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Dynamics of carbon sequestration 
in vegetation affected 
by large‑scale surface coal mining 
and subsequent restoration
Yaling Xu 1, Jun Li 1,3*, Chengye Zhang 1,3, Simit Raval 2, Li Guo 1 & Fei Yang 3

Surface coal development activities include mining and ecological restoration, which significantly 
impact regional carbon sinks. Quantifying the dynamic impacts on carbon sequestration in vegetation 
(VCS) during coal development activities has been challenging. Here, we provided a novel approach 
to assess the dynamics of VCS affected by large-scale surface coal mining and subsequent restoration. 
This approach effectively overcomes the limitations imposed by the lack of finer scale and long-time 
series data through scale transformation. We found that mining activities directly decreased VCS by 
384.63 Gg CO2, while restoration activities directly increased 192.51 Gg CO2 between 2001 and 2022. 
As of 2022, the deficit in VCS at the mining areas still had 1966.7 Gg CO2. The study highlights that 
complete restoration requires compensating not only for the loss in the year of destruction but also 
for the ongoing accumulation of losses throughout the mining lifecycle. The findings deepen insights 
into the intricate relationship between coal resource development and ecological environmental 
protection.

The rapid growth of global economy has led to an increase in energy demand1. As one of foremost fossil fuels, 
coal has witnessed a historic milestone in 2023, surpassing a staggering 8.5 billion tons in global consumption for 
the first time (source: International Energy Agency, IEA). However, coal mining, especially surface coal mining, 
has significantly disturbed the natural vegetation and soils. This destructive practice not only leads to large areas 
of land degradation, but also has a severe impact on the regional carbon balance2,3. To achieve the targets for 
absolute carbon reduction set by the United Nations Framework Convention on Climate Change (UNFCCC) 
and the Paris Agreement, it is essential to consistently enhance the carbon sequestration capacity of ecosystems 
in mining areas and implement significant ecological protection and restoration projects4–6. Vegetation plays a 
crucial role as a carbon sink in the carbon cycle of terrestrial ecosystems7–9. Its carbon sequestration capacity is a 
core objective of ecological protection and restoration in mining areas10–12. Therefore, quantifying the impacts of 
surface coal mining and restoration activities on carbon sequestration in vegetation (VCS) can provide essential 
data to achieve ecological balance in the coal industry13,14.

The carbon sinks of vegetation in surface coal mining areas typically undergo three stages of “natural vegeta-
tion-mining-restoration”. Surface mining completely removes vegetation and soils, resulting in the conversion 
of the original vegetation into carbon source sites such as mine pits or industrial sites15. The destroyed area 
completely loses the VCS capacity compared to the previous year, resulting in a direct change in VCS. This 
change is evident and directly related to the mining activities. During the mining process, the destroyed area 
remains devoid of vegetation and lacks the VCS capacity. Hence, carbon that should have been sequestered is 
lost, known as the potential loss of VCS. During the restoration process, the destroyed area is replanted with 
vegetation, allowing it to regain its VCS capacity.

Many scholars have investigated carbon sinks in different stages of mining areas. However, most studies have 
focused on changes in vegetation carbon stocks (static carbon)16–21, with few examining changes in the VCS 
capacity (dynamic carbon). Current remote sensing methods to analyze the impacts of mining and restoration 
activities on VCS typically involve two steps. Firstly, the study area is selected, and an appropriate method for 
calculating VCS is chosen based on the area’s characteristics. Secondly, statistical methods are used to analyze 

OPEN

1College of Geoscience and Surveying Engineering, China University of Mining and Technology-Beijing, 
Beijing  100083, China. 2School of Minerals and Energy Resources Engineering, University of New South Wales, 
Sydney 2052, Australia. 3State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and 
Technology-Beijing, Beijing 100083, China. *email: junli@cumtb.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-64381-1&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:13479  | https://doi.org/10.1038/s41598-024-64381-1

