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Optimal weighting factor 
design based on entropy 
technique in finite control set 
model predictive torque control 
for electric drive applications
Muhammad Bilal Shahid 1,3, Weidong Jin 1,2, Muhammad Abbas Abbasi 3, Lian Li 1, 
Akhtar Rasool 4, Abdul Rauf Bhatti 5 & Abdulkerim Sherefa Hussen 6*

In the conventional finite control set model predictive torque control, the cost function consists of 
different control objectives with varying units of measurements. Due to presence of diverse variables 
in cost function, weighting factors are used to set the relative importance of these objectives. 
However, selection of these weighting factors in predictive control of electric drives and power 
converters still remains an open research challenge. Improper selection of weighting factors can lead 
to deterioration of the controller performance. This work proposes a novel weighting factor tuning 
method based on the Multi-Criteria-Decision-Making (MCDM) technique called the Entropy method. 
This technique has several advantages for multi-objective problem optimization. It provides a 
quantitive approach and incorporates uncertainties and adaptability to assess the relative importance 
of different criteria or objectives. This technique performs the online tuning of the weighting factor by 
forming a data set of the control objectives, i.e., electromagnetic torque and stator flux magnitude. 
After obtaining the error set of control variables, the objective matrix is normalized, and the entropy 
technique is applied to design the corresponding weights. An experimental setup based on the 
dSpace dS1104 controller is used to validate the effectiveness of the proposed method for a two-
level, three-phase voltage source inverter (2L-3P) fed induction motor drive. The dynamic response 
of the proposed technique is compared with the previously proposed MCDM-based weighting factor 
tuning technique and conventional MPTC. The results reveal that the proposed method provides an 
improved dynamic response of the drive under changing operating conditions with a reduction of 28% 
in computational burden and 38% in total harmonic distortion, respectively.

Keywords  Model predictive torque control (MTPC), Weighting factor, Multi-decision making criteria, 
Entropy method, Induction motor

Induction motors (IM) are the workhorses of industry due to their numerous advantages such as low cost, rug-
gedness, reliability, high efficiency, low energy consumption, and minimum maintenance requirement1,2. The 
performance of IM can be improved by incorporating efficient control techniques in which field-oriented control 
(FOC) and direct torque control (DTC) are highly mature and commonly used methods3,4.

Recently, finite control set model predictive torque control (FCS-MPTC) has gained popularity among 
researchers due to its numerous benefits including effective incorporation of non-linearities into controller 
model, multivariable formulation, and constraint handling among others5–8. Like DTC, FCS-MPTC does not 
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require any switching table and its simple structure makes it easier to implement. The optimal switching state 
of the inverter is obtained by an optimization-based approach that uses the cost function. The cost function 
consists of errors of control variables that are the difference between reference values and their future values at 
the next sampling instant. Normally, flux and torque are selected as control variables in the cost function for 
FCS-MPTC9. A mathematical model of an induction motor is used to predict future values of the controlled 
variables using permissible switching states. The switching state that generates the minimum cost function is 
applied to a two-level voltage source inverter.

Due to the presence of different variables with different units of measurements in a single cost function, it 
becomes challenging to adjust the relative importance (weights) of the controlled variables. This challenge is 
known as weighting factor design problem for FCS-MPTC10,11. Weighting factor designing methods can be 
broadly categorized into two groups: first is the weighting factor removal techniques, and the second is weight-
ing factor tuning techniques. The weighting factor removal and tuning techniques can be further divided into 
various classes. A detailed classification of these methods is shown in Fig. 1. A detailed comparison of different 
available weighting factor methods in the literature is also given in Table 1. Many solutions to this problem have 
been proposed in literature based on offline tuning, weighting factor removal, and online tuning12,13. The offline 
tuning is simple but time-consuming; tedious work is required to tune the weighting factor and static weighting 
factor does not guarantee optimal performance on different operating points.

Another solution is to remove the weighting factor from cost function. Weighting factor removal methods 
include: a multi-ranking-based technique25, voltage tracking error method26, modulated technique27, and refer-
ence transformation8,28 . However, most of weighting factor removal methods increase the computational burden 
of the conventional FCS-MPTC29. In addition to these methods, weighting factor can be removed from the cost 
function by employing sequential or cascade MPTC. In30, a novel sequential model predictive torque control 
(SMPTC) methodology is presented for a six-phase induction machine, effectively eliminating the weighting 
factor requirement. The system employs a sequential framework to assess three distinct cost functions, each 

Figure 1.   Different weighting factor removal and tuning techniques14–24.
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corresponding to a specific control purpose31. In32, a cascaded predictive control (CPC) approach was proposed 
for induction machine drives powered by a three-level NPC power converter.

