of 30 seconds and a sampling frequency 
of 300 Hz. This dataset categorizes ECG recordings into distinct classes, including normal sinus rhythm (N), 
atrial fibrillation (AF), other cardiac rhythm (Other), and Noisy recordings.

Data pre‑processing
Normalization has been systematically applied to both datasets with the objective of expediting convergence 
and improving the speed and accuracy of the analysis. The chosen approach employs Z-score standardization 
(Eq. 7), wherein the data is normalized by computing the mean and standard deviation of the original ECG 
signal records. Consequently, the processed data manifests a normal distribution, as exemplified in the formula.

(6)







f1 = BatchNorm(Conv2(Conv1(O3));
f2 = ResBlock2(ResBlock1(f1));
f3 = FC(AvgPool(ResBlock4(ResBlock3(f2))).

Table 1.   Summary of MIT-BIH and PhysioNet 2017, including records sampling rate and number of leads.

Datasets Records (length) Sample rate Number of leads

MIT-BIH 30min 360Hz 2

PhysioNet 2017 30s 300Hz 1
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where x is the recorded single sampling point, µ is the calculated mean, and σ is the calculated standard deviation.

Experiments environment
The programming environments employed for the training and testing phases in this experiment include Python 
3.7, conda 4.5.11, and torch 1.13.0. The experimental setup comprises hardware with 32.0GB of memory, a GPU 
(NVIDIA GeForce GTX 1080 Ti), and a CPU (Intel Core i7-8700 CPU@3.20GHz).

Train strategy
The LRA-autoencoder network employs the adam optimizer, effectively regulating the learning rate within a 
specific range to ensure consistent parameter values throughout the network. During the training of the LRA-
autoencoder network for ECG signal feature extraction, we utilize the Mean Squared Error (MSE) loss function, 
i.e., MSE = 1

M

∑M
i=1(yi − ŷi)

2 , where yi is the true category and ŷi is the predicted category. We employ the tanh 
activation function in the network to enhance the transmission of error signals during backpropagation and 
mitigate the issue of vanishing gradients. Set kernel_size=3, stride=3, padding=0 for the first two convolution 
layers, kernel_size=3, stride=1, padding=1 for the last three resblocks, passing through a batchnorm layer, as 
shown in the Fig. 2b, F(X) is X after Conv1 -> BatchNorm -> relu -> Conv2 -> BatchNorm -> relu (Eq. 8), and 
the final output of ResBlock is F(X)+ X . Subsequently, the ECG signal classification is achieved by means of an 
average pooling layer and a fully connected layer.

Evaluation criteria
We perform a thorough assessment of the complete test set to substantiate the model’s superiority. By scrutinizing 
the disparity between the predicted and actual categories, four key parameters are derived: true positives (TP), 
false positives (FP), true negatives (TN), and false negatives (FN). Our model yields crucial evaluation metrics 
as follows: Precision(P), Recall(R) as Eq. 9, F1 - score as Eq. 10, Accuracy(Acc) as Eq. 11.

Results
In our experiment, we selected and utilized the training model with the highest overall classification accuracy for 
evaluating the testsets. The training and validation processes were conducted on two datasets, namely MIT-BIH 
and PhysioNet 2017. Figure 3 shows the test accuracy and training loss of the model on the MIT-BIH dataset. It 
is evident that the model converges after 200 iterations, ultimately achieving minimal training loss and stable test 
accuracy. Figure 3 demonstrates the training losses and test accuracy of the model during training and testing 
in the PhysioNet 2017 dataset. The experimental results indicate that our proposed the LRA-autoencoder can 
effectively achieve the classification and recognition of ECG signals with law-rank attention, rendering it more 
suitable for clinical applications to assist doctors in diagnosis.

To substantiate the validity of our proposed model, we conducted a comparative analysis with methods uti-
lizing the MIT-BIH and PhysioNet 2017 datasets. The accuracy of our model on the MIT-BIH dataset reaches 
0.997, while Recall and F1-score also achieve scores of 0.998 and 0.997, as depicted in Table 2. Notably, the overall 
accuracy of normal heart rate is particularly significant. Concurrently, we conducted validation on the dataset, 

(7)Z = (x − µ)/σ .

(8)f (x) =
{

x if x > 0

0 if x ≤ 0

(9)P = TP

TP + FP
, R = TP

TP + FN
.

(10)F1 − score = 2 Precision Recall

Precision+ Recall
.

(11)Acc = TP + TN

TP + FN + FP + TN
.

Figure 3.   Test acc and train loss on MIT-BIH and PhysioNet 2017.
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and the results are presented in Table 2. The outcomes demonstrate that the proposed LRA-autoencoder network 
excels in detecting AF when classifying ECG.