www.nature.com/scientificreports/

the spatio-temporal characteristics of VCS. Current methods to calculate carbon sinks using remote sensing 
focus on forests22–25, grasslands, and similar environments. These methods usually have low spatial resolution, 
which does not meet the requirements for long-term and finer scale data in large-scale mining areas26,27. Exist-
ing studies on spatio-temporal changes in VCS can be classified into two categories. The first category primarily 
employs temporal data to analyze the trends of VCS within large regions, which only captures the macro-level 
spatio-temporal variability of VCS changes within the study area28–31. Although comprehensive surveys are 
valuable in assessing VCS, they may overlook the dynamics of what is occurring in the destroyed and restored 
areas. Furthermore, it is important to note that climate significantly influences inter-annual changes in VCS32,33. 
Therefore, direct statistics on regional variations in the VCS do not fully reflect the impact of mining, making it 
difficult to measure the differences in the VCS at different stages of production in open-pit mines. A more detailed 
analysis is necessary to achieve a more comprehensive understanding of VCS changes. The second category utilize 
data on land use classification in mining areas to investigate the impact of various land use changes on VCS34–38. 
The emphasis is on capturing changes in VCS in destruction and restoration areas. Nevertheless, existing studies 
often face the limitation of low temporal frequency, usually occurring only once every five years, due to the lack 
of comprehensive and detailed data on land use classification. Consequently, capturing the dynamic changes in 
carbon sinks within mining areas become challenging.

In summary, there is a shortage of methods for calculating long-term and finer scale carbon sink data that 
are applicable to mining scenarios that are widespread but single mines are small in scope. Additionally, there 
is a lack of monitoring data on mining activities. This means that when dealing with large-scale mining areas, 
existing remote sensing methods can only calculate changes in carbon sinks at a macro level, which does not 
directly reflect the impact of mining and rehabilitation activities on carbon sinks. Furthermore, previous studies 
have not considered the potential changes of VCS due to surface mining. Therefore, there is an urgent needed 
for a method to quantify the direct and potential impacts of coal mining and restoration activities on VCS. This 
will clarify the pattern of impacts on VCS during the entire cycle of coal development.

To address the abovementioned challenges, in this work, a new approach has been provided to assess the 
dynamic impact from mining and restoration activities on VCS in large-scale surface coal mining areas. This 
approach effectively overcoming the limitations imposed by the lack of finer scale data and long time series data 
through scale transformation. The analysis was focused on the dynamic change of VCS in the areas of vegeta-
tion destruction and restoration based on the spatio-temporal data on vegetation disturbance. This successfully 
quantified the direct and potential changes from mining and restoration activities. Furthermore, the concept 
of the deficit in carbon sequestration in vegetation (VCSD) was introduced. This study compared 133 open-pit 
mines in the Shendong coal base using the indicators “VCSD” and “potential changes in VCS per unit area of 
restoration” to reveal variations in carbon sequestration and sinks among the mines. These findings contribute 
to the analysis of the impact of coal mine development activities on the local carbon cycle and the calculation 
of carbon sink compensation.

Results
Spatio‑temporal variation in VCS
There was interannual variation in VCS within the 133 open-pit mines (Fig. 1a). Over the 20 years, the annual 
VCS ranged from 331.94 to 787.32 g CO2 m−2 a−1, with an average of 596.04 g CO2 m−2 a−1. The trend analysis 
revealed a gradual increase in the annual VCS, with a 12.74 g CO2 m−2 a−1 rate. Additionally, the standard devia-
tion of VCS was calculated annually to determine the degree of dispersion. The increasing trend of the standard 
deviation indicates a strengthening polarization of the annual VCS.

Figure 1.   The VCS in the study areas from 2001 to 2022. (a) The annual variation of VCS; (b) The spatial 
distribution of variation in VCS. The changes in VCS were determined using a least-squares linear regression 
model, which provided the slope representing the trends.
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The analysis of the spatial distribution of variation in VCS, as depicted in Fig. 1b, indicated that most areas 
experienced “Extremely significant improvement” or “Significant improvement” except for the coal mining 
regions where the changes were “Insignificant change”. This suggested that mining activities had significantly 
suppressed the positive trend of regional vegetation growth. The overall VCS in the region was influenced by 
natural climate factors, which exhibited a consistent annual increase without any disturbances. Therefore, focus-
ing solely on changes in VCS in the study area does not adequately reflect the impact of mining activities on 
vegetation. conducting a more detailed analysis to understand the specific impact of mining on VCS in areas 
experiencing vegetation disturbances is crucial.

