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Depression recognition using 
voice‑based pre‑training model
Xiangsheng Huang 1,2, Fang Wang 1,2, Yuan Gao 1,2, Yilong Liao 1, Wenjing Zhang 1, 
Li Zhang 1* & Zhenrong Xu 1

The early screening of depression is highly beneficial for patients to obtain better diagnosis and 
treatment. While the effectiveness of utilizing voice data for depression detection has been 
demonstrated, the issue of insufficient dataset size remains unresolved. Therefore, we propose an 
artificial intelligence method to effectively identify depression. The wav2vec 2.0 voice-based pre-
training model was used as a feature extractor to automatically extract high-quality voice features 
from raw audio. Additionally, a small fine-tuning network was used as a classification model to output 
depression classification results. Subsequently, the proposed model was fine-tuned on the DAIC-WOZ 
dataset and achieved excellent classification results. Notably, the model demonstrated outstanding 
performance in binary classification, attaining an accuracy of 0.9649 and an RMSE of 0.1875 on the 
test set. Similarly, impressive results were obtained in multi-classification, with an accuracy of 0.9481 
and an RMSE of 0.3810. The wav2vec 2.0 model was first used for depression recognition and showed 
strong generalization ability. The method is simple, practical, and applicable, which can assist doctors 
in the early screening of depression.
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Depression, a prevalent mental disorder, is characterized by impaired emotional regulation, persistent low mood, 
reduced interest or pleasure, impaired concentration, and, in some cases, suicidal contemplation1. It affects over 
322 million people worldwide and shows an alarming upward trend in prevalence2. The World Health Organiza-
tion (WHO) has identified it as the fourth leading cause of disability, with predictions indicating that it could 
rise to the second position by 20303. The traditional methods for assessing psychiatric pathology mainly rely 
on subjective evaluations, such as patients’ verbal descriptions, reports from familiar individuals about their 
behaviors and experiences, and observations of mental states4. And it typically requires a wealth of professional 
knowledge as support.

Fortunately, artificial intelligence technology can utilize big data and intelligent algorithms to provide earlier 
diagnosis and intervention for the treatment of depression. Numerous methods have been proposed, encompass-
ing biomarker-based approaches5, social media data-based techniques6,7, video-based methodologies8,9, audio-
based methods10–13, electroencephalogram(EEG)-based approaches14,15, galvanic skin-based techniques16,17, and 
multimodal fusion strategies18–21. Within these approaches, there are invasive and non-invasive approaches. 
Non-contact diagnostic methods have clear advantages in ensuring patient safety, enhancing convenience, and 
reducing unnecessary interventions. For instance, Mustafa et al. used non-intrusive RF sensing for early diagnosis 
of spinal curvature syndrome disorders22. As a non-invasive diagnostic approach, voice signals are widely utilized 
for the detection of emotional disorders, owing to their rich abundance of pathophysiological information23–25. 
Moreover, employing the human voice for automatic diagnostic models in depression offers several advantages, 
including non-invasive data acquisition, relatively straightforward data collection, and low recording costs. 
However, the current approach of using machine learning methods for voice-based diagnostics often shows 
suboptimal recognition accuracy. Although deep learning methods have shown promising results, they still face 
challenges such as the scarcity of large-scale, high-quality datasets, the reliance on hand-designed features that 
demand domain expertise, and the time-consuming and subjective nature of feature engineering.

In response to the limitations of hand-designed features, Wang et al. have developed a generalized framework 
for robust feature extraction based on deep learning methods26. In this study, we propose the utilization of a 
voice-based pre-trained model to automatically extract voice features. Pre-trained models have been trained 
on large-scale data, exhibiting strong feature extraction capabilities and excellent generalization performance. 
As a result, they demonstrate high performance in various downstream tasks27. Previous studies encountered 
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challenges in directly processing raw audio data, resulting in high computational costs and limiting model 
optimization. However, the introduction of wav2vec 2.0, a state-of-the-art technique for audio representation 
and transfer learning, has brought significant advancements in raw audio processing. It can be fine-tuned with 
limited annotated data to achieve, and in some case even surpass, the original best performance28. The wav2vec 
2.0 model comprises a feature encoder, transformer, and quantization module. It is specifically designed to learn 
comprehensive representation from raw audio data, eliminating the need for large amounts of labeled data. The 
feature encoder is capable of extracting various levels of features from the raw audio signal. The transformer 
excels at capturing global voice characteristics. Additionally, the quantization module efficiently quantifies voice 
features, reducing the number of model parameters without compromising performance. The structure design 
enhances the model’s compactness and efficiency. Consequently, this research direction shows great promise in 
the field of depression detection.

