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Gregory J. Fonseca®, Trey Ideker?’*, Hannah Carter?’"*" & Elizabeth A. Winzeler®2**

In vitro evolution and whole genome analysis has proven to be a powerful method for studying the
mechanism of action of small molecules in many haploid microbes but has generally not been applied
to human cell lines in part because their diploid state complicates the identification of variants that
confer drug resistance. To determine if haploid human cells could be used in MOA studies, we evolved
resistance to five different anticancer drugs (doxorubicin, gemcitabine, etoposide, topotecan, and
paclitaxel) using a near-haploid cell line (HAP1) and then analyzed the genomes of the drug resistant
clones, developing a bioinformatic pipeline that involved filtering for high frequency alleles predicted
to change protein sequence, or alleles which appeared in the same gene for multiple independent
selections with the same compound. Applying the filter to sequences from 28 drug resistant clones
identified a set of 21 genes which was strongly enriched for known resistance genes or known drug
targets (TOP1, TOP2A, DCK, WDR33, SLCO3A1). In addition, some lines carried structural variants
that encompassed additional known resistance genes (ABCB1, WWOX and RRM1). Gene expression
knockdown and knockout experiments of 10 validation targets showed a high degree of specificity and
accuracy in our calls and demonstrates that the same drug resistance mechanisms found in diverse
clinical samples can be evolved, discovered and studied in an isogenic background.

Abbreviations

AF Allele frequency

CNV Copy number variation

NGS Next generation sequencing
WES Whole exome sequencing

WGS Whole genome sequencing
CML Chronic myelogenous leukemia
IVIEWGA In vitro evolution and whole genome analysis
SNV Single nucleotide variant

TF Transcription factor

DOX Doxorubicin

GEM Gemcitabine

ETP Etoposide

PTX Paclitaxel

TPT Topotecan

AML Acute myeloid leukemia
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TKIs Tyrosine kinase inhibitors
MDR Multi-drug resistance
gDNA Genomic DNA

In human cells, methods for discovering genes that play a role in drug resistance or which encode drug targets,
especially for poorly characterized compounds, such as natural products, are limited. Genome-wide CRISPR-
Cas9 knockdown experiments'~ in the presence of a drug are useful to broadly implicate relevant genes, but
cannot readily reveal critical gain-of-function, single nucleotide alleles, such as imatinib-resistance conferring
mutations in BCR-AbI. Discovering common alleles in whole genome sequences of tumors from cohorts of
patients that have relapsed after drug treatment requires very large datasets and is complicated by patient het-
erogeneity. Furthermore, such studies also cannot be used on experimental therapies.

Work in other organisms has shown that in vitro evolution and whole genome analysis (IVIEWGA) is a
powerful method to discover both a comprehensive set of drug resistance alleles, as well as the targets of com-
pounds with unknown mechanisms of action*®. In this method, clonal or near clonal organisms are isolated
and then clones are subjected to increasing levels of a drug that inhibits growth. After selection, the organism is
cloned again. The genomes of resistant clones are then compared to the sensitive parent clone using next gen-
eration sequencing (NGS) methods. In organisms such as Saccharomyces cerevisiae®, Plasmodium falciparum®>,
Mycobacteria’, Trypanosomes®, and Acinetobacter baumannii® this method has been used to comprehensively
discover resistance conferring variants. Surprisingly, the data shows that typically only a small number of de
novo variants are detected after evolution. If multiple selections are performed on independent clones, the same
resistance gene will appear repeatedly, although often appearing with different alleles, providing a high level of
statistical confidence that the allele has not arisen by chance.

Many of the organisms on which IVIEWGA has been used with success have both haploid and diploid phases
of their lifecycle, which means that selections can be performed in a haploid stage. Selecting for resistant clones
in a haploid organism greatly simplifies analysis as a driver resistance allele will approach 100% frequency. In
addition, for loss of function alleles, only one mutation is needed (versus both copies). Although metazoans are
all diploid, haploid human cell lines are nevertheless available: HAP1, is a human chronic myelogenous leukemia
(CML)-derived cell line that is completely haploid except for a 30 megabase fragment of chromosome 15 °. HAP1
has been used for genetic studies because mutated phenotypes are immediately exposed!®-'>.

Using five different anticancer drugs (Doxorubicin, Gemcitabine, Etoposide, Topotecan, and Paclitaxel) as
examples, we show that in vitro evolution in HAP1 cells can be used to identify the molecular basis of drug
resistance in human-derived cells. Through our unbiased analysis of evolved clones, we detect a limited number
of genes that acquire SN'Vs or CNVs after prolonged, sublethal exposure to our selected xenobiotics. We further
demonstrate the power of the approach by using shRNAs and CRISPR-Cas9 to downregulate or reintroduce
selected alleles and demonstrate that this confers resistance or sensitivity to the drug which elicited the evolved
genomic change. Our work has implications for clinical intervention strategies to prevent the emergence of drug
resistance and tumor recurrence through gene mutations acquired through DNA damage from chemotherapeu-
tics or natural variants which exist and persist from the heterogenous tumor cell environment.

Results

Selection of compounds for resistance studies

Our previous studies have shown that evolution works best with potent inhibitors of cell growth. We therefore
sought to identify proof-of-concept compounds which would show 50% growth inhibition at concentrations of
less than 10 uM and ideally less than 1 pM. To do this, 16 readily-available compounds were tested for the ability
to reduce ATP levels (measured using CellTiterGlo) in HAP1 cells using a 48-h dose response assay. Although
sometimes longer incubation times can be used in dose response assays, especially for slow growing cell lines,
48 h provided a good signal to noise ratio for our purposes and longer incubation times were not considered.
The 16 compounds we tested had previously been tested against S. cerevisige. Some were older drugs derived
from natural products (e.g. rapamycin, topotecan) known to have activity against many different eukaryotic
cell lines. Others were modern cancer drugs, including the kinase inhibitors, lisitinib, imatinib and sorafenib,
which are predicted to act only against specific targets in specific cell lines. We include a separate section on
the types of drugs applicable to this method in the discussion. Only five drugs showed ECy, values between 5
and 340 nM (Fig. 1A,B, Table S1). These included doxorubicin (DOX, EC5,=95.50 + 54.56 nM), also known as
adriamycin, an anthracycline antibiotic that works by inhibiting topoisomerase II alpha (TOP2A)'%'7; gemcit-
abine (GEM, EC;,=34.12+27.83 nM), a synthetic pyrimidine nucleoside prodrug that is used against a variety
of hematopoietic malignanciesls’zo; etoposide (ETP, EC5,=338.60+39.72 nM), a semisynthetic derivative of
podophyllotoxin that also targets TOP2A and prevents re-ligation of the double-stranded DNA?; paclitaxel (PTX,
ECs,=19.43+3.40 nM) also known as taxol, an effective anticancer agent that targets tubulin, perturbing the
cytoskeleton and causing M phase cell-cycle arrest?, and topotecan (TPT, EC5y=4.81 £ 1.12 nM), a semisynthetic
water-soluble derivative of camptothecin that inhibits topoisomerase I (TOP1)*. Our HAP1 EC;, values were
similar to those previously reported for other CML cell lines (www.cancerrxgene.org #*°) with the exception of
etoposide, which appeared more effective in HAP1 cells (EC5,=338.6+39.72 nM) relative to other CML cell lines
(>1 uM in BV-173,KU812, EM-2, MEG-01, JURL-MK1, KCL-22, RPMI-8866, LAMA-84, K-562). As described
below, ETP resistance seemed to be associated with CNVs which could potentially explain some of the difference
between published values for diploid lines and these haploid cells.
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Figure 1. Experimental workflow. (A) Chemotherapy drug evaluation. ECs, dose response assays were
performed on 16 different chemotherapeutic agents (Table S1). Only drugs to which HAP1 cells were sensitive
(ECs value below 1 pM) were considered for IVIEWGA. (B) Chemical structures of the chemotherapy agents
ultimately used for IVIEWGA. ECs, values are presented as the mean +s.e.m., for n=3 biological replicates and
n=_8 with technical replicates per concentration point. (C) Clone selection. To ensure a homogenous genetic
background limiting dilution cloning was used to isolate individual cells prior to drug selection. For each drug
three independent selections were performed. Resistance was confirmed using dose-response assays (D) Drug
resistance was achieved in 7-30 weeks approximately (49 and 210 generations). The parental cell line and the
drug resistant lines were then sequenced.
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Evolution of resistance is readily achieved for all compounds

Our next objective was to create drug resistant lines. Although we have had difficulty creating resistant lines for
some drugs in some species (“irresistibles”), there is precedent for resistance to the drugs included here? 2.
To reduce the possibility of selecting mutations that were present in a non-homogenous population of HAP1
cells and to facilitate later genomic analysis, we first cloned the cells. This was accomplished by diluting cells to
an average density of ~ 0.5 cells per well in a poly-L-lysine treated 96-well plate (Fig. 1C) and then picking clones
from wells that contained single colonies. Selections were initiated with different parent clones for the different
drug-specific replicates (Fig. 1C, Fig. S1).