The impacts of mining and restoration activities on VCS
This paper shifts the research focus to the areas of vegetation destruction and restoration. The impact of min-
ing and rehabilitation activities on the vegetation of the study area were analyzed from two perspectives. The 
term “direct changes in VCS” refers to changes relative to the previous year when the destruction or restoration 
occurred, including direct decrease and direct increase (see Materials and Methods). This change is observed in 
the region of mining and restoration activities that occur annually. The inter-annual variation of direct changes 
in VCS is shown in Fig. 2a. As illustrated in Supplementary Table S1, the direct change in VCS is proportional 
to the mining and restoration activities carried out each year. From 2001 to 2022, the direct decrease in VCS 
amounted to 384.63 Gg CO2 (1 Gg = 109 g), while the direct increase in VCS amounted to 192.51 Gg CO2. As of 
2022, there was a VCS difference of 192.13 Gg CO2 between mining and restoration activities. It is worth not-
ing that in 2016, the direct increase was 27.14 Gg CO2, which was 2.46 times higher than the direct decrease.

Furthermore, Fig. 2b compares the direct decrease in VCS per unit of destroyed area (Cddper) with the direct 
increase in VCS per unit of restored area (Cdiper). After removing the effect of area on the direct change in VCS, 
Cddper reflects the level of VCS prior to vegetation destruction, which fluctuates annually in accordance with 
climate. Cdiper represents the level of VCS following vegetation restoration, with inter-annual fluctuations influ-
enced by the combined effects of climate and restoration activities. Both Cddper and Cdiper exhibited an upward 
trend over time. Before 2017, Cddper and Cdiper fluctuated with little difference, indicating that the VCS in the 
restoration area was able to approach the level prior to destruction. However, after 2017, Cddper consistently 
exceeded Cdiper, suggesting that the negative impacts of mining activities on local carbon sinks had outweighed 
the positive impacts of restoration activities. Supplementary Table S1 counts the annual restoration rate of vegeta-
tion (RV) and restoration rate of VCS (RVCS) in the study area (see Materials and Methods). Both the RV and the 

Figure 2.   Inter-annual variation in the impacts of mining and restoration activities on VCS in the study 
area from 2001–2022. (a) Direct changes in VCS. As there is no data available for 2012, any disturbance to 
vegetation that occurred in 2012 will be categorized as occurring in 2013. Therefore, the loss of vegetation 
carbon sequestration that occurred in that year will be added to the total for 2013, as shown in the dotted box. 
(b) Direct changes in VCS per unit area. The blue box highlights the timeframe during which Cdiper consistently 
exceeds Cddper. (c) The potential changes in VCS of both destroyed and restored areas; (d) The potential changes 
in VCS for each year after 2007.
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RVCS were consistently low before 2011, remaining below 0.1 for most years. From 2013 to 2016, both rates had 
similar values, with their maximum values reached in 2016 at 2.04 and 2.46, respectively. Overall, the RVCS was 
equal to RV, with both having a value of 0.5. However, since 2017, the RVCS had consistently been lower than the 
RV. Additionally, Cddper had consistently been greater than Cdiper, suggesting that the negative impacts of mining 
activities on local carbon sinks had outweighed the positive impacts of restoration activities.

Figure 2c illustrates the potential changes in VCS of both destroyed (C_destroy) and restored areas (C_restore) 
(see Materials and Methods). As mining activities persisted, the C_destroy consistently increased from 2001 
to 2022. In contrast, the C_restore fluctuated ranging from -13.57 to 27.79 Gg CO2, indicating the success of 
restoration activities in maintaining the VCS close to the original state. From 2012 to 2019, C_restore exceeded 
0, indicating that the vegetation in the restored area sequestered more carbon than its original state. The results 
indicate that the restoration was effective and that the restoration method was appropriate. As of 2022, the deficit 
in VCS (VCSD) at the mining areas still had 1966.7 Gg CO2 within the 133 open-pit mines in the Shendong 
coal base, requiring compensation from other sources by local companies. Large-scale mining in the Shendong 
coal base began in 2007. Figure 2d shows the potential changes in VCS for each year after 2007. Overall, the 
data reveals a decreasing trend in VCS, which follows an “S” curve over time. Between 2007 and 2012, there was 
a rapid increase, followed by a brief buffer that coincided with the trough period of the coal industry between 
2012 and 2017.