This approach preserves the advantageous qualities such as, robustness and control performance, of the classic 
model predictive torque control (MPTC)11,61. However, removing the weighting factor involves the formulation 
and ranking of multiple objective functions which complicates the algorithm and increases the computational 
burden. Online weighting factor techniques change the weights of corresponding control objectives according 
to operating conditions to optimize the performance. These methods can be broadly categorized into (i) meta-
heuristic tuning methods (ii) artificial neural networks (ANN) based methods (iii) Multi-Criteria Decision Mak-
ing (MCDM) techniques and (iv) miscellaneous methods. Meta-heuristic techniques such as simulated annealing 
(SA) based tuning technique is proposed in62. However, online computing of weighting factor by such methods 
limits the search accuracy and increases the computational complexity47. Other meta-heuristic methods include 
gravitational search algorithm (GSA)43, non-dominated sorting genetic algorithm II (NSGA-II) and Particle 
Swarm Optimization (PSO)10–12 . ANN methods are reported in46,63–66. However, they also suffer from higher 
computational burden and tend to increase the complexity of the controller. Miscellaneous methods such as two-
stage weighting factor tuning technique67 and equal-weighted weighting factor selection technique68 also tend to 
increase the computational cost of the control algorithms and are not feasible for practical implementation47,69–73. 
In comparison the these methods, some of the MCDM methods do not pose computational challenges and are 
ideally aligned for implementation on the modern hardware39,74,75. Although various methods have been pro-
posed in the literature to deal with the weighting factor problem, the selection of the weighting factor is still an 
open challenge due to its computational burden and complexity. Therefore, this paper presents a novel method 
to optimise the tuning of the weighting factor. The proposed method is based on the entropy technique used to 
determine appropriate weights for the control variables used in the cost function. This technique is suitable for 
quantifying the uncertainty or disorder in a given data set (obtained from the error of control objectives). The 
entropy technique provides a balance between control objectives and assigns appropriate weights in the cost 
function according to relative significance. The main contributions of the proposed technique are as follows:

•	 The weighting factor is tuned online by employing a simple MCDM technique called entropy method there-
fore, no need to tune weighting factor.

•	 The proposed method demonstrates robustness against motor parameter variations and model mismatching.
•	 The switching frequency, THD and computational burden of the entropy based MPTC is lower when com-

pared to other MPTC methods.

The paper is organized as follows: Section “Conventional model predictive torque control” describes the math-
ematical model of the induction motor. The general formulation of FCS-MPTC is presented in Section “VIKOR-
MPTC”. The proposed tuning method is given in Section “Proposed weighting factor tuning based on entropy 
method”. In the next section comprehensive discussion of different results is provided.

Table 1.   Summary of the PTC methods focused on weighting factor challenges.

PTC Methods Limitations

Weighting factor removal by reference transformation33,34 Higher computational burden as compared with conventional PTC 
and difficult to incorporate multiple control objectives35

Weighting factor tuning based on coefficient of variation36 Optimized weights are uncertain in this method and complex calcu-
lations are required to implement on hardware

Weighting factor tuning based on TOPSIS and NSGA-II methods37 TOPSIS and NSGA-II algorithms require complex calculations lead-
ing to computational challenges12

Weighting factor removal by Ranking method38 Ranking based techniques become unfeasible as number of control 
objectives increases39

Tuning of weighting factor based on simple additive technique40 Although technique is simple but not suitable for multiple control 
objectives11

Weighting factor tuning based on current ripples41 Highly dependent on parameter estimation8,42

Tuning of weighting factor based on error of control objectives43 This method becomes challenging and complex when number of 
control objectives increases44

Weighting factor tuning using Genetic Algorithm (GA)45, Simulated Annealing (SA)42 or Gravitational Search 
Algorithm (GSA)43, Artificial Neural Network46, Ant colony based optimization47

These algorithms are very complex and pose computational 
challenges48

Weighting factor tuning based on algebraic/numerical techniques49 Design complexity increases as slection of weighting factor 
increases50

Weighting factor selection based on homogeneous cost functions51–53 This technique is relatively efficient but unable to include multiple 
control objectives54

Direct vector selection based techniques to remove weighting factors from cost function55,56
Direct vector selection techniques provid lower computational 
burden and lower complexity , however cannot incorporate multiple 
control objecitve57

Weighting factor elimination by using cascaded structure of FCS-MPC58,59 The cascaded structure highly depended on proper selection of deal-
ing cascaded structure60
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Dynamical model of induction motor and VSI
The modeling of squirrel cage IM and 2L-3P VSI is presented in this section. The standard equations of IM in 
stationary reference frame ( α-β frame) can be expressed as6,73,76,77.