To create drug resistant clones, cells were first grown in tissue culture dishes (reaching 60-80% semi-con-
fluence) in the presence of sublethal concentrations of each drug. Most cell lines (DOX, GEM, TPT and PTX
resistant clones) were then subjected to a lethal concentration (~3-5 x ECs, value), killing more than 95% of
the cells. Treatment was removed until cells reached semi-confluence again (doubling every 22 h**) whereupon
drug at ~ the ECy; value was reapplied. Alternatively, for ETP-resistant clones, a stepwise selection method was
used whereby cells were repeatedly exposed to a concentration that killed around 50% of the cell population.
Drug concentration was increased by 5-10% every 5 days while keeping the growth rate at 50% of untreated
culture. Although others have used mutagenesis®', we have found that this can increase the rate of background
mutations, which would complicate an already difficult analysis. Because mutations will arise randomly during
long term cell culture, we attempted at least three independent selections for each drug, in each case starting
with an identical parental isolate (Fig. 1C). In a few cases, independent selections could not be achieved and
dependent clones with a shared lineage (DOX-R4a and DOX-R4b; PTX-R2a and PTX-R2b; TPT-R4a, TPT-R4b
and TPT-R4c) were collected. Resistance emerged after several months depending on the drug and the method
used (7-30 weeks approximately, 49-210 generations) (Fig. S1).

Once resistance was observed in the batch culture, we isolated clones from batch drug-selected cultures and
the drug sensitivity of the clone was measured and compared to the isogenic parent clones (Fig. 1D). We observed
an EC;, fold shift between 3.3 and 411.7 (Table S2) in paired comparisons. To demonstrate that the drug resist-
ance phenotype was stable, drug pressure was removed for 8 weeks (approximately 56 generations) and clones
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were retested for sensitivity. We observed no changes in the ECs, values, indicating that resistance phenotypes
were not due to transient adaptation.

Identification of putative resistance variants using next-generation sequencing

We next performed whole genome and exome paired-end read sequencing on the 35 cell lines (both drug-
resistant clones and their matched drug-sensitive parent clones). Our comprehensive IVIEWGA studies in
Plasmodium?®, have shown that stable drug resistance is most frequently conferred by SNVs in coding regions
and thus exome sequencing seemed initially the most cost-effective mechanism to find causal variants. How-
ever, gene amplifications, which contribute to 1/3 of drug resistance events in Plasmodium®, are more accurately
detected with WGS because exact chromosomal recombination sites, which may fall in intergenic regions, can
be reconstructed from WGS data. Because of falling costs over the course of the project, more samples (N =21)
were ultimately whole genome sequenced than whole exome sequenced (N =14).

Sequencing quality was high for all samples: alignment showed that, on average, 99.9% of 700 million WGS
(40 million WES) reads mapped to the hg19 reference genome with 86% of the bases covered by 20 or more reads
(Table S3). By comparing sequences of evolved clones to their respective parental clones, we discovered a total of
41,259 SNV (Table S4), of which 26,625 were unique (Table S5, “Methods”). The majority of variants in all cell
lines were non-coding (Tables S4, S5) and were evenly distributed with respect to chromosome length (Fig. S2).
Of the 26,625 mutations almost all (26,468) were present at allele frequencies (AF) of less than 85% relative to
their parent clone and would thus not be expected to be driver mutations, given that the parents were cloned (to
the best of our ability) before selections were initiated. The five drugs varied in the number of mutations, with
TPT having the highest overall numbers (Table 1).

We next developed a pipeline (Fig. S3A, “Methods”) to filter the 26,625 “called” mutations (Table S5) to a
final list of potential variants conferring drug resistance (Table S6). Our previous analyses in other species sug-
gested that variants presented in coding regions are more likely to contribute to drug resistance even though this
could exclude the variants associated with certain transcription factor (TF) binding sites. Therefore, our strategy
focused on mutations that were in exonic regions and were drug-specific (Fig. S3A). We further considered only
mutations likely to have a functional impact at the protein level (missense, nonsense, frameshift, start or stop gain

WGS WES
DOX (n=3) GEM (n=3) PTX (n=4) TPT (n=3) TPT (n=3) DOX (n=3) ETP (n=3) GEM (n=3) PTX (n=3)

Indels

%f::rgte‘fﬁs 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00
Frameshift 0.00 1.00 1.33 233 0.00 1.00 1.00 1.00 1.00
ffg;“;ﬁg dpl“ 0.00 0.00 0.00 033 0.00 0.00 1.00 0.00 0.00
{?;;ame inser- | .00 0.00 1.00 033 0.00 0.00 1.00 0.00 0.00
Intergenic 27.67 43.00 26.75 24.67 47.67 2.00 350 1.00 1.00
Intragenic 10.00 5.67 9.00 9.00 14.33 1.00 2.00 1.00 1.00
Intron 12.00 20.33 16.25 15.67 32.33 1.00 1.00 4.00 1.50
ifl’iiscfnrfrfr‘l’“ 0.00 0.00 0.00 103.3 0.00 0.00 0.00 1.00 0.00
SNVs

i ifsrra“rflggeel 0.00 1.00 1.00 0.67 0.00 1.00 0.00 1.00 133
Frameshift 1.00 2.00 1.00 2233 2.00 3.00 1.67 1.00 3.00
Inframe deletion | 0.00 0.00 1.00 0.00 0.00 0.00 2.00 0.00 0.00
Intergenic 898.33 1303.3 1416.6 258.67 2635.7 25.00 19.00 17.00 21.33
Intragenic 272.00 403.33 389.25 77.67 834.67 15.33 12.33 10.33 11.33
Intron 448.67 701.33 764.00 1283 1358.33 28.00 27.00 33.00 22,67
Missense 16.00 14.00 12.75 7.00 3433 15.00 19.67 21.67 15.67
Others 1.00 1.00 0.00 0.00 133 1.00 1.00 1.50 1.00
ilfllliscienrter:s):n 1.00 1.67 2.00 30.00 333 1.67 1.50 1.00 133
Start lost 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00
Stop gained 0.00 2.50 1.00 0.00 1.67 1.50 2.00 2.67 0.00
Stop lost 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Synonymous | 3.00 733 4.00 6.33 7.67 6.67 533 7.67 533

Table 1. Summary of average number of mutations. Number of selections performed with the drug is given
by n. SN'Vs and Indels were grouped according to snpEff sequence ontology annotations (“Methods”, Table S9),
and detailed counts per clone can be found in Table S4.
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or loss) which further reduced the number to an average of 35 and 23 nonsynonymous mutations for WGS and
WES, respectively (Fig. S3A). Reasoning that resistance driver mutations (e.g. those actually causing resistance)
would be present in 100% of the haploid cells in the sequenced culture, we selected only the variants with high
allele frequency (AF >0.85, as determined by sequencing read count). The top 2.5% of highest AF mutations
corresponded to an AF>0.85 (Fig. S3B). At this cutoff, the majority of cell lines harbored a candidate resistance
mutation. While selecting a cutoff represents a tradeoff with potentially missed relevant mutations, the full list of
mutations is provided in the supplement (Table S5). We did not note any strong correlation between read depth
and allelic fraction in our study (R2=0.06; Fig. S3C) and all of the final mutations selected for further analysis
had a read depth > 10 reads, with the majority supported by over 20 (Fig. S3D). Although some with AF <0.85
could confer a beneficial advantage to the cell, most are likely to be random mutations that arose during long term
culture. Finally, our experience with microbes has shown that genes which are not from gene families that are
known to be excessively variable and which show multiple, independently derived amino acid changes will have
high rates of confirmation using independent methods. Considering this allowed us to add in 4 genes (STARDS,
CYPIBI, SLCO3A1 and DCK) to our final list of 21 candidates (Table S6) despite these having slightly lower AF
numbers (e.g. DCK AFs were 0.78 or less). We also identified a group of 298 genes with lower AF values that
were either recurrent with disruptive alleles or were found in CNVs (Table S7).