Spatial distribution in the impact of mining and restoration activities on VCS
The VCSD of the study area was quantified at the scale of individual mines, and the spatial distribution for 133 
open-pit mines is presented in Fig. 3a. Overall, the VCSD did not vary significantly among the mines. The grading 
statistics in Fig. 3c reveal that 116 mines had a VCSD between 0 and 24 Gg CO2, accounting for 87.22% of the 

Figure 3.   Comparative statistics of 133 open-pit mines. (a) The spatial distribution of VCSD for 133 open-pit 
mines. (b) The potential changes in VCS per unit area of restoration. Blue indicates that C_restore is greater 
than 0, meaning that the vegetation in the restored area has sequestered more carbon than the original level; 
Red indicates that C_restore is less than 0, meaning that the vegetation in the restored area has sequestered less 
carbon than the original level. (c) The grading statistics of VCSD for 133 open-pit mines. (d) The relationship 
between VCSD and vegetation destruction area. Yellow corresponds to 87.22% of the mines in (c), and blue 
corresponds to 12.78% of the mines. (e) The grading statistics of potential changes in VCS per unit area of 
restoration for 133 open-pit mines.
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total. There were only a few exceptions that exceeded 24 Gg CO2, accounting for 12.78% of the total. Figure 3d 
illustrates a positive correlation between the VCSD of each mine and its corresponding vegetation destruction 
area. Most mines with a VCSD of over 24 Gg CO2 have a destruction area of up to 5 km2.

In order to compare the effectiveness of restoration activities at each mine, Fig. 3b illustrates the potential 
changes in VCS per unit area of restoration. The spatial distribution indicated a demarcation trend in the south-
west-northeast direction. Specifically, most of the mines in the northwest direction exhibited positive changes 
in VCS. Out of 133 mines, 77 mines (57.89%) had a C_restore greater than 0 per unit of restored area, indicat-
ing better restoration effects. Conversely, most mines in the southeast direction exhibited negative changes in 
VCS, suggesting that the restored vegetation failed to reach its original state. However, according to the grading 
statistics (Fig. 3e), 95.49% of the mines showed potential changes in VCS of -1 ~ 1 Gg CO2 in restored areas. 
The VCS of most mines were able to approach their original state after the restoration activities, suggesting that 
restoration activities were effective in mitigating carbon sequestration losses.

Discussion
Availability assessment of data
Calculating vegetation NPP typically requires input data such as vegetation indices, meteorological data (includ-
ing temperature, precipitation, and solar radiation), land cover data, and soil properties39. These data are generally 
collected through satellite remote sensing, meteorological stations, and soil surveys40,41. Nevertheless, due to the 
exorbitant cost of data acquisition and the potential for missing remote sensing data, obtaining long time series 
and high-frequency NPP data over a wide range of mining areas is challenging. Therefore, for this study, we 
selected the MODIS product from the available datasets42. The MOD17A3 dataset has been widely utilized for 
vegetation growth, biomass estimation, environmental monitoring, and global change studies at regional or global 
scales43. Studies have shown that the MOD17A3 data product accurately represents the true global NPP44,45. The 
accuracy and validity of this data were assessed by comparing it with similar studies. The NPP for both grass 
and shrubs fell within acceptable ranges (Table 2). This indicates that the NPP used in this study was feasible.