In this study, the wav2vec 2.0 model was employed to extract high-quality voice features, thereby enhanc-
ing recognition accuracy within a small sample dataset. A compact fine-tuning network was connected to the 
output of the wav2vec 2.0 model for obtaining classification results. The proposed model was fine-tuned on the 
DAIC-WOZ dataset. Unlike traditional machine learning or deep learning method, which require tedious manual 
feature extraction, the proposed method automatically selects representational features for training. Experiments 
results obtained from the DAIC-WOZ dataset demonstrated the effectiveness of this approach.

To the best of our knowledge, this work represents the first attempt to utilize the wav2vec 2.0 model to 
enhance the depression recognition accuracy. Our contributions are summarized as follows:

(1)	 It outlines the current research in depression recognition, discusses limitations, and suggests future research 
directions.

(2)	 Proposing an artificial intelligence method for effectively recognizing depression through voice signals to 
enhance diagnostic accuracy and treatment efficiency.

(3)	 The proposed method utilizes the wav2vec 2.0 pre-trained model to extract high-quality speech features, 
streamlining feature extraction and reducing the reliance on manually crafted features.

(4)	 Demonstrates that excellent performance can be achieved using solely voice data, eliminating the need for 
complex multimodal data and mitigating the risk of personal privacy breaches.

The structure of the paper is organized as follows: “Related work of depression recognition” section provides 
an overview of the research on automated detection of depression. “Material and methods” section introduces the 
dataset, describes the depression recognition model, and provides details about the experimental setup. “Result 
and discussion” section analyzes the experimental results and presents a discussion of the findings. “Limitations” 
section addresses potential biases and discusses any challenges encountered during the experiment. “Conclu-
sions” section summarizes the paper and outlines the future work plan.

Related work of depression recognition
In recent years, various indicators have been explored for automated depression detection. Wollenhaupt-Aguiar 
et al. used machine learning methods to obtain discriminative features based on biomarkers5. However, biomark-
ers are difficult to obtain and relatively expensive to analyze. Based on social media data, Zhou et al. employed 
a time-aware attention multimodal fusion network (TAMFN) for depression detection6. Li et al. utilized CNN 
Asynchronous Federated optimization (CAFed) for depression detection7. Based on visual cues, Guo et al. uti-
lized temporal dilated convolutional network (TDCN) for depression detection8. Casado et al. utilized remote 
photoplethysmography of facial video to identify depression9. Despite the rich information contained in the 
video, factors like lighting, weather, camera movement, etc., can impact the results. Ksibi et al. used EEG data 
to build three classification models based on extreme gradient boosting (XGBoost), random forest (RF), and 
one-dimensional convolutional neural network (1D CNN) for depression detection14. Wang et al. used AlexNet 
network to train EEG signals for depression detection15. However, the optimization of spatial information in 
multichannel EEG data remains a challenge, and compressing high-dimensional data can easily lead to informa-
tion loss. In the field of electrodermal research, Sharma et al. employed an autoencoder network (AEN) and deep 
neural networks (DNN) to detect depressive states16, and Lyu et al. developed a discriminative model using the 
support vector machine (SVM) algorithm17. These approaches typically require specialized testing equipment and 
proper skin contact. The heightened activity of sweat glands in warm or humid conditions often impacts signal 
accuracy. Motion artefacts are commonly present in the electrodermal signals, affecting the classification results.

In addition, multimodal models are also one of the hotspots of research. Qayyum et al. combined audio 
spectrograms and multiple frequencies of EEG signals to improve the diagnostic performance18. Fang et al. 
and Xia et al. use three modalities, namely video, audio, and text, for their respective studies. However, there 
are difference in their approaches. Fang et al. proposed a multimodal fusion model with multi-level attention 
mechanism (MFM-Att) for depression detection, incorporating a multilevel attention mechanism19. On the 
other hand, Xia et al. pre-fused the three modalities before feeding them into a bidirectional long short-term 
memory (Bi-LSTM) network to establish a multimodal fusion representation. Subsequently, this multimodal 
fusion representation was input into a graph neural network (GNN) for depression detection20. Nevertheless, 
it is important to note that multimodal models entail a complex processing flow and necessitate simultaneous 
handling of information from various data sources, resulting in high computational complexity. Additionally, 
data collection and processing for multimodal models can be challenging.