Discussion
The results of comparing our proposed method with the aforementioned approaches17,19–24 on the MIT-BIH 
dataset are presented in Table 3, and for the PhysioNet 2017 dataset, the results are shown in Table 4. It is evident 
that the proposed method outperforms other methods, whether on the MIT-BIH dataset or PhysioNet 2017 data-
set. Many of these methods utilize neural network architectures such as CNN, LSTM, and DNN. Our proposed 
LRA-autoencoder method achieves excellent results. It can be seen that the accuracy of the four categories of 
the MIT-BIH dataset, N, L, R, and V can achieve good results from the confusion matrix shown in Fig. 4a. From 
Fig. 4a, it is clear that there is a difference between true category and LRA-autoenenencoder predicted category. 
The amount of data for all categories of MIT-BIH and PhysioNet 2017 datasets are shown in Table 5. The num-
ber of four categories in the MIIT-BIH dataset is around 2500, and there is no data imbalance problem, which 
is conducive to the model for learning. Fig. 4b shows the classification of each category on the 2017 dataset. In 
Fig. 4b, 0, 1, 2 and 3 correspond to Noisy, N, AF and Other categories. It can be seen that the LRA-autoencoder 
model proposed in this paper has the best performance in detecting normal ECG signals, followed by other types 

Table 2.   The detailed results in MIT-BIH Arrhythmia and PhysioNet Challenge 2017 datasets.

Dataset MIT-BIH Arrhythmia
Dataset PhysioNet Chanllenge 
2017

Categories N  L R  V N AF Other Noisy

Precision 0.997 0.997 0.997 0.996 0.879 0.902 0.803 1.000

Recall 0.998 0.995 0.995 0.996 0.951 0.485 0.860 0.023

F1 0.997 0.996 0.996 0.996 0.913 0.631 0.830 0.046

Acc 0.997 0.850

Table 3.   The comparision of Acc for others models in MIT-BIH Arrhythmia dataset.

Literatures Method Acc

Hou et al17 Two-stream Network 0.993

Guo et al18 – 0.996

Javid Farhadi et al19 Stacked Auto Encoders 0.955

Aryan Odugoudar et al20 CNN 0.978

Guang Jun Nicholas Ang et al21 YOLOv8n 0.989

Md Shofiqul Islam et al22 HARDC 0.990

Che Liu et al23 SCDNN 0.990

Negin Alamatsaz et al24 1D-CNN+LSTM 0.982

Md Rabiul Islam et al25 Convolution+Attention+Transformer 0.995

Muhamad Akbar et al26 1D-CNN 0.992

Jutao Wang et al27 CNN 0.991

Ours LRA-autoencoder 0.997

Table 4.   Compare of Acc and F1-score to other models in the PhysioNet Challenge 2017 dataset.

Literatures Application Method F1-score Acc

Dighanchal Banerjee et al28 AF classification SNN – 0.770

Wang et al29 AF detection DPRNN 0.829 0.845

Christopher Snyder et al16 AF classification DNN – 0.740

Fayyazifar30 AF detection NAS 0.824 0.842

Chen et al31 AF detection XGBoost 0.805 0.838

Zihlmann et al32 AF classification CRNN 0.746 0.792

Aoxiang Zhang et al33 AF classification RANet 0.817 -

Jia Xie et al34 AF classification Bi-LSTMAttns 0.823 0.844

Yongyong Chen et al35 AF detection QRS detection - 0.846

Ours AF classification LRA-autoencoder  0.843  0.850
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of cardiovascular diseases, and the worst performance is noisy signals.Through discussion this paper argues 
that the main reason is that the amount of noise in ECG signal data is less, the lack of enough data to study the 
modeling, as the amount of data to reduce the accuracy decreases. At the same time, PhysioNet 2017 datasets 
is also accompanied by the characteristics of data imbalance, and the amount of data between each category is 
quite different, which brings certain difficulties to the detection of cardiovascular disease.

Figure 5 displays the visualization of both the original data and the ECG signal data with low-rank atten-
tion weight features extracted from MIT-BIH. The original data exhibits highly disordered scattering patterns 
across all four types, lacking discernible regularity. In contrast, employing LRA-autoencoder network to extract 
features results in the clear categorization of scatter patterns into their respective groups, displaying consistent 
discharge behavior. This highlights the efficacy of our low-rank attention-based feature extraction approach, 
which adeptly captures the low-rank attention weight features of ECG signals and facilitates downstream ECG 
signal processing tasks.

Table 5.   The amount of data for all categories of MIT-BIH and PhysioNet 2017 datasets.

Data Categories

MIT-BIH
N L R V

2458 2542 2503 2497

PhysioNet 2017
N AF Other Noisy

1549 210 716 84

Figure 4.   Confusion matrix..

Figure 5.   The original feature and with Low-Rank attention weight features visualization.
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Conclusion
In this paper, we propose an LRA-autoencoder network specifically designed for ECG signal classification. The 
LRA-autoencoder emphasizes the spatial dimension features of electrocardiogram signals by introducing an 
improved Low-rank attention method for extracting these features. Concurrently, it integrates the extracted spa-
tial features with an autoencoder network for dimension optimization, thereby constituting the LRA-autoencoder 
network. Our approach underwent evaluation on both the MIT-BIH Arrhythmia and PhysioNet Challenge 2017 
datasets, with experimental results showcasing the superior performance of this network in ECG classification 
compared to other methods proposed in this study. However, the LRA-autoencoder network did not demonstrate 
the same robust classification performance on the imbalanced class PhysioNet Challenge 2017 dataset as it did 
on the balanced class MIT-BIH Arrhythmia dataset. Thus, there are limitations in handling imbalanced classes 
with fewer samples.

In the future, there is an increased emphasis on comprehending the spatial characteristics of ECG signals 
and integrating them into potential features for downstream tasks. This enables accurate identification of classes 
with fewer samples even in cases of class imbalance. Our future work will primarily revolve around an in-depth 
exploration of the spatial characteristics inherent in ECG signals.

Data availability
Te datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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