This study utilized two datasets: spatio-temporal data on vegetation disturbance and NPP data. The vegetation 
disturbance data was obtained from Auto-VDR, which characterizes the growth status of vegetation using the 
maximum NDVI of the growing season (July–September). If the NDVI falls below the vegetated/bare ground 
threshold (α) set by Auto-VDR, it can be inferred that the area has been transformed from vegetation to non-
vegetation types, such as open-pit or outer dumping sites. As a result, the NPP is 0 due to the absence of VCS 
capacity. The NPP data, however, was generated using the Biome-BGC model, which considers the land cover 
type, daily leaf area index (LAI), and daily meteorological data (PAR, precipitation, minimum and maximum 
temperature, and water vapor pressure deficit) as inputs. The annual NPP used in this study was calculated by 
summing up the observed data every eight days within a given year. It should be noted that an area identified as 
destroyed by Auto-VDR may not have been utterly devoid of vegetation throughout the year. Instead, it was only 
detected as devoid of vegetation during the growing season (July–September). Therefore, it is possible that the 
destroyed area could still have been vegetated and able to fix carbon in the period before the occurrence of the 
destruction, resulting in a lower annual NPP. For example, if mining destroys vegetation in June, the maximum 
NDVI between July and September will be less than α, and the area will be identified as destroyed. However, 
from January to June, vegetation in the area can still sequester carbon, and NPP accumulates. Hence, it is rea-
sonable to expect that MOD17A3 would still produce a lower annual NPP in areas determined as unvegetated 
by Auto-VDR. This lower value is referred to as NPPbg. Therefore, when calculating NPP for areas covered by 
vegetation at a 30 m resolution, the contribution of this background value must be subtracted from the total 
NPP of a 500 × 500 m area. The scale transformation allows for the application of higher resolution (500 m) VCS 
data to a finer scale (30 m) of the mine. This transformation overcomes the limitations imposed by the lack of 
finer scale NPP data on long time series. This research method can be applied to other types of anthropogenic 
activities such as deforestation and land use changes. It provides ideas for ecosystem management on a more 
expansive scale. This study was limited to a 30 m resolution as Landsat is considered the most suitable remote 
sensing data that is freely available for long time series. Despite the limitations in data accuracy, it is still suf-
ficient for vegetation analysis in this area. This is because the original and restored vegetation in Shendong coal 
base is relatively homogeneous at a 30 × 30 m scale on the grand (see Supplementary Fig. S1 online). At this 
resolution, the overall vegetation cover can be effectively captured and analyzed for broad trends in vegetation 
change within the study area. Consequently, although the 30 m resolution may not be able to meet all the needs 
in some details, it still provides an overall understanding of the vegetation condition in the Shendong Coal Base 
and serves as a valuable reference and data support for assessing the loss of vegetation carbon sinks in the region. 
As remote sensing and methods for calculating VCS continue to evolve, future studies will increasingly rely on 

Table 2.   Comparison of MOD17A3 NPP and other estimated value.

Method NPP for grass and shrub (g C m−2 a−1) Time Region Reference

MOD17A3 76.67—318.56 2001–2022 Shendong coal base \

CASA 286.93 2010–2015 Changhe Basin mining area 46

GLO–PEM 114.76—394.05 2000–2015 Yellow River Basin 47

CASA 90—511.00 2006–2020 Shengli mining area 27
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higher resolution VCS data. This allows for the capture of more subtle vegetation characteristics and changes, as 
well as the assessment of the dynamics of vegetation carbon sinks in mining areas.

Impact of coal mining on VCS
Currently, the development of China’s coal resources has shifted towards the western region, which has a fragile 
ecological environment. This development is mainly concentrated in four provinces: Shanxi, Shaanxi, Mongolia, 
and Xinjiang. The Shendong coal base is situated at the intersection of Shanxi, Shaanxi, and Mongolia and com-
prises 37% of China’s open-pit mines. The conflict between protecting the ecological environment and exploiting 
resources in these regions is a prominent issue that has attracted the attention of scholars. In 2020, China com-
mitted to the United Nations to “strive for peak carbon dioxide emissions by 2030 and carbon neutrality by 2060”. 
Implementing this strategy has led to active ecological protection and restoration projects. The quantification 
of the loss of VCS in the mining areas and its changing pattern is of utmost urgency48. In a previous study, the 
author reported that as of 2021, 400.08 km2 of vegetation in the Shendong coal base had been destroyed, while 
177.91 km2 had been restored. However, the changes in VCS during coal mining and restoration have not been 
quantified. This paper explores the impact of coal production on VCS from two perspectives, providing a new 
analytical approach for scientifically assessing the impact of coal development activities on VCS.