Depressed individuals exhibit distinct acoustic characteristics compared to non-depressed individuals, 
and the effectiveness of using voice for depression detection has been demonstrated29. Exploration of depres-
sion detection based on voice signals began with the widespread adoption of two key approaches: traditional 
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machine learning and neural networks. Gao et al. used Random Forest Algorithm30 and Shi et al. used SVM for 
depression recognition31. Aharonson et al. also chose machine learning methods to automatically categorize 
depression severity32. Depression detection studies based on machine learning methods usually struggle to learn 
meaningful knowledge representations, and classification accuracy relies heavily on feature selection. With the 
development of technology, many studies have begun to apply deep learning methods to automated depression 
diagnosis. Previous research has focused more on the use of handmade acoustic features. Rejaibi et al. combined 
hand-crafted features with deep learning to improve depression recognition performance33. Liu et al. used mel 
frequency cepstral coefficient (MFCC) features as input to convolutional-bidirectional long short-term memory 
(CNN-BLSTM) for depression detection34.

Although traditional acoustic features perform well in the field of voice recognition, they are not tailored for 
the task of depression recognition, and the knowledge representation of depression is still insufficient. Hence, 
people have turned to mining deep learning features for depression detection. Miao et al. combined voice fea-
tures to classify depression, and the accuracy reached 0.8535. Zhao et al. used frame-level features to capture time 
information of depressed voice as input to the long-short term memory (LSTM) layer and achieved an average 
accuracy of 0.90236. Yang et al. developed the end-to-end learning framework with attention guided learnable 
time-domain filterbanks (DALF) module, which is designed to generate task relevant spectral features10. Sardari 
et al. used a convolutional autoencoder (CNN AE) to extract highly correlated and compact set of features11. Sun 
et al. proposed a model combining unsupervised encoding with transformers to achieve depression detection12. 
Yin et al. utilized transformers and parallel convolutional neural networks (parallel-CNN) to extract valuable 
information with acceptable complexity13. Yang et al. designed the deep convolutional generative adversarial 
network (DCGAN) feature augmenting network for improved depression severity estimation37. Srimadhur et al. 
used an end-to-end convolutional neural networks (CNN) model to detect depression38. Zhang et al. proposed 
a multilevel depression state detection method based on fine-grained cue learning39. However, most of the deep 
learning-based methods have complex model structures and usually require a large amount of data training to 
improve the accuracy.

In this section, we summarize the work related to automated detection of depression, details of which can 
be viewed in Table 1.

Material and methods
Dataset and preprocessing
Experimental dataset
The data used in this paper comes from the DAIC-WOZ dataset, which is part of a larger clinical interview cor-
pus called the Distress Analysis Interview Corpus (DAIC)40. This dataset also uses a virtual human interviewer, 
and each audio file contains dialogue data between a patient and a virtual agent named Ellie with a sampling 
rate of 16 kHz. The dataset provides 189 audio files that has been divided into training, validation, and test sets. 
The audio ID numbers range from 300 to 492, excluding 342, 394, 398, 460 due to technical reasons. The dataset 
includes information such as patient ID, binary labels, and PHQ-8 scores. For more details, please see Table 2.

Table 1.   Summary of relevant work on depression detection.

References Analyzed Technique used Results Limitation

5 Interleukin-4, Interleukin-10, et al SVM Sensitivity: 62.00%, specificity: 66.00% Biomarkers are difficult to obtain and 
relatively expensive to analyze

6 Social media data (D-Vlog) TAMFN Precision:66.02%, F1-score:65.82% Social media data contains false informa-
tion

7 Social media data (Weibo) CAFed Accuracy:86.67% Social media data contains false informa-
tion

8 Video TDCN Accuracy:85.70% Susceptible to environmental factors

10 Audio DALF F1 is 78.4% on the DAIC-WOZ dataset The model structure is complex and the 
model performance is not optimal

11 Audio CNN AE Precision:71.00% The model performance is not optimal

12 Audio An unsupervised autoencoder network MAE:4.01, RMSE:5.96, F1-score:87.00%
Not directly analyzing the raw speech 
signal. The model performance is not 
optimal