The voltage equations of stator and rotor can written as:

The flux equations of both stator and rotor are expressed as:

The electromagnetic torque generated by the motor is given by:

Finally, the mechanical equation of motor can be written as:

where the subscript s , r represents the stator and rotor variables respectively; R , −→i  , and 
−→
ψ  are resistance, current, 

and flux; −→v s = vsα + jvsβ is the voltage vector, −→is = isα + jisβ , 
−→
ψs = ψsα + jψsβ , and 

−→
ψr = ψrα + jψrβ are the 

stator current, rotor current vector, stator flux, and rotor flux vector; Rs , Rr,Ls , Lr , and Lm are the stator resist-
ance, rotor resistance, stator inductance, rotor inductance, and mutual inductance; ωm , T , Tl , J , and P are the 
mechanical speed, electromagnetic torque, load torque, total moment of inertia of the system; Im represents the 
imaginary part of the complex variables. The model can be represented in state-space by selecting stator current 
−→
is  , and rotor flux 

−→
ψr as state variables.

where kr = Lm
Lr

 , τr = Lr
Rr

 , are the rotor coupling coefficient and rotor time constant respectively; τσ =
(LsLr−L2m)
Lr(Rs+Rrk2r )

 
is the stator transient time constant. A final discrete model can be obtained by discretizing (7) and (8) using 
Euler’s first-order discretization method. The IM motor is fed by two level three phase voltage source inverter 
(VSI) which is shown in Fig. 2. The VSI is energized by a constant (dc) voltage source Vdc . The switches Sa , Sb , 
Sc , S̄a , S̄b , and S̄c are operated in complementary fashion to avoid “shoot-through” faults which may short-circuit 

(1)−→v s = Rs
−→
is +

d
−→
ψs

dt

(2)0 = Rr
−→
ir +

d
−→
ψr

dt
− jω

−→
ψr

(3)−→
ψs =Ls

−→
is + Lm

−→
ir

(4)−→
ψr =Lr

−→
ir + Lm

−→
is

(5)T =
2

3
pIm{

−→
ψ̄s

−→
is } =

2

3
pIm{

−→
ψ̄r

−→
ir }

(6)J
dωmdt

+
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(7)d
−→
is
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=
−1

τσ

−→
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Rσ τσ

(

1
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)
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Rσ τσ
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(8)d
−→
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)

−→
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Figure 2.   Two level three phase voltage source inverter. (a) Inverter topology, (b) Inverter possible switching 
vectors.
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the terminals of the DC source. In the direct switching method, there are eight switching states or voltage vectors 
(VVs) vn = {v0, v1, . . . v7} as depicted in Table 2.

Conventional model predictive torque control
The structure of conventional FCS-MPTC is shown in Fig. 3. It can be observed from the figure that FCS-MPTC 
consists of two loops: an outer loop for speed regulation and an inner torque control loop. The speed loop gen-
erates a torque reference signal with the help of a PI controller. Flux reference is kept constant to the nominal 
value since this work does not consider efficiency optimization and field weakening. The inner FCS-MPTC 
algorithm works in three main steps namely (i) estimation of controlled variables that cannot be measured, (ii) 
prediction of controlled variables from estimated and measured variables (iii) cost function optimization77,78. 
The mathematical details of these steps are provided next.

For flux and torque estimation, a simple current model (CM) estimator76 is used in this work. Stator estima-
tion can be obtained by discretizing and rearranging (1) as:

FCS-MPTC is required to predict the stator flux and electromagnetic torque based on the estimation of flux. By 
using (9), the prediction of stator flux at an instant of (k + 1) can be obtained as:

Electromagnetic torque can be predicted by using predicted current and estimated flux.

where is current prediction equation is given as follows:

(9)
−→
ψ̂s(k) =

−→
ψ̂s(k− 1)+ Tsvs − TsRs

−→
is (k)

(10)
−→
ψ

p
s (k+ 1) =

−→
ψ

p
s + Tsvs − TsRs

−→
is (k)

(11)Tp(k+ 1) =
2

3
pIm

−→
ψ

p
s (k+ 1)

−→
i
p
s (k+ 1)

Table 2.   Voltage vectors of 2L-VSI.

vn S = [SaSbSc]
−→v = vα + jvβ

v0 000 0

v1 100 2
3 Vdc

v2 110 Vdc(
1
3 + j

√
3
3 )

v3 010 Vdc(−
1
3 + j

√
3
3 )

v4 011 − 2
3 Vdc

v5 001 Vdc(−
1
3 − j

√
3
3 )

v6 101 Vdc(
1
3 − j

√
3
3 )

v7 111 0

Figure 3.   Conventional predictive torque control for induction motor drive fed by two level voltage source 
inverter.
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Finally, the cost function is used to minimize the error in controlled variables and to determine opti-
mal voltage vector. The cost function is formulated by adding torque and flux errors i.e. T∗ − T(k + 1) and 
(|
−→
ψs

∗| − |
−→
ψs(k + 1)|).

where w is the weighting factor that defines the relative importance of control objectives. The cost function is 
evaluated for all the admissible voltage vectors for 2L-VSI (six active and two null VVs) at each sampling instant. 
The voltage vector that minimizes the value of the cost function is chosen and applied to VSI. In conventional 
FCS-MPTC, the nominal value of the weighting factor is defined as:

VIKOR‑MPTC
The VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) approach was developed for the multi-
criteria optimization problems in complex systems79. The details of this method applied to two level three phase 
VSI for induction motors are given in48 . The VIKOR approach can be categorized into following sequential steps: 

1.	 Dataset Generation
2.	 Identification of optimal and suboptimal solutions
3.	 Utility and Regret measure computation
4.	 VIKOR index calculation

In order to provide a dataset that is appropriate for the proposed technique, the single cost-function utilized in 
the conventional PTC is partitioned into separate cost functions for torque and stator flux.

where xT and xψ are torque error cost function and flux error based cost function respectively. The above cost 
functions are evaluated for all the admissible voltage vectors and the resulting values are expressed in the form 
of following performance data matrix Xij.