The process of vegetation change, including both the transition from presence to absence and from absence 
to presence, can be easily observed. Therefore, measuring the changes in VCS from one year to the next is com-
mon practice, referred to as the direct changes in VCS. This measure is frequently employed by coal companies 
to evaluate the effectiveness of restoration efforts. The study found that the increase and decrease in VCS were 
directly associated with trends in vegetation destruction and restoration in the study area. Consequently, the 
direct change in VCS most directly reflects the intensity of mining and restoration activities carried out each 
year, as well as the magnitude of the impact on VCS. The fluctuating relationship shown in Fig. 2b provides cru-
cial information on the effectiveness of restoration activities. By analyzing the fluctuating relationship between 
Cdiper and Cddper, it is possible to assess the effectiveness of restoration in different years. This is crucial for the 
development of more effective vegetation restoration strategies and the improvement of the efficiency of ecologi-
cal restoration. Overall, the RVCS and RV were almost equal. However, only in some years (e.g., 2003, 2004, and 
2016), the RVCS exceeded the RV. Combining with the trend of VCS in the mining area, it is evident that VCS had 
a stage of high value in these years (see Fig. 1a). Restoration activities that are tailored to natural conditions can 
enhance restoration efficiency. It is worth noting that the RVCS has consistently lagged the RV since 2017, with a 
significant increase in the disparity between the two after 2019. It can be inferred that although the vegetation 
area was effectively restored from 2017 to 2022, its VCS capacity was not fully restored. This is further supported 
by the fact that C_restore remained below 0 after 2019, as shown in Fig. 2c, indicating that VCS did not return 
to its original level. This discrepancy may be attributed to the restoration work mainly focusing on planting and 
covering vegetation while neglecting the integral role of carbon fixation during vegetation growth and devel-
opment. In order to ensure successful restoration efforts in mining areas, it is crucial to not only prioritize the 
restoration of vegetation cover, but also to focus on restoring ecosystem functionality, including the restoration 
of carbon sequestration capacity.

The impact of mining activities on the annual VCS was assessed by comparing it with its original state. The 
potential changes in VCS followed an “S” curve increase due to the accumulation of VCS losses over time (refer 
to Fig. 2d). This feature is related to the development stages of China’s coal industry. From 2001 to 2011, the 
coal mining industry experienced rapid growth, resulting in the destruction of a substantial amount of vegeta-
tion and a significant loss of VCS. However, between 2012 and 2017, the industry underwent a phase of layout 
optimization, leading to a progressive decrease in coal production. During this period, the increase in VCS 
losses was effectively mitigated. After 2017, there was a resurgence in mining intensity, leading to a subsequent 
increase in the loss of VCS. Spatially, the changes in VCS resulting from unit restoration areas showed a spatial 
distribution trend with the southwest-northeast direction as the dividing line (see Fig. 3b). The VCS of mines 
located in the northwest direction were able to restore to the original level after the restoration activities, with 
a positive value of C_restore indicating restoration success. However, the VCS of the mines in the southeast 
direction was not fully restored to its original state. One possible explanation for this difference is the regional 
distribution of NDVI (see Supplementary Fig. S1). The NDVI was significantly lower in the northwest region, 
indicating a less pristine vegetation status than in the southeast region. As a result, restoration efforts in the 
northwest region are more likely to exceed the pristine status of the vegetation. Consequently, the spatial distri-
bution trends observed in Fig. 3b accurately reflect the extent of the impact of restoration activities on potential 
changes in VCS at different mine sites. This further emphasizes the critical role of the potential changes in VCS 
per unit of restoration area in reflecting the effectiveness of restoration activities. In a coal company, restoration 
completion is typically considered as compensation for direct losses to VCS caused by mining. However, it is 
essential to note that losses in destroyed areas will continue to accumulate over the life of the mine compared 
to the original state of vegetation. Therefore, compensating for the loss of VCS in the year of destruction does 
not fully restore the ecological benefits. The paper aims to raise awareness of the need for vegetation restoration 
and carbon sequestration compensation by calculating the potential ecological impacts of coal development 
activities. This information can serve as a valuable reference for developing and implementing policies related 
to coal mining and ecological restoration.