Although they may theoretically play a role in resistance, we did not consider intergenic mutations nor
intron variants because their high numbers suggested they could more likely arise by chance. Altogether only
465 (~1%) of the 41,259 total SNVs were predicted missense mutations in our complete dataset (Tables S4,
S5) while 11,613 and 19,127 variants encoded a non-splice site intronic variant (underestimation due to WES
samples) or intergenic mutation, respectively. Despite this, we did find several intronic mutations in genes that
have a high probability of conferring resistance, including in SLCO31A (3) and TOP1 (1). We found two intra-
genic mutations upstream of DCK but one was in an unexpected line (PTX not GEM) and both were more than
100,000 kb away from DCK.

Somatic copy number variations (CNVs)

We next searched for CNVs (both amplifications and deletions) in our WGS and WES data using Control-
FreeC*. Overall patterns of broad and focal alterations across the drugs and conditions varied (Fig. S4A,
Table S8). Using a corrected p-value of less than 0.05, we identified 93 total amplification and 108 deletion
events, with most appearing in the TPT-resistant samples (123) (Table S8). The CNVs had an average size of 8.5
Mbp (stdev 19 Mbp), ranged from 15,000 bp to 152 Mbp (Fig. S4A) and covered ~ 3% of the genome, on aver-
age. More CNVs were called in WES samples because of sequencing gaps—even for WGS samples, some CNV's
were separated by short distances and were nearly contiguous (Fig. S4A). It is likely that some CNVs were also
missed in the WES data. The number of events was proportional to chromosome size, with the exception of the
Y chromosome, for which there were ~ 4 x more events (47) per unit length. Some CNV calls were supported by
paired end red data, for example, the one near WWOX (Fig. S4B,C).

Doxorubicin resistance is associated with mutations in TOP2A and a solute carrier transporter
To evaluate the approach, we next considered the set of SNVs and CNVs for each drug. For DOX, we had six
available selections from two different starting clones (WT-1 (WGS) and WT-5 (WES)) that were analyzed by
WGS (DOX-R1, DOX-R2, DOX-R3 (Fig. 2A)) and by WES (DOX-R4a, DOX-R4b and DOX-R5). High allele
frequency missense mutations were found in only 11 genes (Table S5). Of note, DOX-R2 and DOX-R3 carried
mutations in TOP2A at frequencies of 0.89 and 0.87, respectively. TOP2A is the known target of DOX?"* and
is known to play a role in drug resistance®*~*°. The amino acid mutation, Pro803Thr (Fig. 2B,C), sits within the
principal DNA-binding locus, the DNA-gate, a region conserved in type II topoisomerases (TOP2A and TOP2B).
It is also adjacent to the catalytic tyrosine (Tyr805), responsible for nucleophilic attack on DNA (Fig. 2B,C)*.
The Pro803 site is highly conserved in metazoans as is TOP2A generally (Fig. 2D). Examination of the human
TOP2A DNA-bound crystal structure suggests that Pro803Thr is a gain of function mutation that may block
DOX-intercalated DNA from binding, thus preventing the TOP2A/DNA/DOX adduct from poisoning the cell.
Alternatively, it could be a loss of function mutation, especially as knockdown of TOP2A activity has previously
been shown to confer DOX resistance in a Eu-Myc mouse lymphoma system*. Downregulation of TOP2A
using a pool of target-specific shRNA hairpins (confirmed by Westerns, Fig. 2E) resulted in a modest resistance
(~4X, Table 2) that was not equivalent to the resistance seen in the evolved cell lines (Fig. 2EG). Although these
knockdown results recapitulated those of others, we favor the hypothesis that the mutation is a gain-of-function
allele. Indeed, others have identified and validated the TOP2A Pro803 residue as important for drug resistance
using recombinant protein expression and a yeast model®.

We also observed some lines bore missense mutations present in 100% of the reads for several other attractive
but less well characterized genes; SLC13A4 (Gln165His, DOX-R4b), and SPG7 (Lys593Asn, DOX-R5, AF=1),
as well as one uncharacterized gene (AC091801.1, His13Asn, DOX-R4a) in the three different clones that were
subjected to WES and which were derived from WT-5. SLC13A4 is a solute carrier transport family member and
members of this general solute carrier family have appeared in selections conducted in microbes (e.g. the UDP-
galactose transporter and the AcetylCoA transporter®) and are also associated with cancer drug resistance.
The Gln165His mutation is located in a relatively disordered region of the protein making it less attractive as a
candidate. SPG7 (also called paraplegin) is a gene associated with spastic paraplegia in humans and would initially
not seem to be a plausible drug resistance gene. It encodes one subunit of the mAAA (matrix ATPase associated
with diverse cellular activities) protease, which is located in the mitochondrial matrix*'. In particular, mutations
to mitochondrial genes in C. elegans have been shown to confer resistance to hemiasterlin, an antimitotic agent
that functions by disrupting microtubule dynamics**. Human variants have been shown to elevate mitochondrial
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Figure 2. (A) DOX ECs, curves for DOX evolved clones using 8 technical replicates for each concentration (B)
Crystal structure of human TOP2A dimer (subunits shown in teal and pale cyan) in complex with DNA (4FM9)
and inset (C) showing location of Pro803 (green) in relationship to catalytic arginine and tyrosine (804, 805,
pink) and Mg2 + (red). (D) Alignments of the TOP2A sequence subsets showing conservation of the Pro803
residue (bold) in all vertebrates but not Caenorhabditis elegans (cele). (E) Western blot confirming that stRNA
gene depletion downregulates TOP2A protein level. stRNA #1 and shRNA #2 indicate independent biological
replicates with same pool. (F) ECs, curves of the WT and shRNA (shRNA #1) knockdown cell lines for TOP2A.
(G) Barplot of the WT and shRNA knockdown cell line (shRNA#1) for TOP2A. *p value <0.05. P values
determined by a paired ratio ¢ test with ECss determined by three independent biological replicates.

reactive oxygen species*’. shRNA knockout experiments were not successful with SPG7 and it seems likely that
CRISPR-Cas9 editing would be needed to confirm a predicted gain of function, but it remains an attractive can-
didate based on work in other species. SPG7 is one of 170 genes included in a set of drug metabolizing enzymes
and transporters, that also includes DCK (see below), CYP1B1, SLCO3A1 and ABCBI and shows an association
with resistance to docetaxel® and as with TOP2A, the mutated region is highly conserved across vertebrates.
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ECs, (nM) EC;, (nM)

Drug Sample Gene Amino acid change Type AF wT KD/KO/CI

RI,R2, R3 TOP2A Pro803Thr MS 0.89, 0.87 38.6443 164.3£43.9
DOX Rdb SLC13A4 Glyl65His MS 1 5294116 204.3+357

R5 SPG7 Lys593Asn Ms 1 NE*

R1, R2a, R3 WWOX 16923.1 CNV N 58+25 £29+117
PTX R2a, R2b ABCBI 7q21.12 CNV - s S

R2b, R6 SLCO3A1 Tle587Asn (R2b), Ala263Thr (R6) | MS 66433 51.5+9.9
EM RI,R2, R3 DCK SRzr)lf;Yng(g)) ?ﬁff;ﬁs((%) MS, FS 14317 521.7+583

R4, R5, R6 RRM1 11p15.4 CNV - 549458 1.8+0.1
10 R2 WNT3A 1942.13 (R2) CNV Z ND Z

R3 WDR33 P622T MS 1 2415£31.0 821.6£226.9

R, Rda, Rdb, Rdc CYPIBI Val432Leu; Asp217Glu (Rda,b,c) Ms 0.13, 0.40, 0.43, 0.42 63402 133403
- RL, R2, R3 WWOX 16923.1 CNV N 24403 228%27

Rda, Rb, Rdc TOP1 His81fs; 20q12 FS; CNV 1 ND -

Rda, Rdb, Rdc USP47 Argd08* Stop 0.38,0.57, 0.58 3.0540.2 1.07+0.07

Table 2. Validation (knockdown) results for selected genes. CNV, copy-number variant. MS, missense. FS,
frameshift variant, KO/KD/CI, knockout, knockdown, chemical inhibition (verapamil, ABCB1). ND: No

data: gene knockdowns were attempted but could not be achieved. NE: Not expressed (protein not detected by
Western blot, preventing validation). ECsy WT and EC5, KO/KD/CI are from matched pairs for the given drug
and represent the mean +s.e.m. (n=3 biological replicates).