13 Audio Transformer + Parallel-CNN Precision:95.00%, recall:92.20%, 
F1-score:93.60%,

The model structure is complex. Not 
directly analyzing the raw speech signal

15 EEG AlexNet Partial channel accuracy greater than 
70.00%

Insufficient use of spatial information in 
multichannel data. Model performance is 
susceptible to individual differences

16 Electrodermal AEN + DNN 94.0% accuracy with AEN High threshold of detection technology. 
The reading of signals is easily disturbed

17 Electrodermal SVM Accuracy: 78.00%, sensitivity:78%, 
specificity:82%

Difficulty in learning meaningful repre-
sentations. Model classification perfor-
mance is not performing well enough

18 Audio + EEG Vision Transformer Precision:97.20%, recall:97.30%
Multimodal data processing is cumber-
some. Data collection is difficult

19 Audio + Video + Text MFM-Att MAE:3.18, RMSE:3.68
20 Audio + Video + Text Bi-LSTM + GNN Accuracy:73.65%
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The sample distribution of PHQ-8 scores is shown in Fig. 1.

Preprocessing
The audio files in the DAIC-WOZ dataset were preprocessed to enhance data quality. While wavelet transforms 
and signal denoising techniques are commonly employed for data processing41, given the objective of training a 
robust model in this study, we have employed a distinct strategy. Specifically, we employed voice segmentation 
and merging techniques to extract segments that exclusively contain patient voice.

The TRANSCRIPT files provided by the DAIC-WOZ dataset contain detailed records of the start and end 
times of each participant’s conversations. A total of 189 TRANSCRIPT files, each corresponding to a specific 
participant. To illustrate this, the excerpts extracted from these conversation records are shown in Table 3.

Specifically, first, based on the start and end times of each patient’s utterance recorded in the transcript files 
of the DAIC-WOZ dataset, 189 raw audio files were segmented into independent segments, each containing only 
one sentence spoken by the patient. This process resulted in over thirty thousand small segments. We merged 
these segments in sequential order, grouping every five voice segments together. This procedure generated a total 
of 6545 new audio files. It is important to note that before merging voices, it must be determined that only voice 
data from the same patient ID can be merged.

Table 2.   Relevant statistical information on the DAIC-WOZ dataset.

Items Data Items Data

Total samples 189 Train set 107

Male 102 Validation set 35

Female 87 Test set 47

Non-depressed 133 Sampling frequency 16 kHz

Depressed 56
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Figure 1.   Sample distribution of PHQ-8 score.

Table 3.   Extracts from the transcripts of the conversations.

Start time (s) Stop time (s) Speaker Value

49.256 50.406 Ellie How are you doing today

50.686 51.836 Participant Okay how ‘bout yourself

52.576 54.136 Ellie I’m great thanks

54.816 56.236 Ellie Where are you from originally

56.586 57.996 Participant Here in california

58.216 58.936 Ellie Really

59.066 59.756 Participant Yeah

60.526 62.936 Ellie What are some things you really like about l_a

63.396 67.696 Participant Oh well that it’s big and broad there’s a lot to do a lot of um

69.416 72.266 Participant Um job opportunities than other states

72.766 77.626 Participant Um pretty much that it’s big and there’s a lot you can do here

79.056 79.866 Ellie Yeah
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At the same time, Ellie’s voice and long periods of silence were excluded. This process resulted in obtaining 
patient-only voice data, as depicted in Fig. 2, which outlines the steps involved in voice data preprocessing.

Redivision of dataset
Adequate data samples, obtained after preprocessing, have helped alleviate the issue of sample imbalance. There-
fore, data augmentation is no longer necessary. Subsequently, the preprocessed dataset was randomly divided 
into training set, validation set, and test set according to the ratio of 6:2:2. The relevant information about the 
dataset after preprocessing and redivision is summarized in Table 4.

The training set and validation set were used to fine-tune and evaluate the model performance, and the test 
set was used to evaluate the model reliability in actual applications. To ensure a balanced proportion of labels, the 
four categories of non, mild, moderate, and severe were separated before being randomly grouped. For repeat-
ability purposes, we used a random seed for division and set it uniformly to 103.