Materials and Methods
Study area and data
The Shendong coal base is located at the junction of Inner Mongolia, Shaanxi, and Shanxi in China. It belongs to 
the Yellow River Basin and has geographical coordinates ranging from 38°42′-40°06′N and 109°41′E—111°36′E 
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(see Supplementary Fig. S1). The Shendong coal base is one of China’s 14 major coal bases, with a total area of 
18,393.7 km2 and proven coal reserves of 223.6 billion tonnes. This region has an ecologically fragile environment 
and a semi-arid continental monsoon climate, with natural and restored vegetation is dominated by grasslands 
and sparse shrubs. The region receives an average annual precipitation of approximately 386.82 mm, while the 
average annual temperature is around 7.36 °C. Since 2007, the Shendong coal base has undergone large-scale 
mining, resulting in the loss of 400.08 km2 of vegetation as of 202149. This has significantly impacted the local 
ecological environment.

The spatio-temporal data on vegetation disturbance from 2001 to 2021 were sourced from a previous study 
conducted by the authors at the Shendong coal base using an automatic method (Auto-VDR) for identifying 
vegetation destruction and restoration of various open-pit mines45. Images from 2012 were excluded because of 
the poor data quality. The data had a spatial resolution of 30 m. To ensure more accurate data for analysis, we 
manually inspected the recognition errors based on remotely sensed imagery. For the missed and misidenti-
fied regions shown in Supplementary Fig. S2, we reviewed all Landsat and GF imageries in turn for the years 
2002–2022. The initial data were corrected because surface mining can cause significant changes in feature 
types, and the destruction time and restoration time were easily identifiable in the imagery. Based on this, the 
destruction and restoration areas for 2022 have been added. The accuracies for vegetation destruction time and 
restoration time were 0.94 and 0.92 after pre-processing, respectively (see Supplementary Fig. S3-4 online).

The annual net primary productivity (NPP) of vegetation in the Shendong coal base from 2001 to 2022 was 
calculated using the global MODIS NPP product MOD17A3HGF v061 with 500 m spatial resolution, which was 
acquired from the National Aeronautics and Space Administration (NASA) (https://​lpdaac.​usgs.​gov/). This NPP 
product was estimated using the BIOME-BGC (BioGeochemical Cycles) model50. The annual NPP is derived 
from the sum of all 8-day Net Photosynthesis (PSN) products (MOD17A2H) from the given year51.

Scale transformation of NPP
The spatio-temporal data on vegetation disturbance were obtained based on the maximum NDVI data during 
the growing season (July–September). Therefore, the area identified as destroyed does not necessarily indicate 
that it was utterly devoid of vegetation throughout the entire year. Instead, it was detected as devoid of vegetation 
during the growing season. Vegetation may have been present in the destroyed area, accumulating fixed carbon in 
the months before its destruction, resulting in a lower annual NPP value known as the background NPP (NPPbg). 
The spatial resolution of the NPP data used in this study is 500 m, while the spatio-temporal data on vegetation 
disturbance has a resolution of 30 m. In some cases, vegetated and destroyed areas may exist within a 500 × 500 m 
area, as shown in Fig. 4a,b. Therefore, the NPP of this pixel comprises both the NPP of vegetation and the NPPbg 
of the destroyed area. Before conducting statistical analyses, it is necessary to scale transformation of the exist-
ing NPP to obtain the NPP of the vegetated area at a resolution of 30 m. The processing is illustrated in Fig. 4.

(i) To estimate NPPbg in the destroyed area, we randomly selected the 500 × 500 m pixels wholly destroyed 
within the study area (the blue area in Fig. 4c) and set their NPP as NPPbg. The background values of the 
destroyed area for the entire study area were obtained through Kriging spatial interpolation. These NPPbg are 
calculated annually.

