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Modeling and optimization 
of dyeing process of polyamide 6 
and woolen fabrics with plum‑tree 
leaves using artificial intelligence
Fatemeh Shahmoradi Ghaheh 1,5*, Milad Razbin 2,3,5, Majid Tehrani 4, 
Leila Zolfipour Aghdam Vayghan 1 & Mehdi Sadrjahani 1

The dyeing process of textile materials is inherently intricate, influenced by a myriad of factors, 
including dye concentration, dyeing time, pH level, temperature, type of dye, fiber composition, 
mechanical agitation, salt concentration, mordants, fixatives, water quality, dyeing method, and 
pre-treatment processes. The intricacy of achieving optimal settings during dyeing poses a significant 
challenge. In response, this study introduces a novel algorithmic approach that integrates response 
surface methodology (RSM), artificial neural network (ANN), and genetic algorithm (GA) techniques 
for the precise fine-tuning of concentration, time, pH, and temperature. The primary focus is on 
quantifying color strength, represented as K/S, as the response variable in the dyeing process of 
polyamide 6 and woolen fabric, utilizing plum-tree leaves as a sustainable dye source. Results 
indicate that ANN (R2 ~ 1) performs much better than RSM (R2 > 0.92). The optimization results, 
employing ANN-GA integration, indicate that a concentration of 100 wt.%, time of 86.06 min, pH 
level of 8.28, and a temperature of 100 °C yield a K/S value of 10.21 for polyamide 6 fabric. Similarly, 
a concentration of 55.85 wt.%, time of 120 min, pH level of 5, and temperature of 100 °C yield a K/S 
value of 7.65 for woolen fabric. This proposed methodology not only paves the way for sustainable 
textile dyeing but also facilitates the optimization of diverse dyeing processes for textile materials.

Keywords  Dyeing process, Plum-tree leaves, Artificial neural network, Response surface methodology, 
Genetic algorithm

In recent years, with increasing concern about environmental issues, the use of natural dyes for textile dyeing has 
been increased. Natural dyes are biodegradable and prevent the accumulation of toxic waste in the environment1. 
Beyond their compatibility with the environment, certain natural dyes also possess additional benefits, such as 
anti-allergic and anti-bacterial properties2,3. However, despite good properties of such natural dyes, not many 
companies have used them commercially. The problem with using natural dyes is, their poor color fastness, low 
color strength and limited shades. To solve the mentioned problems, new natural dyes, new bio-based mordants 
and changing the effective parameters in the dyeing process such as dyeing method, concentration of dye, type 
and concentration of mordant, dyeing time as well as temperature and pH of the dyeing process, can be used3,4.

In recent researches, natural mordants are introduced as an alternative to metal mordants. Some natural mate-
rials, such as the pomegranate rind, red sumac, pinecone and peppermint due to the presence of phenolic groups 
in their structure, have performed very well as bio-mordant in the dyeing process of textiles2,3,5,6. Using bio-based 
mordant reduces the destructive effects of metal mordants on the environment. Bio-based mordants are also of 
medical importance as they possess anti-bacterial and anti- allergic properties3,7. Investigating the effect of dyeing 
parameters on textiles dyed with natural dyes reveals that optimal parameter values are crucial for color quality. 
Recent research using modeling methods has identified optimal dyeing parameters. Kuo et al. combined Artificial 
Neural Network (ANN) and Genetic Algorithm (GA) to predict color strength (K/S) of polyester and Lycra® 
fabric dyed with Everacid Red RFL8. Rosa et al. used a central composite design with 26 experiments, focusing on 
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temperature, NaCl, Na2CO3, NaOH, processing time, and RB5 concentration to maximize K/S in cotton fabric. 
They combined ANN and PSO to improve the dyeing process, demonstrating cost-reduction potential for the 
industry9. Ghanmi et al. assessed the predictive capabilities of Fuzzy Logic and Response Surface Methodology 
(RSM) for dyeing wool and polyamide fibers with Juglans R. extract. They considered extract concentration, 
dyeing time, and temperature, with K/S as the response variable. Fuzzy Logic showed the lowest error values, 
outperforming RSM in predicting dyeing behavior10. Pervez et al. used a Taguchi L27 design to predict multiple 
responses, including exhaustion percentage (E%), fixation rate (F%), total fixation efficiency (T%), and K/S of 
cotton fabric dyed with Reactive Blue 194. They controlled dye concentration, fixing temperature, fixing time, 
pH, material-to-liquor ratio, and salt concentration. support vector machine (SVR) showed superior predictive 
capabilities with an R2 value of 0.981911. Haji and Vadood used GA, particle swarm optimization (PSO), and gray 
wolf optimization (GWO) to optimize models predicting color coordinates (L*, a*, and b*) of cotton fabrics dyed 
with aluminum potassium sulfate and natural dyes (weld and madder). They found that ANN combined with 
GWO provided the highest accuracy for predicting L* and b*, while ANN with PSO was best for predicting a*12. 
Abdelileh et al. used ANN to predict K/S and dye bath exhaustion of acrylic fiber dyed with Indigo Carmine. 
They employed RSM, with dye concentration, pH, temperature, and time as control factors. ANN showed high 
accuracy in predictions, while RSM excelled in optimizing the dyeing process13.