Model and experimental setup
Voice recognition model
The combination of pre-training and fine-tuning has proven to be an effective learning method42. During pre-
training, a model is trained on a large dataset in an unsupervised manner to learn meaningful representations. 
This approach prevents over-fitting to task-specific data because the pre-training stage acts as a regularizer, 
providing a wealth of prior information.

Wav2vec 2.0 voice pre-training model, with its strong potential in voice processing, can learn discrete voice 
units and end-to-end context representation. It has evolved from previous models such as contrastive predic-
tive coding (CPC), Wav2vec, and Vq-Wav2vec. As described by Baevski et al.28, it consists of a feature encoder 
module, a quantization module, and a transformer module, as shown in Fig. 3. The automatic extraction of voice 
features by the wav2vec 2.0 model proceeds as follows.

First, the feature encoder maps the raw audio X to latent voice representations Z : {z1, z2, · · · , zn} , represented 
as f : X → Z . Specifically, the raw audio X was input into multiple convolution layers, where the first convolution 
layer was a time convolution and a GELU activation function was adopted. A group normalization method was 
used prior to GELU to normalize each output channel of the first layer. In each layer, the output data has been 
normalized to improve robustness. At the last layer, an L2 regularization term was applied to the activation of 
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Figure 2.   Voice data preprocessing steps.

Table 4.   Relevant statistical information in preprocessed DAIC-WOZ dataset.

Items Data Items Data

Total samples 6545 Ndep 4513

Male speaks 3484 Dep 2032

Female speaks 3061 Non 2861

Train set 3927 Mild 1597

Validation set 1309 Moderate 1102

Test set 1309 Severe 985
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the feature encoder to stabilize training. By utilizing multiple convolution layers, the feature encoder was able 
to acquire high-level semantic information from voice.

Second, in the quantization module, the output of the feature encoder Z was discretized into a set of quantized 
voice features Q :

{
q1, q2, · · · , qn

}
 that can be expressed as h : Z → Q . Q was used as a self-supervised objec-

tive. The quantization process reduced the difficulty of predicting real voice features because the output of the 
feature encoder Z was transformed into a finite set of voice representations. The Gumbel softmax was used in 
this module to solve the problem that the feature space was not derivable and cannot be back-propagated after 
being discretized.

Third, the latent voice representations Z from the feature encoder module were directly input to the trans-
former module to create context representations C : {c1, c2, · · · , cn} . This process can be expressed as:g : Z → C . 
Before being input to the transformer module, approximately half of the latent voice representations Z were 
masked by the transformer’s encoder. This masking process brings the context representation ci of masked loca-
tions closer to the corresponding discrete features qi . Due to self-attention mechanisms, each representation in 
the final output sequence may contain both local and global information10. The transformer module effectively 
captures long-distance dependencies and global context information, further improving the speech recognition 
performance of the model.

Finally, the quantized voice representations qi and context representations ci were used to calculate the loss 
function L . For each ci generated by the masked position, the positive example is qi generated by the quantiza-
tion module at the same position, and the negative example is κ quantization vectors q̃ ∈ Qt generated by the 
quantization module at other masked positions. When the loss function L reached its optimal value, high-quality 
voice features from the wav2vec2.0 model were input into a small fine-tuning network for voice depression 
recognition. The Loss function is defined as Eq. (1):

There are two types of wav2vec2.0 models (Base and Large) that share the same encoder architecture but 
differ in the number of transformer blocks and model dimensions. The Base model is trained on the Librispeech 
corpus. It contains 7 convolutional layers and a 12-layer transformer structure. Each convolutional layer has 512 
channels, with strides of (5, 2, 2, 2, 2, 2, 2) and kernel widths (10, 3, 3, 3, 3, 2, 2). The convergence of speed of the 
Base model is faster than that of the Large model, and the Base model requires fewer computational resources. 
Hence, the Base mode is more suitable for small datasets or scenarios with limited computing power.

A large amount of voice data has been used to train the wav2vec 2.0 pre-training model in advance, so it can 
quickly and accurately extract high-quality voice features. Furthermore, the DAIC-WOZ dataset was used to 

(1)L = − log
exp(sim(ci , qi))/κ∑
q̃∼Qt

exp(sim(ci , q̃))/κ

Voice signal X

QuantizerQ

Loss function

Feature EncoderZ

Negative sample

Positive sample

TransformerC

Unmasked feature

Masked feature

Figure 3.   Framework of the wav2vec 2.0 pre-trained model.
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fine-tune the wav2vec 2.0 model for depression recognition. We performed all experiments using the Base model 
and connected a small fine-tuning network to its output for voice depression recognition as shown in Fig. 4.