(ii) To calculate the NPP in the vegetated area, the total area (S) and the vegetated area (Sveg) for the 
500 × 500 m region were calculated separately. Subsequently, the total NPP in this region was calculated as 
NPPb × S. To obtain the NPP of the vegetated area at a resolution of 30 m, we subtracted the contribution of 
NPPbg from the fixed total NPP. The resulting NPP was then evenly distributed over the vegetated area based on 

Figure 4.   Scale transformation of NPP data. (a) The color red indicates areas where destruction has occurred 
and green indicates areas of vegetation. The blue circle highlights the region of 500 × 500 m pixels completely on 
the destroyed area. (b) An enlarged 500 × 500 m grid with vegetation and damaged area data at 30 m resolution. 
(c) NPP data at 500 m resolution. (d) An enlarged 500 m grid with NPP as NPPb. (e) Assign a value of 0 to the 
destroyed area and calculate the NPP of vegetated area using Eq. (1). (f) NPP after scale transformation.

https://lpdaac.usgs.gov/
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its area, as shown in Fig. 4e. A value of 0 was assigned to the NPP of the destroyed area. Equation (1) shows the 
calculation for scale transformation. The NPP after the scale transformation is shown in Fig. 4f.

where, NPPa represents the NPP after scale transformation (g C m-2 a-1), while NPPb represents the NPP before 
scale transformation (Fig. 4d). S—Sveg refers to the area of destroyed area (m2).

Calculation of VCS
Research has demonstrated that 1 g of carbon in vegetation equals 2.2 g of organic matter. Based on the chemical 
equation for photosynthesis, vegetation absorbs 1.63 g of CO2 for every gram of accumulated organic matter52. 
This conversion relationship can transform NPP into VCS, as shown in Eq. (2).

where VCS represents the amount of CO2 fixed by vegetation per unit area and time, which is represented by 
carbon sequestration in vegetation (VCS) in this paper (unit: g CO2 m-2 a-1). The coefficient of conversion from 
NPP to organic matter is 2.2, and the coefficient of conversion from organic matter to CO2 is 1.63.

Calculation of VCS of undisturbed state in the mining areas
A linear regression model was fitted using the pre-mining (2001-TD) VCS data of the study area, as shown in 
Eq. (3). The VCS of undisturbed state after the destruction time was then predicted based on the regression 
equation, as shown in Eq. (4), and the results formed a “Prediction line”. The predicted VCS of undisturbed state 
represent the original state of the VCS when the study area is assumed to be unaffected by mining activities.

where n represents the total years involved in the regression, TD denotes the vegetation destruction time, t is the 
year, and VCSt denotes the VCS for the respective year.

Quantification of direct and potential changes in VCS
This paper analyzes the changes in VCS in the Shendong coal base from two perspectives (see Supplementary 
Fig. S4 online). The coal development activities have caused destruction and restoration of vegetation, resulting 
in changes in VCS. The term “direct changes in VCS” refers to changes relative to the previous year when the 
destruction or restoration occurred (refer to Fig. S4a), including direct decrease and direct increase. “Potential 
changes in the VCS”, on the other hand, are relative to the undisturbed state (Fig. S4b). To distinguish potential 
changes in VCS caused by mining and restoration activities, we labeled the potential changes in destroyed area 
as C_destroy and in restored area as C_restore. The restoration rate of vegetation (RV) is defined as the ratio of the 
restoration area over the destruction area, while the restoration rate of VCS (RVCS) is defined as the ratio of “the 
direct increase in VCS” over “the direct decrease in VCS”. All abbreviations used in this paper are summarized 
in Supplementary Table S2 online.

The deficit of carbon sequestration in vegetation (VCSD) from surface coal development activities was cal-
culated using Eq. (5). VCSD is defined as the total reduction in VCS compared to the undisturbed state at the 
mine sites after vegetation destruction has occurred.

where VCSD is the deficit of carbon sequestration in vegetation, C_destroyt is the potential changes in VCS in 
the destroyed area in year t, and C_restoret is the potential changes in VCS in the restored area in year t. If VCSD 
is greater than 0, it indicates that coal development activities have had a negative impact on VCS. Conversely, if 
VCSD is less than 0, it indicates that coal development activities have increased VCS in the mining area.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request. The MOD17A3HGF NPP dataset is from https://​lpdaac.​usgs.​gov/​produ​cts/​mod17​
a3hgf​v061/.
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