Gemcitabine resistance is conferred by changes in DCK and RRM1 activity

Six selections were performed with GEM (starting from two different isogenic parents; WT-2 (WGS) and WT-3
(WES)). Among those, three GEM-resistant clones subjected to WGS (GEM-R1, GEM-R2 and GEM-R3) showed
an average ECs, shift of 300 to 400-fold (Fig. 3A, Table S2), and the clones showed no change in HAP1 sensitivity
to other drugs (Fig. 3B). As there were no candidate alleles with AF>0.85, we looked for genes that acquired
mutations in multiple selections, identifying deoxycytidine kinase (DCK) as likely important for resistance.
Interestingly, across cell lines several distinct mutations were found in DCK, with varying effects (missense and
frameshift) across several different positions (Table 2). In particular, the missense substitution, Ser129Tyr, present
in GEM-RI and GEM-R3, not only alters the amino-acid size and charge but also falls within the known GEM
binding pocket in a DCK/GEM crystal structure (1P62%'), making it an exceptionally strong causal candidate
for GEM drug resistance (Fig. 3C). GEM is a prodrug that only becomes pharmacologically active if it is phos-
phorylated by DCK*. A shRNA knockdown of DCK was performed and confirmed by western blot analysis
(Fig. 3D). Although the mutation appears to be a gain of function allele, downregulation of the DCK neverthe-
less resulted in a 36.5-fold increase in the EC; value compared to both the isogenic parent line and the shRNA
negative control (Fig. 3E,F; Table 2).

The three WT-3 derived GEM-resistant clones (GEM-R4, GEM-R5 and GEM-R6) subjected to WES were
not as resistant as those used in WGS (~ 6x versus ~400x, Fig. 3G, Table S2). Our work in other species with
well characterized compounds suggests this is not surprising and that even single nucleotide changes in the same
gene can yield different levels of resistance. For example, repeated selections with dihydroorotate dehydrogenase
(DHOD) inhibitors in a mouse model and in vitro culture gave rise to 13 different point mutations in parasite
DHODH with levels of resistance ranging from 2- to ~ 400-fold*. No high AF SNV were evident in these lines
and DCK exons were not mutated. On the other hand, the three WES clones contained 20 CNVs that could play
arole in drug resistance. Most CN'Vs were not shared between lines but GEM-R4, GEM-R5 and GEM-R6 all bore
overlapping CNVs of varying sizes on chromosome 11, with all three lines bearing 3-4 copies (p value=1.38e - 37
to 2.05e — 142) (Fig. S4). The chromosome 11 CNV was only found in GEM resistant lines and not in any of the
other evolved lines (in contrast to CNVs on chromosome 1 or 16, for example). While it is difficult to determine
which of the 140 genes in the smallest interval contribute to resistance, a known resistance mediator or target of
GEM, ribonucleotide reductase (RRM1I), was found within the amplified region. RRM1 is the largest catalytic
subunit of ribonucleotide reductase, a key enzyme catalyzing the transformation of ribonucleotide diphosphates
to deoxyribonucleoside diphosphates that are required for DNA synthesis and repair, and GEM is known to
inhibit DNA polymerase by inhibiting RRM1*. Furthermore, overexpression of RRM1 is associated with poorer
prognosis after gemcitabine treatment in non-small cell lung cancer*” and in bladder cancer®.

Western blot analysis of the evolved lines showed that the amplification was indeed associated with increased
protein levels (Fig. 3H). As an additional validation, we performed shRNA knockdown of RRM1I to reduce
protein expression (Fig. 31), followed by a dose-response assay comparing ECs, values of both wildtype HAP1
and RRMI knockdown lines, which showed that downregulation of RRMI made HAP1 cells 31-fold more sensi-
tive to GEM than their isogenic parent (Fig. 3],K). As expected RRM1 downregulation had no effect on HAP1
sensitivity to other drugs (Fig. S5).
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Figure 3. (A) GEM EC;, curves for first set of GEM evolved lines using n =8 technical replicates per
concentration point (B). EC, ratio matrix showing absence of multidrug resistance pathways in all GEM
resistant lines. (C) Crystal structure of human DCK (1P62) co-crystalized with GEM showing the position

of Ser129, ~ 11 A from GEM. D. Western blot confirming that shRNA gene depletion downregulates protein
levels for DCK. shRNA #1 and shRNA #2 indicate independent biological replicates with same pool. (E)

EC;, curves of the WT and shRNA knockdown cell lines for DCK. n=8 with individual technical replicates
overlaid for every concentration point. (F) Barplot of the EC;, WT and shRNA knockdown cell line for DCK
in presence of GEM. Significance (**p <0.05) determined by a paired ratio t test for three biological replicates.
(G) GEM EC;, curves for second set of GEM evolved lines. (H) Western blot for RRM I across all GEM samples
showing overexpression pattern of RRMI in GEM-R4-6 resistant clones. y-tubulin is used as a loading control.
I. Western blot confirming that shRNA gene depletion downregulates protein levels for RRMI. shRNA #1 and
shRNA #2 indicate independent biological replicates with same pool. S-actin is used as a loading control. (I)
EC; curves of the WT and shRNA knockdown cell lines for RRM1. (J) Barplot of the EC, control and shRNA
RRM1I knockdowns in presence of GEM. Significance (***p <0.01) determined by a paired ratio t test for three
biological replicates.

Paclitaxel resistance is mediated by transporters SLCO3A1 and ABCB1

Seven different paclitaxel lines were created with different resistance levels (PTX-R1, R2a, R2b and R3, ~ 10x
to PTX-R4, R5, R6, 50X) (Table S2). The first four (Fig. 4A) were subjected to WGS and the latter three to WES
(Fig. 4B). SNV analysis yielded no candidate genes (frameshift, indels, and missense mutations with an allele
frequency>0.85). From genes with an allele frequency of less than 0.85, SLCO3A1, encoding another solute
carrier transporter, was notable in that multiple missense alleles were identified (Ile587Asn, Ala263Thr). This
class of transporter is known to play a role in the import of drugs as well as hormones such as prostaglandin®.
Gene knockdown experiments showed that clones with loss of SLCO3A1 (Fig. 4C) resulted in HAP1 cells that
were ~ 8 times more resistant than their isogenic parents to PTX (Fig. 4D,E).
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Figure 4. (A) PTX EC;, curves for evolved lines with n =8 technical replicates (values are in Table S2) (B)
PTX ECs curves for a second independent set of evolved lines with n=8 technical replicates (C) Western blot
confirming shRNAs downregulate protein levels for SLCO3A. shRNA #1 and shRNA #2 indicate independent
biological replicates with same pool. (D) ECs, curves of the WT and shRNA knock-down cell lines. (E) Barplot
of the WT and shRNA knockdown cell lines for SLCO3A 1 for three independent biological replicates. (F) Raw
copy number profile for the amplification event containing protein coding genes including ABC transporters
(ABCBI1/ABCB4) PTX cell lines. The amplification region (chr7:84500000-87300000) had a higher number of
raw reads (labeled with blue dash lines) with default window size of 50 K bp. Genes associated with the CNV
event are depicted by black boxes underneath according to their position and sizes. ABCBI is highlighted

with red outline. (G) Barplot of ECy, of the PTX treated cell lines with and without verapamil and verapamil
alone showing sensitization in presence of verapamil an ABC inhibitor (n=4 technical replicates). (H) Control
barplot of ECs, of the GEM cell lines + verapamil showing no ECy, shift for GEM cell lines when co-treated with
verapamil. Unless otherwise noted, all data is represented by mean +s.e.m. with n =3 with individual biological
replicates overlaid. **p value <0.01. p values determined by two-tailed ¢ test.

Despite the lack of obvious coding SNVs, PTX-R1, R2a, R2b and R3 had a combined number of 47 CNVs,
while PTX-R4, R5 and R6 had 10 (the fact that more CNVs were found in WGS samples may reflect the ease
with which CNVs are called with WGS versus WES data). Potentially significant genes with CNVs were ABCBI
(MDR1) and ABCB4 (MDR3) (Fig. 4F) on chromosome 7 (PTX-R2a, R2b). ABCBI amplifications are associated
with clinical resistance to PTX*°. PTX-R4 and R5 showed structural variants on chromosome 1, and PTX-R4
show an amplification event on chromosome 17 that encompassed a variety of ABC transporters (ABCAS5, 6, 8,
9, 10). No compelling candidate genes were found in CNVs for PTX-R6. On the other hand, inspection with IGV
showed that read coverage was poor and that CN'Vs might not have been detected with WES data.