As shown in Fig. 4, the voice signal was input into the wav2vec 2.0-base model, and the feature encoder mod-
ule was used to capture the local information of the voice signal, while the transformer module was employed to 
capture global speech features, resulting in the extraction of high-quality voice features. These high-quality voice 
features were then pooled to expand the model’s receptive field, thereby enhancing both accuracy and robustness 
in voice recognition. Then, a dropout layer was applied in the small fine-tuning network to prevent over-fitting. 
By randomly dropping some neurons, it reduces co-adaptation between neurons so that the dependence of weight 
updating on fixed hidden nodes was decreased. The model proposed in this paper was fine-tuned through con-
tinuous iterations and the predictions of the model were output when the loss function reached the desired value.

Experimental tasks
Currently, research on depression predominantly revolves around binary classification, with limited explora-
tion into multi-classification. Hence, this study has established two experimental tasks: binary classification and 
multi-classification.

In the binary classification task, we detected whether patients have the possibility of suffering from depression. 
The voice data labels had set to dep or ndep based on the binary values provided by the DAIC-WOZ dataset.

In the multi-classification task, the severity of depression was divided into four levels: no depression, mild 
depression, moderate depression, and severe depression. The PHQ-8 score (range 0–24) was discretized into 4 
categories: [0–4], [5–9] , [10-14] and [15–24], and these four categories are labeled as non, mild, moderate and 
severe, respectively.

Parameter setting
Information about the experimental environment for this paper is as follows: CPU: 11th Gen Intel(R) Core(TM) 
i7-11700 @ 2.50 GHz; GPU: NVIDIA GeForce RTX 3090; RAM: 24G. Operating system: 64-bit Ubuntu 20.04.4 
LTS; CUDA: 11.6; Python 3.7.

During the fine-tuning process, the pre-trained network parameters are also updated. To prevent large changes 
in parameters, a smaller learning rate should be chosen. Using a larger learning rate may cause drastic changes 
in the parameters that leads to bad performance of the model. This is because the pre-trained model has already 
been trained on a large amount of data and its parameters have been adjusted to an optimal state. We perform 
an experimental comparison of the effect of different learning rates ( 1× 10−4 , 1× 10−5 , 1× 10−6 ) on model 
performance and find that the model performs best when the learning rate is 1× 10−5 . Therefore, we fixed the 
learning rate at 1× 10−5 for all subsequent experiments. In addition, considering limited computational resources 
and the need to prevent memory overflow, the batch size was set to 4 for each run, with two gradient accumula-
tions. As a result, the cumulative batch size was set to 8.

…
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Figure 4.   Overall framework of voice depression recognition.
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Evaluation methods
In the case of sample imbalance, relying solely on a single metric may lead to an incomplete evaluation. Therefore, 
the classification performance of the model was assessed using a comprehensive set of five evaluation metrics: 
accuracy, precision, recall, F1 score, and the RMSE. The formula for calculating accuracy is shown in Eq. (2)43–45:

The calculation formulas for Precision, Recall, and F1 score are shown in Eqs. (3)–(5)46–48:

where TP (true positive) represents the number of that the sample is predicted to be positive and it is positive; 
TN (true negative) represents the number of that the sample is predicted to be negative and it is negative; FP 
(false positive) represents the number of samples predicted to be positive but being negative; FN (false negative) 
represents the number of samples predicted to be negative but being positive.

Precision measures how many of the samples predicted to be positive and they are actually positive; Recall 
measures how many of all positive samples are correctly predicted; and the F1 score is the harmonic mean of 
precision and recall, which can comprehensively consider the impact of both.

The calculation formulas for RMSE is shown in Eq. (6)33,49:

where yi is the real value, ŷi is the predicted value, and m is the number of samples. RMSE reflects the difference 
between the predicted value and the real value. The smaller the value of RMSE, the higher the accuracy of the 
prediction model.

Result and discussion
If we can freeze the lower-level parameters and only adjust the top or specific layer parameters, this will signifi-
cantly reduce the number of training parameters and training time, given that the wav2vec 2.0 model has already 
been thoroughly trained. In addition, choosing an appropriate pooling method can effectively avoid over-fitting 
phenomenon. And setting an appropriate Epoch value may effectively control model convergence speed and 
accuracy. Therefore, we performed experiments to investigate the effect of fine-tuning or freezing on the feature 
encoder module parameters, the effect of different pooling methods on high-quality voice characteristics output 
by the wav2vec 2.0 models, and the effect of model iteration times Epoch on model convergence.