The following expression can be applied to the generated data set to determine the ideal solution and non-ideal 
solution (Y+, Y−) for each control objective. These solutions simply represent maximum and minimum values 
of torque and flux errors in single sampling interval.

where

where (20) represents the maximum value for optimal performance and (21) represents objectives where lower 
values are desirable to meet certain constraints or to minimize undesirable effects. The utility Ui and regret Ri , 
represents the average and worst scores respectively. Ui and Ri can be obtain from:

(12)
−→
i
p
s (k+ 1) =

(

1+
Ts

τσ

)

−→
is (k)+

Ts

Rσ (Ts + τσ )

{

(

kr

τr
− jkrω

)

−→
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}

(13)g = |T∗ − Tp(k+ 1)| + w|
−→
ψs

∗ −
−→
ψs

p(k+ 1)|

(14)w =
Tnorm

ψnorm

(15)(xT)m =|T∗
e − Te(k+ 1)m|

(16)(xψ)m =|ψ∗
s − ψs(k+ 1)m|

(17)Xij =











(xT)s0 (xψ)s0
(xT)s1 (xψ)s1

...
...

(xT)s6 (xψ)s6











(18)Y+ =
{

(maxXij|j ∈ J) or (minXij|j ∈ J̄)
∣

∣

∣

i=1,2,...7

}

(19)Y− =
{

(minXij|j ∈ J) or (maxXij|j ∈ J̄)
∣

∣

∣

i=1,2,...7

}

(20)J =
{

j = 1, 2, . . . n
∣

∣

∣
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}

(21)J̄ =
{

j = 1, 2, . . . n
∣

∣

∣
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}

(22)Ui =

n
∑

j=1

wj
X∗ − Xij

X∗ − X̄j
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where wj represents the weighting of jth iteration. In Vik-MPTC weights are selected on given relation,

The VIKOR index, denoted as Qi , is utilized for the purpose of identifying the most optimal selection among the 
options that are now available. This index can be mathematically represented in the following manner.

where U∗ = min(Ui) , Ū = max(Ui) , R∗ = min(Ri) , R̄ = max(Ri) , and v is the group utility factor normally set 
to 0.580.

Proposed weighting factor tuning based on entropy method
The proposed method is based on well known multi-criteria decision-making (MCDM) algorithm called entropy 
method75,81. It is based on the notion of information entropy that measures the uncertainty of a system. In the 
context of FCS-MPTC, entropy is used to measure the degree of heterogeneity among the controlled variables. 
The weighting factor tuning is also based on the measure of this heterogeneity level. The weight is adjusted in 
such a way that highly diverse criteria gets equally importance whereas in similar criteria one variable may get 
different importance than the other variables.

In the first step, a data set is obtained based on available alternatives and required criteria. After that, the 
data set is normalized to a scale of zero to one. In the proposed work, the data set consists of torque and flux 
errors as follows.

The data set is formed by torque and flux errors as expressed in

where X data set contains different magnitudes and units of the control variables. In the next step, normalization 
is obtained for the data set by using the following expression.

In the next step entropy is obtained by using expression (29) on a normalized data set.

where m is the number of control objective. The deviation rate of the degree of entropy is given as:

Finally, entropy weight can be obtained by using:

where j is the number of control objectives and in this work it is equal to 2. The weights are denoted as w1 and 
w2 for torque and flux, respectively. The obtained weighting factors will be used in the following cost function.

To explain the working of the method, an example is presented here. The torque and flux errors used in this 
example are randomly taken from a single sampling instant under steady state condition.