To confirm the importance of ABC transporters in PTX resistance, clones were treated with both PTX and
verapamil, a calcium channel-blocker which can reverse ABC-transporter mediated resistance®*2. We observed
a complete reversal of resistance in PTX lines (Fig. 4G). In contrast, we observed no reversal of resistance in
GEM lines (Fig. 4H), suggesting the resistance role of ABC-transporters is PTX-specific.
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Etoposide resistance is modulated by levels of WDR33

We created three independent ETP resistant clones, all of which were subjected to WES, and compared them
to one isogenic parent clone (WT-3) (23, 13 and ninefold increased resistance respectively (Fig. S6A, Table S2).
A single gene, WDR33 (ETP-R3), carried a SNV (Pro622Thr) with a 100% allele frequency. This gene encodes
for a member of the WD repeat protein family and is one of the six subunits of a multiprotein complex called
CPSF (cleavage and polyadenylation specific factor)®® involved in cell cycle progression, signal transduction,
apoptosis and gene regulation. Members of the CPSF complex have appeared repeatedly in in vitro evolution
experiments in parasites (both in Toxoplasma gondii and P. falciparum) and have been validated as resistance
mechanisms®***. While CPSF subunits may represent targets of specific drugs, point mutations in members of
the complex may also have a role in overcoming cellular stress that blocks cellular proliferation, Disruption of
WDR33 can lead to slowed DNA replication forks, which could potentially explain why its disruption protects
against topoisomerase inhibitors that block DNA unwinding. Lines in which WDR33 was knocked down via
shRNA acquired an ECs, value 3.4 times greater than its parental line or the scrambled control (Fig. S6B-D;
Table 2), despite an incomplete disruption of the gene by shRNA silencing. ETP-R3 also has a Cys56Phe WNT3A
mutation that is found in a highly conserved cysteine that participates in disulfide bond formation and whose
disruption abolishes WNT3A activity in recombinant assays”’. WNT3A has been linked to Etoposide resistance
as well as resistance to multiple chemotherapies®® (reviewed in Ref.>).

No clear candidate SNVs were evident for ETP-R1 and ETP-R2, which did not carry the WDR33 or WNT3A
mutations (Table S5). We also noted that all the three ETP resistant lines were cross-resistant to PTX, and DOX,
slightly cross-resistant with TPT (Fig. S6E,F) but showed no sensitivity to GEM (Fig. S6G). Despite the cross-
resistance, we did not observe any overrepresented genes with missense mutations or shared CNVs that were
found in the ETP, PTX and DOX lines but not GEM (Table S7). Because automated analysis of WES could miss
smaller CNVs and because ABCBI has been linked to both ETP, DOX and PTX resistance ® but not GEM, we
examined the ABCBI region manually using IGV. These data showed a large increase in read coverage for EPT-R1
and EPT-R2 relative to WT-3 parent line (Fig. S6H) at the same chromosome 7 ABCBI region amplified in the
PTX lines (Fig. 4F). As a final step, we tested PTX lines (PTX-R1, R2a, R2b and R3) that contain amplifications
of ABCBI, and they were indeed cross-resistant to ETP (Fig. S6I). These data show the limitations of WES data
and current automated algorithms. Deciphering the contributions of amplified genes in the absence of a rich
literature may require other technologies such as genome-wide knockdown or overexpression libraries.

Topotecan resistance is associated with complex alterations in TOP1, deletion of WWOX and
SNVs in cytochrome p450s (CYP1B1)

The six TPT samples were derived from four independent selection events (TPT-R4a-c are clones from the same
selection with levels of resistance ranging from 10 to 20x; Table S2) and all six clones were subjected to WGS
together with their parent clones (WT-6 and WT-7).

For TPT-R4a-c lines (Fig. 5A), 268 alleles were present with AF>0.85, but of these, only six were coding
mutations and the rest were intergenic. Three of the six coding mutations were frameshift mutations (His81)
with AF=1in TOPI (Fig. 5B, Fig. S7A), the known target of topotecan®’. The His81 frameshift mutation, which
introduces a premature stop codon, was confirmed by examining the read alignments (Fig. S7A) and by the
absence of the full-length protein using N-terminal antibodies (Fig. 5C). Because there were also complex
structural variants in the region (Fig. 5D, Fig. S7B) we also sequenced the 5' cDNA through the His81 frameshift
for all three lines and as well as the parent line and confirmed the two-base deletion in the mutant as well as
homozygosity in TPT-R4a-c evolved lines. We also observed a decrease in mRNA expression with TPT-R4a-b
showing a statistically significant decrease in TOP1 mRNA expression, relative to TPT-WT (Fig. S8). It has been
previously shown that a targeted RNAi suppression of Top1 produces resistance to camptothecin, a close analog
of topotecan®’. Interestingly, of the 22 TOP1 frameshift or nonsense mutations in the COSMIC tumor database,
6 were located within a 30 amino acid span (of 765 total) that includes His81 (exon 4), suggesting likely clinical
relevance®’. The probability of this distribution by chance is 9.65x 107

No clear coding SNVs with a high allele frequency were obvious in TPT-R1, R2 and R3 (Fig. 5E) but we
noted multiple SNVs (Asp217Glu from TPT-R4a, b, c and Val432Leu from TPT-R1) in CYP1B1, which encodes
a cytochrome p450 isoform. Overexpression of CYP1B1 has previously been associated with TPT resistance®'.
TPT resistant lines (TPT-R1, R2 and R3 also showed large chromosomal abnormalities at WWOX (Fig. 5F)
with a clear deletion of the WWOX gene region (chr16:78569166-78792736, exon7 and 8). WWOX bears a
well-known fragile site (FRA16D) and encodes a putative oxidoreductase. The complete absence of WWOX
protein was confirmed by Western in TPT-R1, 2 and 3 (Fig. 5G). Interestingly, lower levels of WWOX were also
observed in TPT-R4a-c, which could be a consequence of other cis or trans variants in this cell line and might
also contribute to this level of resistance. Knockdown of WWOX by shRNA resulted in marked resistance to TPT
(Fig. 5H,I). WWOX acts as a tumor suppressor and plays a role in apoptosis. Its disruption may prevent TPT-
induced apoptosis, promoting cell survival in the presence of TPT®>. WWOX disruption also resulted in resistance
to PTX (Fig. 5]), and as reported by others who examined WWOX-transfected epithelial ovarian cancer cells®.

Discussion and conclusions

Here, we show for the first time that in vitro evolution and whole genome analysis (IVIEWGA) can readily lead to
the identification of drug resistance mechanisms in human cells. This method is designed to identify the targets
of drugs that block cellular proliferation and could be used on any compound that has an antiproliferative effect,
including chemotherapies such as asparaginase. The method could also theoretically be used with biologics such
as a monoclonal antibodies or antisense oligonucleotides. In drug development, it could be used to demonstrate
on-target activity. It would not be as useful on compounds that only change cellular signaling or those that alter
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Figure 5. (A) TPT EC;, curves for TOP-R4a,b and c. (B) Transcript sequence (cDNA) and protein sequence for
TOP1 transcript for normal (top) and TPT 4a, b and c. The figure shows only part of the cDNA (position 469-
504) and protein sequence (position 75-86) for TOP1 at the affected exon (Exon 4, ENSE00001037776). The
frameshift deletion of nucleotides ‘CAT’ to ‘C’ observed in TPT samples (TPT-R4a, R4b, and R4c) is predicted
to give a frameshift at amino acid 81 (His, red highlight in normal). Amino acids affected by the frameshift
deletion are highlighted in red. (C) Western blot TOP1 protein depletion in evolved lines. (D) Schematic
showing complex read depth patterns around TOPI. (E) TPT ECs, curves for evolved TPT-R1, R2 and R3.

(F) Schematic of chrl6 reads around WWOX for TPT-R1, R2, and R3 compared to the WT chromosome 16
parental cell line. Blue arch represents a deleted region. WWOX below shows the exonic (black lines) and
intronic (white box) regions of the gene. The start of the deletion event is also close to a known fragile site
(orange dashed line). (G) Western blot showing WWOX protein levels in TPT resistant clones. (H) Western blot
shows downregulation of protein levels for WWOX in shRNA samples compared to WT and scrambled control.
shRNA #1 and shRNA #2 indicate independent biological replicates with same pool. Barplot of EC, control (wt)
and WWOX shRNA knockdowns for TPT (I) and PTX (J). EC;, data is represented by mean +s.e.m. withn=3

biological replicates and 4-8 technical replicates. **=p <0.05. p values determined by ratio, paired two-tailed ¢
test.

the immune function, like prednisolone. Our results show in vitro resistance acquisition and provide a framework
for the determination of chemotherapy resistance alleles that may arise in patients.