In the following, “Class” is an abbreviation for “Classification”, representing the number of depression clas-
sifications. “Acc” is an abbreviation for “Accuracy”, representing the classification accuracy. In the experiment, the 
comparison was made between the effects of fine-tuning and freezing parameters in classification performance, 
Epoch size was set to 5 by prior experience. In the “Freeze” column, “True” means that the parameters of the 
feature encoding module in the wav2vec 2.0 model are frozen, while “False” means that the parameters of this 
module are fine-tuned. The specific experimental results are shown in Fig. 5a,b.

According to Fig. 5a, the accuracy of the model performance is improved by 0.45% by freezing the parameters 
of the wav2vec 2.0 feature encoder in the binary classification task. According to Fig. 5b, the accuracy of the 
model classification is substantially improved by 24.07% in the multiclassification task. Therefore, the approach 
of freezing the parameters of the wav2vec 2.0 feature encoder has been demonstrated to be effective. It reduces 
training parameters, enhances classification accuracy, while also preserving the prior knowledge of the wav2vec 
2.0 model.

The study of the impact of different pooling methods on model classification performance was performed, 
building upon the experiment with frozen feature extractor parameters. The experimental results are presented 
in Fig. 5c,d. Where Max represents maximum pooling, Mean represents average pooling, and epoch size is also 
set to 5.

The experimental results in Fig. 5c,d demonstrate that the average pooling method outperforms the maxi-
mum pooling method. The accuracy of the average pooling method is 0.77% higher in the binary classification 
task, and 6.26% higher in multi-classification tasks. The effect of the epoch size on the model performance was 
researched at the condition of freezing the parameters and averaging pooling method. The experimental results 
are shown in Fig. 5e,f.

In Fig. 5e,f, it is not difficult to see that with the increase of the iteration number, the accuracy of model clas-
sification has also been improved. However, after epoch size reaches 10, the increase of the iteration number can 
no longer bring better effect. Comprehensively considering training time and classification performance, epoch 
size set to 10 is an optimal choice.

(2)Accuracy =
TP + TN

TP + TN + FP + FN

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

(5)F1 =
2× Precision× Recall

Precision+ Recall
=

2TP

2TP + FP + FN

(6)RMSE =

√√√√ 1

m

m∑

i=1

(yi − ŷi)
2
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Based on the above experimental results, the best model performance is obtained, when the parameters of 
the feature encoder of the wav2vec 2.0 model are frozen, the average pooling method is adopted, and the epoch 
size is set to 10. Test set is used to evaluate the reliability of the proposed model in practical applications, and 
the experimental results are shown in Table 5.

As indicated in Table 5, the model proposed in this paper demonstrates strong performance in both binary 
and multi-classification tasks. The overall accuracy of the binary classification task reached 0.9649, and the overall 
accuracy of the multi-classification task reached 0.9481. The F1 score reached 0.9313 and above. These show 
that, by use of this model, depressed individuals can be effectively identified, and the severity of their depression 
can be effectively evaluated. To effectively showcase the performance of the proposed model, this paper employs 
several evaluation metrics. For binary classification, the Receiver Operating Characteristic (ROC) curve and 
confusion matrix are utilized, as illustrated in Fig. 6a,b respectively. On the other hand, for multi-class classifi-
cation, the evaluation is conducted using the confusion matrix, as depicted in Fig. 6c. To demonstrate that the 
obtained results were not due to chance, all experiments were run three times. The results of the experiments 
are presented in Table 6.

The experimental results in Table 6 demonstrate the robustness of the model.
At present, most of the depression recognition task is a binary classification, and there are few studies on 

multi-classification about depression recognition. Therefore, in this paper the binary classification results are 
compared with the existing methods, as shown in Table 7.