A characteristic matrix is formed from above errors as:

(23)Ri = max|j

[

wj
X∗ − Xij

X∗ − X̄j

]

(24)
n

∑

j=1

wj = 1

(25)Qi = v

[

Ui − U∗

Ū− U∗

]

+ (1− v)

[

Ri − R∗

R̄− R∗

]

(26)(gT )n = |T∗
e − Te(k+ 1)n|

(27)(gψ)n = |ψ∗
s − ψs(k+ 1)n|

(28)X = [(gT)n (gψ)n]

(29)Nij =
Xij

∑n
i=1 Xij

i = 1, 2, . . . 7

(30)Ej = −
1

ln(m)

m
∑

i=1

Nij ln(Nij)

(31)dj = 1− Ej j = 1, 2, . . .m

(32)wj =
dj

∑n
i=1 dj

(33)C = w1|T
∗
e − Te(k+ 1)m| + w2|ψ

∗
s − ψs(k+ 1)m|

(34)gT =[1.6800 0.9950 1.7330 3.0950 3.2490 2.1030 1.0270]

(35)gψ =[0.0047 0.0042 0.0253 0.0157 0.0145 0.0347 0.0256]
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The data set is normalized by using (29):

The degree of entropy, deviation of entropy, and entropy weight can be obtained using (30), (31), and (32):

The complete block diagram of the proposed method is shown in Fig. 4.
The figure shows that the system consists of main blocks of predictive control. The proposed method for 

tuning of weighting factor works in the following four steps: 

	 i.	 Obtaining error data of the control variable (26), (27), and (28)
	 ii.	 Normalizing the error data because of different variables (29)
	 iii.	 The deviation rate of the degree of entropy obtained (30) and (31)
	 iv.	 Entropy weight is obtained to fit in the cost function (32)

These steps are also summarized in a block diagram in Fig. 4. The flowchart of the proposed method is shown 
in Fig. 5. The proposed method consists of the following phases that are error calculation, formation of data 
set by using errors of control objectives, normalization of the data set, derivation of the degree of entropy, and 
determination of weights

(36)X =

















1.6800 0.0047
0.9950 0.0042
1.7330 0.0253
3.0950 0.0157
3.2490 0.0145
2.1030 0.0347
1.0270 0.0256

















(37)N =

















0.1210 0.0374
0.0717 0.0337
0.1248 0.2031s
0.2230 0.1260
0.2340 0.1162
0.1515 0.2783
0.0740 0.2054

















(38)Ej =[0.8932 0.8430]

(39)dj =[0.1068 0.1570]

(40)wj =[0.4050 0.5950]

Figure 4.   Proposed weighting factor selection method based on entropy technique.
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Experimental results
The experimental test setup depicted in Fig. 6, serves as a means of validating the efficacy of the proposed meth-
odology. The apparatus comprises a dSpace DS1104 controller board, an FPGA board, a speed encoder, an IGBT 
module, gate drivers, a DC voltage source, and an induction motor. The controller board comprises an ADC, a 
DAC, a DSP floating point processor, and an incremental encoder. Programming of the controller is performed 
using the C programming language, the dSpace controller function library, and associated software to attain the 
desired results. The FPGA board generates the blanking time for the IGBTs and gate driver circuit. The speed 
encoder and current sensor are used to measure the speed of the induction motor and its current. A hysteresis 
brake is utilized in conjunction with the motor to serve as a load, with a proportional amplifier controlling the 
brake. The control algorithm comprises an outer speed load and an inner torque loop; therefore, two different 
timers are employed with different sampling times. The newly proposed weighting factor selection technique 
(Ent-MPTC) is compared with conventional model predictive torque control (Con-MPTC)82 and VIKOR-based 
weighting factor technique (Vik-MPTC)48,80,83

The parameters of the induction motor and controller are given in Table 3. The experiments have been 
performed on a sampling time of 60µsec , and the drive’s performance is evaluated under various tests, and the 
corresponding results are given here.

Transient response
The transient response of Con-MPTC, Vik-MPTC, and proposed Ent-MPTC under speed reversal conditions 
at a rated speed of 120 rad/s without load was obtained on the IM drive with the current model estimator (CM). 
The response of the speed reversal test is depicted in Fig. 7. Each plot contains reference speed, phase a stator 
current, electromagnetic torque, and stator flux magnitude. The speed reverses from 120 rad/s at time 1.5 sec to 
−120 rad/s at time 1.8 s . The stator reference flux is assumed to be constant at a rated value of 0.9Wb . It can be 
observed from comparing these results that the Ent-MPTC provides comparable performance to Con-MPTC and 
Vik-MPTC. Since Con-MPTC operates on a nominal static weighting factor and Vik-MPTC tunes the weighting 

Figure 5.   Flow chart diagram of entropy based weighting factor tuning.

Figure 6.   Experimental setup.
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factor online, the proposed method outperforms the flux regulation. The current distortion can be observed in 
Con-PTC and Vik-MPTC compared to Ent-MPTC.

The experimental results of the no-load test under reference speed of 120 rad/s are shown in Fig. 8. The no-
load test of Con-MPTC, Vik-MPTC, and Ent-MPTC shows that the proposed weighting factor tuning method 
performs satisfactorily as compared to the other two techniques.

Steady state response
The steady-state response of Con-MPTC, Vik-MPTC, and Ent-MPTC was recorded at a rated speed of 120 rad/s , 
and a load of 8Nm was applied to the drive. Figure 9 presents the flux trajectories under steady-state condi-
tions. It can be observed from the trajectories of the three methods that the average flux ripples are 0.092Wb 
and 0.085Wb for Con-MPTC and Vik-MPTC, respectively. Whereas, Ent-MPTC has average flux ripples of 
0.045Wb , representing an almost 50% reduction in flux ripples compared with Con-MPTC and Vik-MPTC. 
The steady-state performance of the three given techniques is compared according to THD and average torque 

Table 3.   Motor and controller parameters.