Our work using IVIEWGA in pathogens (see Ref.** for a review) guided our pipeline development: We
focused on protein coding alterations that arose in association with a single treatment condition, that were
nonsynonymous, occurring repeatedly and were high allele frequency. We also removed alleles for genes that are
known to mutate frequently, like odorant receptors. Overall, our results are similar to what we have observed in
eukaryotic pathogens with a mix of CNVs and single nucleotide variants giving rise to resistance.
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Because of the substantially greater costs associated with WGS, here we did evaluate both WES and WGS
sequencing methods. Despite a higher likelihood of discovering all changes by WGS, the disadvantage of WGS
is cost and computational time. While human WES data can be analyzed on a laptop, human WGS data files
are large and difficult to handle, computationally. One potential strategy is to perform low pass WGS for CNV
detection and WES for SNV detection on all samples.

The biggest disadvantage of using WES is that CN'V's will be harder to call. This is partly for statistical reasons
with many reads that support CNV calls located outside of coding regions in WGS samples. In addition, if one
sequences over the exact location of the recombination event (or the start or end of the deletion) one can obtain
additional support for location calls via split read analysis of paired-end libraries. In addition, one can extract
the sequence of the short read and reconstruct the exact recombination breakpoint, as shown in Fig. S3. This
would not be feasible with whole exome sequencing. Recently it was shown that CNV detection tools perform
poorly on WES cancer genome samples. Comparative analysis showed a low consensus in CNV calling tools
with moderate sensitivity (~50% to ~80%), fair specificity (~70% to ~94%) and poor FDRs (~27% to ~60%).
Also, using simulated data these authors observed that increasing the coverage more than 10x in exonic regions
did not improve the detection power®. Of course, detecting CNV:s is likely to be more challenging in diploid
genomes, than haploid genomes. In support of this, we were able to identify and validate the RRM1 amplification
event in GEM-R4, 5 and 6, which were only subjected to WES. In addition, in yeast, it appears CN'V's are much
less important than SNV in driving drug resistance as well: in a more comprehensive in vitro evolution study
in yeast®® with 80 different and 355 whole genome sequences we observed only 24 CNVs, including apparent
aneuploidy (11 times, occurring in 10 clones) and small, intrachromosomal amplifications (13 times, occurring
in 13 clones) in our set of 355 whole genome sequences .

A lesser disadvantage of WES is the rare possibility that resistance is conferred by an intergenic mutation,
which would be missed by WES data. GWAS studies have frequently identified noncoding variants as important
for phenotypes in the human population. It is likely that most of the mutations that are evolved here would have
a negative impact on fitness and would not be tolerated in the germline and thus would not appear in human
GWAS studies®. Our work in other organisms has shown that almost all resistance conferring SNVs or small
indels are nonsynonymous changes that would be detected by both WES and WGS. In our comprehensive yeast
study®®, 271 mutations of the 1405 detected mutations in the 355 evolved lines were intergenic. Of these, only
five were directly upstream or downstream of one of the 137 genes that were repeatedly identified in the study.
In contrast to coding mutations, most intergenic mutations lacked any statistical support suggesting relevance
and were likely to be background mutations®”. Despite the lower probability that intergenic or other noncoding
mutations may have functional effect, we recognize that there are examples from the literature where intergenic
mutations have contributed to drug resistance. Non-coding RNAs such as EGRF-ASI and activating cis elements
such as enhancers have previously been implicated in evasion of drug response®®~’!. The intergenic mutations with
high allele frequency are present in our provided datasets and provide opportunity for reanalysis or for query-
ing by those interested in a specific noncoding RNA or enhancer. It is feasible that even synonymous mutations
could confer resistance if they altered the rate of protein folding. In addition, humans clearly have much more
complex splicing patterns than microbes and indeed we found evidence for multiple intronic (and intergenic
mutations) in genes with higher-than-expected rates of disruptive mutations and some level of validation (e.g.
SLCO31A, TOP1, DCK) contributing to resistance in our dataset.

A limitation of our HAP1 study, as presented, and in contrast to our work in other species, is that despite
some level of repetition, we seldom achieved strong statistical confidence by just performing selections and
sequencing. This may not be unexpected. Evolution is, unfortunately, a relatively stochastic process even when
working with the exact same starting clone. In the yeast study® we only obtained the same allelic change in the
same critical drug resistance gene a few times despite > 3 repetitions per each of the 80 compounds. For example,
two independent selections with hectochlorin both yielded an Argl16Lys in ACT1, the target of hectochlorin®’.
Similarly, a Leu671Phe change in YRM1 was observed 5 times for 4 different compounds.

Another disadvantage of using human cells is the challenge of validation of SNV's; we were not able to engineer
any SNVs into HAPI cells to demonstrate their importance. On the other hand, with the statistical confidence
that comes from identifying the same gene repeatedly, CRISPR-Cas9 validation becomes less important. In the
same yeast study described above, YRM1, a gene encoding a transcription factor involved in drug resistance in
yeast was independently identified 52 times with 27 different alleles®®. The likelihood of 355 selections yielding the
same gene by chance is roughly 3.53 x 107!!¢. This enrichment analysis becomes an attractive method for teasing
apart driver and passenger mutations and may become possible with more repetitions despite the larger genome
size of HAP1 cells. However, performing enough repetitions to achieve statistical confidence would require sub-
stantial resources with WGS, even with a thousand-dollar human genome. WES is thus likely to be more useful.

While HAP1 cells may not be considered a perfect model for human cancer biology, for the purposes of target
identification, they are likely very useful. As with pathogens, our use of well-studied drugs, largely uncovered
genes that were mostly already well known to confer resistance such as RRM 1472, DCK”74, TOP2A%. and
TOP1? in a variety of different cancer cell lines. Although it was initially argued that the in vitro evolution
system might be artificial, in malaria parasites it has been used to discover or rediscover most, if not all (to our
knowledge), clinically relevant drug resistance genes including the chloroquine resistance transporter®, the
artemisinin resistance gene, Pfkelch13”°, and well-known ABC transporters.

Despite questions about how much they mimic human cells, the value of using haploid cell lines is evident
from our allele frequency data. If our lines had been diploid, we would have needed to consider allele frequency
data of up to 0.4. There are 205 missense mutations with an AF of > 0.4, making pinpointing the causative
allele much more difficult without candidate genes or without many repetitions. Although in vitro evolution
has been used repeatedly for discovering the mechanism of action of completely uncharacterized compounds
in malaria parasites (reviewed in Ref.**), there are fewer examples of in vitro evolution being used for de novo
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target discovery in diploid eukaryotic pathogens. Although there are some examples in trypanosomes’®~"%, some

hypothesis about the mechanism of action was already present before evolution studies were attempted. Despite
this, low allele frequency data should not necessarily be discarded. There have been multiple examples from
haploid Plasmodium where a resistance-conferring allele was located within an amplification region and thus
showed an AF <0.5. It is possible that the incomplete penetrance that we observed here with respect to AF is
due to duplication events that were not readily detected. This may be particularly true for WNT3A (AF=0.571)
which lies in the chromosome 1 amplified region.

Although the HAP1 cells could be considered unnatural, it is likely that similar evolution experiments in other
types of human cells will largely give the same genes. This is because conservation of drug targets and drug resist-
ance mechanisms across phyla is often observed, although a given compound or inhibitor may show differences in
selectivity and specificity. Resistance to topotecan/camptothecin in yeast is also provided by mutations in Top1”.
Our IVIEWGA studies in yeast also identified Top1 as the target in yeast®. Evolution studies with cladosporin
in yeast and plasmodium both give the same resistance mechanism for cladosporin, lysyl tRNA synthetase®.