The results of identifying non-depressed individuals are shown in parentheses. According to Table 7, despite 
Ref.29 employing a multimodal fusion method, our accuracy still outperforms theirs. Specifically, the accuracy 
achieved by Ref.29 using only voice as a single modality is 0.7716, significantly lower than ours. While the Recall 
value of Ref.35 is 1.00, indicating a 100% accuracy in predicting positive samples is, our model also exhibits 
excellent performance with a value exceeding 0.95. Through a comprehensive comparison of multiple evaluation 
criteria, the performance of our model is better than that in Ref.35. In terms of F1 score and accuracy, our model 
demonstrates the best performance.

The performance of the proposed work in multi-class classification is compared with some traditional meth-
ods in Table 8. The data in Ref.38 is the average of the multi classification results.

Figure 5.   Experimental results of model fine-tuning.

Table 5.   Performance of model classification.

Class Label Precision Recall F1 Acc

2
Dep 0.9396 0.9488 0.9442

0.9649
Ndep 0.9765 0.9722 0.9744

4

Non 0.9614 0.9580 0.9597

0.9481
Mild 0.9259 0.9404 0.9331

Moderate 0.9589 0.9502 0.9545

Severe 0.9337 0.9289 0.9313
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As shown in Table 8, the proposed model still exhibits the best performance.

Limitations
The DAIC-WOZ dataset was constructed in a highly controlled environment and includes samples from various 
age groups. However, age is a factor that influences the quality of voice features, leading to noticeable discrepancy 
between the voice samples in the dataset and those found in the real-world scenarios. In addition, the DAIC-
WOZ dataset used in the study contains only 189 samples, which is insufficient to provide adequate training. 

Figure 6.   ROC and confusion matrix experimental results.

Table 6.   Results of the statistical assessment.

Mean Std Min Max

Acc_class2 0.9602 0.0045 0.9541 0.9649

RMSE_class2 0.1990 0.0112 0.1875 0.2141

Acc_class4 0.9455 0.0032 0.9412 0.9481

RMSE_class4 0.4112 0.0218 0.3810 0.4317

Table 7.   Comparison with existing binary classification methods.

Methods Precision Recall F1 Acc
12 0.85 0.80 0.83 –
13 0.95 0.92 0.94 –
29 0.96 (0.95) 0.89 (0.98) 0.92 (0.97) 0.95
33 0.75 (0.70) 0.95 (0.26) 0.84 (0.38) 0.74
35 0.83 1.00 0.91 0.85
38 0.58 (0.67) 0.77 (0.47) 0.66 (0.55) 0.61
39 0.80 0.86 0.83 0.89

Ours 0.94 (0.98) 0.95 (0.97) 0.94 (0.97) 0.96

Table 8.   Comparing with existing multi-class classification methods.

Methods RMSE Precision Recall F1 Acc
29 3.49 – – – –
32 4.1 – – – 0.8222
34 – – – 0.815 0.893
37 5.520 – – – –
38 – 0.725 0.49 0.3575 –

Ours 0.3810 0.9450 0.9444 0.9447 0.9481
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Therefore, we opted for the method of segmenting and merging voice data to augment data diversity and quantity, 
resulting in a total of 6545 data samples. This method avoids the effects of data enhancement introducing other 
noise. However, more samples still need to be included. During the experimentation process, due to limitations 
in computer resources, the maximum batch size for model training could only be set to 4. To address this issue, 
the method of gradient accumulation was employed, allowing the effective batch size to reach 8.

Conclusions
This study proposes an effective method to enhance model performance and generalization, addressing the chal-
lenge of limited data availability. By fine-tuning the wav2vec 2.0 model on the DAIC-WOZ dataset, high-quality 
voice features are extracted for depression detection, resulting in a significant improvement in recognition accu-
racy. Notably, this approach achieves these improvements without the need for complex feature extraction, voice 
denoising, or data augmentation techniques. The proposed method outperforms traditional machine learning and 
deep learning approaches, particularly on the noisy DAIC-WOZ dataset. The study also leverages public datasets 
and aims to engage more volunteers in future research. However, the model’s performance with unknown data 
remains unverified. To enhance efficiency and applicability, additional datasets will be incorporated to further 
enhance the model’s robustness and generalizability.

Data availability
The data that support the findings of this study are available in the Institute for Creative Technologies, University 
of Southern California, [https://​dcaps​woz.​ict.​usc.​edu/]. But restrictions apply to the availability of these data, 
which were used under license for the current study, and so are not publicly available.

Code availability
The source code for all the experiments can be viewed in https://​github.​com/​HXS572/​Depre​ssion_​Recog​nition/​
tree/​Code.
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