Parameters Value Parameters Value

Rated torque, Tnorm 10Nm Base speed, ωbase 120 rad/sec

Stator resistance, Rs 3� Frequency, f 50Hz

Stator inductance, Ls 342mH Total viscous friction, B 0.0042Nm sec

Rotor resistance, Rr 4� Motor power, P 1.5 kW

Rotor inductance, Lr 351mH Nominal weighting factor, �norm 10.53

Mutual inductance, Lm 324mH Torque loop sampling time, Ts 60µsec

Total inertia, J 0.01178 kgm2 Speed loop sampling time, Ts 4msec

DC source, vdc 460V No. of pole pairs, p 2

Rated flux, ψnorm 0.9Wb

Figure 7.   Experimental response of speed reversal test of motor under no-load condition for speed. (a) Con-
MPTC, (b) Vik-MPTC, (c) Ent-MPTC.

Figure 8.   Experiment result of no-load response of IM drive at speed of 120 rad/s . (a) Con-MPTC, (b) Vik-
MPTC, (c) Ent-MPTC.
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ripples. The results of phase a current and torque profiles of three techniques are given in Fig. 10. It is evident from 
the current profile that Ent-MPTC shows THD=5.41% as compared with 8.80% and 7.50% in Con-MPTC and 
Vik-MPTC, respectively. The average torque ripples of the three techniques are compared in Fig. 10b. The reduc-
tion in average torque ripples validates the effectiveness of the proposed method. A 40% reduction is achieved 
in Ent-MPTC compared with Con-MPTC, whereas a 28% reduction in average torque ripples compared with 
Vik-MPTC. The proposed method’s improved average torque ripples, average flux ripples, and THD prove the 
effectiveness over the Con-MPTC and Vik-MPTC.

To compare the steady-state performance of the proposed method with Conv-MPTC and Vik-MPTC at 
nominal load torque, the drive was tested at different speeds of 46 rad/s, 96 rad/s, and 120 rad/s, respectively. At 
each speed, average torque ripple, average flux ripple, switching frequency and THD are recorded and presented 
in Table 4. These results show that the proposed method outperformed the other two methods in terms of all 
performance metrics. This table validates the effectiveness of the proposed method with improved performance 
due to dynamic online tuning of the weighting factor.

It is also important to show how the weights are optimized by the entropy technique and how the errors are 
reduced with time. Figure 11a,b represent values of the torque and flux errors at each sampling instant during 
steady state operation of the drive. It can be observed from the figure that errors remain higher during the initial 
instants of time but gradually decrease as the time progresses. The weighting factors are tuned at each sampling 
instant interval with higher priority given to the controlled variable with relatively higher error. Initially, both 
control variables are given almost equal relative importance and weights are almost equal to 0.5. As the control-
ler reduces the errors, the weights keep on changing for improving the performance. These weights are captured 

Figure 9.   Flux trajectories under steady state condition of IM drive. (a) Con-MPTC, (b) Vik-MPTC, (c) Ent-
MPTC.

Figure 10.   Torque and current profile under steady state condition for Con-MPTC, Vik-MPTC and Ent-
MPTC. (a) Current profile, (b) Torque profile.
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and shown in Fig. 12a,b. It can also be obsered that as the torque error reduces so does its weight to put more 
emphasis on flux error hence confirming the dynamic tuning of weights.

Computational time
The computation time is recorded to assess the average execution time of three methods on the DS1104 con-
troller board. The average computational time is divided into the measurement of control variables, prediction 
of flux and torque, determination of weighting factor, and last is cost function optimization. The Con-MPTC 
takes less computational time than the other two techniques due to the nominal weighting factor. The average 
computational burden of Con-MPTC, Vik-MPTC, and Ent-MPTC is given in the Fig. 13.

It is evident from the figure that Con-MPTC, Vik-MPTC, and Ent-MPTC take average computational time 
of 29.05µsec , 45.25µsec , and 32.5µsec , respectively. Con-MPTC takes minimum computational time due to 
the use of nominal weighting factor, and Ent-MPTC takes 28% less average computational time as compared to 
Vik-MPTC because of a simple algorithm to determine weighting factors.

Loaded response
In this test, the IM drive is loaded with a load torque of 8Nm at t = 0.5 sec at a speed of 120 rad/sec . The wave-
form of reference speed, phase a stator current, electromagnetic torque, and stator flux are depicted in Fig. 14. 
It is evident from the figure that all the methods have similar transient response with a maximum current of 
5A . However, torque and flux ripples are significant in Con-MPTC and Vik-MPTC as compared to Ent-MPTC. 
In the starting, Con-MPTC and Vik-MPTC have THD of 10.47% and 10.04%, respectively. Similarly, both 
techniques have average flux ripples of 0.09 and 0.05Wb . However, in the case of Ent-MPTC, it has a THD of 

Table 4.   Performance comparison of proposed method with Con-MPTC, Vik-MPTC and Ent-MPTC.