Our studies were not meant to study the process of evolution. Within the field of laboratory-based evolution,
there are two broad areas of study. The first are those that fall under the heading of “experimental evolution” and
which try to mimic evolution in natural conditions. Here, growth rates are often recorded, and experimental con-
ditions may be varied in a controlled manner (carbon sources, temperature, etc.). Such studies include long term
studies of E. coli or other bacteria (reviewed in Ref.?!) and have also been performed with small molecules®$253,
primarily with known mechanism of action. Alternatively, there are also studies in which evolution has been used
as a tool to discover targets and resistance genes for therapeutic purposes 7%#*. In many cases®***, although not
in all cases the term “in vitro evolution” is used instead of “experimental evolution” Based on our results here,
resistance readily emerges in HAP1 cells but more work will need to be done to determine if this is because of
the compounds that were used. Here we used in vitro evolution (versus experimental evolution) to select for
mutant lines that could withstand treatment with the selected drugs. Although it may be possible to use HAP1
cells for experimental evolution, at present sequencing costs are so high that whole genome studies with whole
genome analysis are not practical but this may change in the future. Questions that might be investigated include
the fitness of different mutations, reproducibility of the process, impact of the starting clone, carbon sources or
growth rate and whether one resistance mechanism predominates or if a variety are found.

Finally, it is important to keep in mind that the compounds examined here are not modern cancer therapies
and while still used clinically, they are imperfect. Newer molecules include bortezomib, a small molecule protea-
some inhibitor, imatinib, a small molecule tyrosine kinase inhibitor or seliciclib, small molecule cyclin-dependent
kinase inhibitor or even small molecule cancer immunotherapies. A limitation of the cell line that was used here
is that it is already resistant to some of these modern drugs, including imatinib (Fig. S1), which could neces-
sitate the use/development of other haploid lines, or potentially the use of diploid lines, although data analysis
is expected to be more difficult. We anticipate mutations in the drug’s targets will be identified sometimes, as is
observed in microbes. In fact, unbiased IVIEWGA studies with bortezomib in P. falciparum have demonstrated
mutations in the proteasome subunit, Pf20S 5%, confer resistance, and similar resistance-conferring mutations
have been discovered after using in vitro evolution in human cells, although whole genome sequencing was
not performed and the mutations were identified using a candidate gene approach®. On the other hand, some
targeted therapies may not work well against HAP1 cells because they do not bear the sensitizing mutation (e.g.
the BRAF/EGFR mutations for vemurafenib, gefitinib or erlotinib, respectively®). Alternatively, the HAP1 cells
may be intrinsically resistant because they harbor other resistance conferring mutations, which may be the case
for imatinib which targets the BCR-ADI fusion protein encoded by HAP1 cells. Nevertheless, if they do show
sensitivity or can be engineered to sensitivity HAP1 cells may prove useful for predicting resistance mechanisms
for new drugs in clinical development, for determining on-target activity and for studying the many other drugs
that were not included in our small screening set.

Materials and methods

Compounds

All chemotherapeutic agents used in this study were obtained from Sigma-Aldrich, dissolved in DMSO at 10 mM
concentration and stored at —20 °C.

Cell cultures

The human chronic myelogenous leukemia cell line, HAP1, was purchased as authenticated at passage 7 from
Horizon Discovery and cultured in tissue culture dishes (Genesee Scientific, Cat# 25-202) as a monolayer at 37 °C
in a humidified atmosphere with 5% CO, using Iscove’s Modified Dulbecco’s Medium (IMDM) (Life Technolo-
gies, CA) supplemented with 10% fetal bovine serum (FBS), 0.29 mg/mL L-glutamine, 25 mM HEPES, 100U/
mL Penicillin and 100 pg/mL Streptomycin (1% pencillin/streptomycin). Monoclonal and polyclonal stocks were
made and stored in IMDM +10% DMSO in liquid nitrogen.

In vitro evolution of resistant HAP1 clones

Prior to selection, an aliquot of the parental line was stocked as a reference for subsequent whole genome
sequencing analysis. Three independent clones of HAP1 cells were cultured in tissue culture dishes exposed
to increasing sublethal concentrations of each chemotherapeutic agent at a starting concentration previously
determined by the ECs, value for around 7-30 weeks depending on the drug, its speed of action and the method
used as two methods were considered: high-pressure intermittent selection method and a stepwise selection
method. For high pressure selection, cells were treated at a concentration 3-10 x EC4, value until more than
95% of the cells died. Then treatment was removed, and cells were allowed to recover. After reaching around
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60% semi-confluence, treatment was reinstalled and ECy, value monitored. For stepwise selection method, drug
concentration used was at the EC5, which implied reduced growth rate of approximately 50% and drug pressure
was increased in intervals of around 5-10% keeping growth inhibition around 50%. Once the ECs, values of
the resistant lines were at least 5 times greater than the one used as control, cells were again cloned by limit-
ing dilution and further reconfirmed for drug resistance and subsequent DNA extraction for whole genome
sequencing analysis.

Dose-response assay by EC., determination and bioluminescence quantification

Drug sensitivity and cell viability were assessed by a bioluminescence measurement as follows: 24 h prior to addi-
tion of the drugs, 2 x 10* cells/well for every replicate were seeded in a 96-well plate. Once attached, media was
removed, and 10 different concentrations of drug were added in serial dilutions 1:3 with a starting concentration
of 10 uM or one of which the ECs, value of the replicates fell within an intermediate drug concentration. When
drug-resistant lines were co-treated in combination with verapamil, a fixed concentration of verapamil (10 uM)
was added to every concentration of the drug. After a 48-h incubation period at 37 °C and 5% CO, with the drug,
cells were treated with CellTiterGlo (Promega) reagent (diluted 1:2 with deionized water) for quantification of
HAP1 cell viability. Immediately after addition of the luminescence reagent, luminescence was measured using
the Synergy HT Microplate Reader Siafrtd (BioTek). The data was normalized to 100% cell survival and 100%
cell death and ECj, values were obtained using the average normalized luminescence intensity of 8 wells per
concentration and a non-linear variable slope four-parameter regression curve fitting model in Prism 8 (Graph-
Pad Software Inc.). Unless otherwise noted, dose response experiments consisted of 4-8 technical replicates and
3 biological replicates.

Isolation of total DNA from drug resistant lines

Genomic DNA (gDNA) was extracted from drug-specific resistant cell lines together with their isogenic parental
lines using the DNeasy Blood & Tissue Kit (Qiagen) following the manufacturer’s instructions. Samples were
assessed for quantity with the Qubit™ dsDNA BR Assay Kit (Life Technologies, Carlsbad, CA, USA). All samples
(>2.0 pg, >50 ng/uL, >20uL) were prepared for quality control by testing gDNA degradation or potential con-
tamination using agarose gel electrophoresis (1% Agarose, TAE, ~100 Voltage). Then gDNA concentration was
again measured using the Qubit’ DNA Assay Kit with the Qubit™ 2.0 Fluorometer (Life Technologies). Finally,
fragment distribution of the gDNA library was measured using the DNA 1000 Assay Kit with the Agilent Bio-
analyzer 2100 system (Agilent Technologies, Santa Clara, CA, USA). DNA libraries were sequenced with 150
base pair (bp) paired single end reads on an Illumina HiSeq 4000 (PE150).

Genome sequencing and data analysis

The quality of the raw FASTQ files was checked with FastQC (http://www.bioinformatics.babraham.ac.uk/proje
cts/fastqc/). Whole genome sequencing (WGS) reads were mapped to GRCh37 (hgl9) using BWA (v.0.7.17),
specifically with the hs37d5 reference genome from 1000 Genomes project (Phase II). Whole exome sequenc-
ing (WES) samples were captured using Agilent SureSelect Human All Exon V6 (58 M), and the reads were
also mapped to GRCh37 using BWA (v.0.7.17) with the same reference genome as WGS. Duplicate reads were
removed using Picard (v.1.94); paired resistant and parent (WT) BAM files were used as input for The Genome
Analysis Toolkit (GATXK, v3.8-1). Local realignment and base quality recalibration were performed using default
parameters. Somatic single nucleotide variants (SN'Vs) and small insertion and deletion (indels) were called using
GATK MuTect2 following the state-of-the-art GATK Best Practices pipeline (https://ccbr.github.io/Pipeliner/
Tools/MuTect2.html). In this project, the input to MuTect2 consisted of alignments for the parent and resistant
clone in order to call mutations with statistically significant differences in read support in the setting of resistance.
Only the variants with PASS status, suggesting confident somatic mutations, were considered for further analysis.
Variant allelic fraction was determined as the fraction of reads supporting the variant allele relative to total read
depth at the variant position. Minimum callable depth was set to 10 and base quality score threshold was set to
18, following the default from MuTect2. All sequences have been deposited in SRA BioProject PRINA603390.