Speed (rad/s) MPTC method Trip (Nm) Fluxrip (Wb) fsw(kHz) THD ( %)

46

Conv-MPTC 0.38 0.099 7.378 11.8

Vik-MPTC 0.31 0.089 7.182 10.78

Emt-MPTC 0.25 0.081 6.572 9.12

96

Conv-MPTC 0.35 0.098 11.420 9.18

Vik-MPTC 0.30 0.091 11.280 9.02

Ent-MPTC 0.21 0.071 10.170 4.41

120

Conv-MPTC 0.25 0.092 11.860 8.90

Vik-MPTC 0.21 0.085 11.800 7.45

Ent-MPTC 0.15 0.045 11.130 4.06

Figure 11.   Minimum torque and flux errors under 120 rad/s for k-sampling instants. (a) Torque error response, 
(b) Flux error response.
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6.32% and 0.02Wb average flux ripple. The speed reduction is also observed in all the techniques due to the IM 
drive’s loading effect.

The transient performance of the proposed method in the loaded condition is comparable with conventional 
and Vik-MPTC techniques and a slight improvement is also observed in terms of average flux ripples. To over-
come the loading effects on the mechanical speed, a disturbance rejection technique can be incorporated in the 
outer speed loop.

Figure 12.   Weights at k sampling instant. (a) weighting factor for torque, (b) weighting factor for flux.

Figure 13.   Average computational time of Con-MPTC, Vik-MPTC and Ent-MPTC.

Figure 14.   Loaded response of IM drive at speed of 120 rad/s and load of 8Nm applied at t = 0.5 sec . (a) Con-
MPTC, (b) Vik-MPTC, (c) Ent-MPTC.
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Parameter variation
The performance in steady-state conditions is negatively impacted by the parameter variations in the system 
model, given that the MPC methodology depends on the explicit system model to achieve control objectives 
through prediction. In the subsequent part, the robustness performance of Con-MPTC, Vik-MPTC, and Ent-
MPTC, has been evaluated and compared by varying the stator resistance Rs , rotor resistance Rr , and mutual 
inductance Lm . The variation in Rr is very significant as it directly affects the rotor time constant τr = Lr

Rr
 , which 

in turn has a negative impact on the accuracy of the predictions. The variation in τr also deteriorates the perfor-
mance of rotor speed controller.

In this work, the performance of the three methods is compared under (i) the nominal value of the param-
eters (ii) 1.5 times of nominal value (iii) 2 times of the nominal value. The average torque ripple, flux ripple, and 
THD are recorded under the parameter variations. In Fig. 15, results of Lm variation are given for conventional 
PTC. At nominal Lm , the average torque ripple, average flux ripple, and THD are 0.56Nm , 0.07Wb , and 8.9%, 
respectively. As it can be noted in the figure, increasing Lm from its nominal value to 1.5 (times 50% increase) 
and 2 times ( 100% increase), negatively impacts the performance of the controller. When the increase in Lm is 
100% , the performance becomes very poor with 4.7Nm average torque ripple, 0.4Wb average flux ripple and 58% 
THD. The reason behind this deterioration is the use of fixed weighting factor in the Con-MPTC.

Impacts of Lm variations on the performance of Vik-MPTC are presented in Fig. 16. It can be seen from the 
obtained results that Vik-MPTC has 0.5Nm average torque ripple, 0.02Wb average flux ripple and 3.9 THD at 
nominal Lm . Whereas, after Lm is changed beyond its nominal value, the performance of the controller deterio-
rates. For 100% increase in Lm , average torque ripple is 1.57Nm , average flux ripple is 0.3Wb and THD is 32.5%. 

Figure 15.   Experimental results of mutual inductance variation from nominal to 50% and 100% for Con-
MPTC.

Figure 16.   Experimental results of mutual inductance variation from nominal to 50% and 100% for Vik-MPTC.
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Similarly Fig. 17 represents the effects of the variation of Lm on the performance of the drive. Ent-MPTC provides 
lower THD as Lm varies from nominal value to 100% increase as compared with Con-MPTC and Vik-MPTC. The 
proposed Ent-MPTC provides better control over the 100% increase of Lm . It can be concluded that variation in 
Lm in Ent-MPTC produces lower disturbance than Con-PTC and Vik-MPTC. This is due to a simple algorithm to 
determine the weighting factor and the selection of optimal weights of control objectives in the proposed method.

To see the effects of variation in Rr and Rs on the performance of different controllers, the drive was tested 
under full load and rated speed. The parameters were changed from their nominal values to 2.2 times the nominal 
values. The results of these tests are presented in Fig. 18. From the presented results, it can be seen that the vari-
ations have not much effect on the performance of three controllers. The torque and flux ripples do not change 
to a greater extent while these parameters vary. However, the ripples remain lowest for Ent-MPTC as compared 
to other controllers.

Figure 18a,b represents effect of rotor resistance over average torque and average flux ripples. The result was 
compared to Con-MPTC, Vik-MPTC and Ent-MPTC. Although all the methods exhibits lower effect on average 
torque and flux ripples, however Ent-MPTC presents lower torque and flux ripples as compared with Con-MPTC 
and Vik-MPTC. Similarly Fig. 18c,d shows the performance of the derive under variation of stator resistance. It 
can be observed from figure that the Ent-MPTC outperform over the Con-MPTC and Vik-MPTC and variation 
in Rs does not effect the average flux ripples and it also offers lower average flux ripples as compared to Con-
MPTC and Vik-MPTC. These results validate the robustness of the proposed method.

Load and speed variations
The effect of load torque and speed variation on the system’s average switching frequency and THD are observed 
and depicted in Figs. 19 and 20, respectively. The speed and load torque varies from zero to rated value in steps 
of 20% whereas speed is gradually increased in steps of 20 rad/s . It is concluded from the figure that three of the 
PTC methods have almost the similar switching frequency patterns. However, Ent-MPTC shows lower switching 
frequency at high speeds and higher loads. In Ent-MPTC, the switching frequency varies up to 10 kHz ; however, 
it is up to 12 kHz in Con-MPTC and Vik-MPTC. The cross section of Fig. 19a–c is shown in (d). This cross sec-
tion is taken at load torque of 1.6Nm for Con-MPTC, Vik-MPTC and Ent-MPTC. It can be observed from the 
figure that proposed method works on lower switching frequency compared with Con-MPTC and Vik-MPTC. 

Figure 17.   Experimental results of mutual inductnace variation from nominal to 50% and 100% for Ent-MPTC.

Figure 18.   Effect of stator and rotor resistance variation on average torque and flux ripples. (a) Torque ripples 
under Rr variations, (b) Flux ripples under Rr variations, (c) Torque ripples under Rs variations, (d) Flux ripples 
under Rs variations.
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Similar to switching frequency, the effect of load torque and speed variation is observed on THD. THD of Con-
PTC at full load and low speed is 25% , and at the same position, Vik-MPTC and Ent-MPTC have 26% and 20% , 
respectively. The THD of Con-MPTC varies from a maximum of 24% to a minimum of 8.9% with the variation 
of speed and load, as depicted in the figure. Whereas in the case of Vik-MPTC, THD varies from 25 to 7.46%, 
and higher THD fluctuations can be seen in Con-MPTC and Vik-MPTC. In Ent-MPTC, THD varies from a 
maximum of 20% to its minimum value of 4.06% at full load and speed region. Furthermore, Ent-MPTC has 
minimum fluctuations in THD over a wide load and speed range. That is due to the optimal selection of the 
weighting factor in Ent-MPTC.

Conclusion
Weighting factor selection has remained a challenging and complex task in finite set model predictive control 
applications. In this paper, a multi-criteria-decision-making (MCDM) based entropy method is used to deter-
mine the optimal weighting factor. The effectiveness of the proposed method is verified by an experimental setup 
based on dSpace dS1104 controller. The experimental results of the entropy method are compared with conven-
tional MPTC and another MCDM-based technique known as the VIKOR method. The superiority of the pro-
posed method is validated under steady state operation by 38% reduction in THD as compared with conventional 
MPTC and 27% reduction in THD as compared with Vik-MPTC. The average flux ripples reduced upto and 51% 
compared with conventional MPTC and 47% reduction with Vik-MPTC. Similarly, a 40% reduction in average 

Figure 19.   Switching frequency with variation of load torque and speed. (a) Con-MPTC, (b) Vik-MPTC, (c) 
Ent-MPTC, (d) Cross-sectional comparison fsw of three methods at TL=1.6Nm.

Figure 20.   Total harmonic distortion (THD) with variation of load torque and speed. (a) Con-MPTC, (b) Vik-
MPTC, (c) Ent-MPTC.
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torque ripple was observed as compared with Conv-MPTC, and a 28% reduction was recorded as compared 
with Vik-MPTC. Moreover, the proposed method reduces the computational burden up to 28% compared to 
Vik-MPTC. The proposed method also performed better in different speed ranges and showed efficient dynamic 
and steady state response as compared to Conv-MPTC and Vik-MPTC. Additionally, it has the advantage of 
robustness against Con-MPTC and Vik-MPTC by parameter variation of Lm , Rr and Rr . It is concluded that most 
online weighting factor tuning techniques pose a a higher computational burden, but the proposed technique 
can incorporate more than two control objectives into the cost function without increasing the computational 
burden due to its simple algorithm.

Data availibility
Data generated or analyzed during this study is provided within this manuscript.
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