Small-variant annotation for SNVs and indels

Somatic variants were annotated using snpEff (v 4.3q)%. The annotation was performed with parameters includ-
ing (1) canonical transcripts and (2) protein coding to enable identification of different functional classes of vari-
ant and their impact on protein coding genes (Table 1 showing finalized and consolidated annotations; Table S9
shows the raw annotation from snpEff and consolidated classification used in Table 1; Table S5 shows all the
SNVs with their raw annotations). The snpEff sequence ontology designation was used in the filtering steps to
classify variants generally as noncoding or coding (Table S9).

Identification of drug specific genes

First, we excluded all variants in non-coding regions. Second, we excluded all non-functional variants, retain-
ing only variants with a snpEff definition of HIGH or MODERATE impact (missense, stop lost, stop gain, and
structural interaction variants). Finally, we selected only the variants with high allele frequency (AF > 0.85) and
genes with multiple independent amino acid changes found in the same drug as the final list of candidates. The
potential candidate variants were evaluated through Integrative Genomics Viewer (IGV)® to ensure coverage
and allele fractions of the mutation positions. The top genes for each drug were included in Table 2 and Table S7.
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Somatic copy number variations (CNVs) analysis

Copy number regions for WGS and WES were called by ControlFreeC* using the default settings for WGS and
WES data. Background parental clone samples for each drug served as the control. Recurrent CNV regions were
defined as regions observed in more than 1 sample, but not in all of clones from the tested drugs (as these are
more likely to indicate potential sequencing artifacts).

Gene knockdowns

shRNAs pools targeting TOP2A (Cat# sc-36695-V), DCK (Cat# sc-60509-V), SLCO3A1 (Cat# sc-62713-V),
SLC13A4 (Cat# sc-89760-V), KLF-1 (Cat# sc-37831-V), WWOX (Cat# sc-44193-V), WDR33 (Cat# sc-94735-V)
and the non-coding control (Cat# sc-108080) were obtained in pLKO.1-Puro from Santa Cruz Biotechnology.
RRM1 (clone ID NM_001033.2-476s1cl1) and CYPIBI (clone ID NM_000104.2-1176s1c1) were obtained in
pLKO.1-Puro-CMV-tGFP from Sigma Aldrich.

Gene expression was knocked down using either a shRNA pool (Santa Cruz Biotechnology) containing
between three and five expression constructs each encoding target-specific 19-25 shRNAs or a single shRNA
(Sigma Aldrich). HAP1 cells were plated at 120,000 cells per well (~40% confluency) in a 24-well plate, 24 h
prior to viral transduction. On the day of transduction, complete media was replaced with serum-free media
and 7 pg/mL Polybrene’ (Cat# sc-134220) and virus was added to the cells at a multiplicity of infection of 0.5
and cells were incubated overnight at 37 °C. The following day, media was replaced with complete media without
Polybrene and cells were incubated at 37 °C overnight. Cells were then split 1:3 and incubated for 24 h more and
finally stable clones expressing the shRNA were selected using complete media with 2 ug/mL puromycin. After
7 days of selection with puromycin, knockdown efficiency was confirmed by western blot. Cells transduced with
shRNAs containing fluorescent tags, were trypsinized (TrypLE™ Express; Cat# 12605-010, Gibco) after puromycin
selection, washed twice with DPBS (1X) (Gibco) and sorted by flow cytometry.

Knockout of USP47

USP47 was knocked out (Cat# HSPD0000092816) using a single plasmid CRISPR-Cas9 system, using as lenti-
virus backbone the LV01 U6-gRNA:efla-puro-2A-Cas9-2A-tGFP targeting USP47 (Sigma Aldrich). The target
sequence (5'-3') was CAATGGGGCTTCTACTAGG. Transduction was as described above. HAPI cells were
plated at 120,000 cells per well (~40% confluency) in a 24-well plate 24 h prior to viral transduction. On the day
of transduction, complete media was replaced with serum-free media and 7 pg/mL Polybrene’ (Cat# sc-134220),
virus was added to the cells at a multiplicity of infection of 0.5 and cells were incubated overnight at 37 °C. The
following day, media was replaced with complete media without Polybrene and cells were incubated at 37 °C
overnight. Cells were then split 1:3 for 24 h more and stable clones expressing the CRISPR-Cas9 sequence were
selected using complete media with 2 ug/mL puromycin. After 14 days of selection with puromycin and propaga-
tion as required, cells were trypsinized (TrypLE™ Express; Cat# 12605-010, Gibco), washed twice with DPBS (1X)
(Gibco) and sorted by flow cytometry using the GFP fluorochrome which is expressed with Cas9. GFP positive
cells were plated at an average density of 0.5 cells per well in a 96-well plate (previously treated with poly-L-Lysine
(Sigma #P4707-50 ml) to improve cell adhesion) in presence of 2 pig/mL puromycin (limiting dilution cloning).
Cell growth was monitored via microscopy during 25 days to select those wells which were observed to contain
single colonies and USP47 knockout was confirmed in those monoclonal HAP1 cell lines first via PCR and then
reconfirmed by western blot using the USP47 rabbit polyclonal antibody (Abcam, Cat# ab97835).

Immunoblotting

HAP1 cells (at least 5x 10°) were trypsinized, washed twice with cold 1 x DPBS and then lysed in 500 pL Pierce™
RIPA Buffer (Thermo Scientific) containing 1:100 protease inhibitor (Halt™ Protease & Phosphatase Inhibitor
Cocktail, Thermo Scientific) and 1:100 0.5 M EDTA Solution (Thermo Scientific). Total protein concentration
was measured using the DC Protein Assay (Bio-Rad). Equal amounts of proteins were resolved by SDS-PAGE
and transferred to nitrocellulose membranes (Bio-Rad #1704271), blocked in PBS with 5% (w/v) Blotting-Grade
Blocker (Bio-Rad #170-6404) and 0.1% (v/v) Tween20 for 1 h and probed. As secondary antibodies, HRP-
linked anti-mouse or anti-rabbit (Cell Signaling Technology) were used and the HRP signal was visualized with
SuperSignal®West Pico Chemiluminescent Substrate (Thermo Scientific #34080) using Syngene G-Box imager.
Protein enrichment was calculated relative to vinculin, y-tubulin or f-actin. Primary antibodies are listed below.
Full size western blots are shown in Fig. S9.

Antibodies

TOP2A (Sigma #SAB4502997), USP47 (Abcam #ab97835), WDR33 (Abcam #ab72115), DCK (Abcam
#ab151966), S-actin (Cell Signaling #3700S), y-tubulin (Cell Signaling #4285S), Vinculin (Invitrogen #700062),
SLC13A4/SUT-1 (Abcam #ab236619), WWOX (Abcam #ab137726), EKLF/KLE-1 (Abcam #175372), SLCO3A1/
OATP-A (Santa Cruz #sc-365007), TOP1 (Proteintech #20705-1-AP), CRISPR-Cas9 (Sigma #SAB4200701),
RRM1 (Abcam #ab133690), CYPIBI (Abcam #ab137562), SPG7 (Sigma #SAB1406470 and Abcam #ab96213),
goat anti-mouse (Invitrogen #G21040), goat anti-rabbit (Invitrogen #G21234).

RNA isolation, RT-PCR analysis and sequencing of TOP1 (His81)

TPT-resistant cells and TPT-WT (1 x 10° cells) were dissociated from plates by the addition of 2 mL of TrypLE
(Cat #12605-010, Gibco), washed and total RNA was isolated and purified using a Qiagen RNeasy” Mini Kit (Cat
#74104, Qiagen) according to manufacturer’s instructions. cDNA was synthesized from 1 pg of total RNA using
the Superscript™ First-Strand Synthesis System for RT-PCR Kit (Invitrogen #11904-018) and random hexamers.
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The primers used to amplify the region containing His81 were FWD: GATCGAGAACACCGGCAC and REV:
TCAGCATCATCCTCATCTCGAG. DNA from PCR product was extracted, using the QIAquick® Gel Extrac-
tion Kit (Qiagen #28706) following the manufacturer’s instruction, measured using the Qubit® DNA Assay Kit
with the Qubit® 2.0 Fluorometer (Life Technologies), and sequenced. The cDNA was sent to Eton Biosciences
for Sanger sequencing. Quantification of TOP1 expression was performed using PerfeCTa® Sybr Green Fast Mix
(Quanta #95072-250) the following primers: FWD: CGAATCATGCCCGAGGATATAA; REV: CCAGGAAAC
CAGCCAAGTAA, following the manufacturer’s instruction.

Data availability
All whole genome sequences have been deposited in SRA BioProject PRINA603390.
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