Despite the advantages mentioned for natural dyes, the supply of these dyes is only 1% of world demand. 
This shows that there is immense scope to venture into search for other sources of natural dyes. Plums are the 
most taxonomically diverse of stone fruits tree and are adapted to a board range of climatic and edaphic factors. 
They are placed within the Pronoideae subfamily of the Rosaceae, in the subgenus Prunophora and includes 
several species of Prunus. The most commonly grown species are P. domestica L., Prunus Americana and P. 
salicina Lindl14. The plum tree has leaves with different colors. In one type of Prunus Americana, the leaves are 
brownish-red. In terms of material novelty, for the first time a sustainable procedure using plum-tree leaves to 
dyeing polyamide 6 and woolen fabrics is proposed in this work. Moreover, we employed RSM to formulate an 
experimental design incorporating control factors such as concentration, time, pH, and temperature. The primary 
objective was to quantify K/S as the response variable in the dyeing process of polyamide 6 and woolen fabric 
utilizing plum-tree leaves as the dye source. Subsequently, we used two distinct methodologies, namely ANN 
and RSM, to elucidate the relationship between the aforementioned control factors and the response variable. 
To enhance the optimization process, a GA was seamlessly integrated into both objective functions, aiming to 
refine the control factors and maximize the response variable. The resultant optimized set of control factors was 
then applied in the dyeing process, facilitating a comparative analysis between optimized and non-optimized 
samples. To deepen the analysis, the impact of bio-mordants on color intensity was examined.

Experimental section
Materials
In this study, two common used fabrics made up of polyamide 6 and woolen fibers have been purchased from 
the Iranian Company with specification as summarized in Table 1. Before starting the dyeing or mordanting 
procedure, the fabrics were immersed in an aqueous solution of non-ionic detergent (2 mL/L of Lissapol NC) 
for 30 min at a temperature of 70 °C to remove dirt. The scoured fabrics were then thoroughly washed with tap 
water, followed by drying at room temperature.

Collection of plum-tree leaves from local gardens (Khoy-Urmia city) was done; following washing and drying, 
they were turned in to the powder form through milling. Five biomordants, including Carthamus Tinctorius, 
Terminalia Chebula, Rhus Coriaria L., Urtica, and Juglans R were bought from an herbal pharmacology store 
in Iran, then grinded to obtain a fine powder. Metal mordants such as copper sulfate, zinc sulfate, potassium 
dichromate and iron III sulfate were purchased from Merck, Germany. Acetic acid (Merck, Germany) and sodium 
hydroxide (Kohan Taj Kimia, Iran) were used to adjust pH in the dyeing process.

Mordanting and dyeing procedure
Pre-mordanting method was used for dyeing procedure. For mordanting, the sample was entered into the mor-
dant solution; after that, it was brought to heating. The fabrics were mordanted at 100 °C for 75 min using 5 wt.% 
metal mordants and 50 wt.% biomordants solution as well as the liquor ratio being 50:1. The aqueous extract 
were utilized for dyeing both polyamide 6 and woolen fabrics.

Design of experiment and dyeing procedure
For the parametric study and data collection, we have chosen four variables including concentration, time, pH, 
and temperature. To ensure accuracy, we have specified the lower and upper limits for each design parameter. 
Table 2 provides the unit, code, and these limits for the design parameters.

Table 1.   Fabrics specification.

Fiber Pattern

Pattern 
density 
(thread/
cm)

Yarn 
count 
(Nm) Areal density

Polyamide 6 Plain 18 14 25 36 60

Woolen Plain 26 31 47 56 180
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The Box Behenken method, a subgroup of RSM with a center point equal to 5, was utilized under Design 
Expert Software to generate various combinations of design parameters. This method assumes three levels for 
each design parameter and effectively reduces the total number of combinations from 81 to 25. Table 3 provides 
a summary of the design matrices used in the experiments.

Characterization methodologies
The reflectance spectra of dyed samples were acquired through the utilization of a Konica Minolta 3600d within 
the visible light range spanning from 400 to 700 nm with increments of 10 nm. Subsequently, the K/S for the 
samples was determined by employing the Kubelka–Munk equation, as delineated in Eq. (1).

Herein, R represents the reflectance value at each wavelength, with K denoting the absorbance coefficient and 
S representing the scattering coefficient. Furthermore, the CIEL*a*b coordinates of the samples were computed 
under CIE standard illuminant D65 and 10˚ standard observer in CIE 1964. Determination of washing color 

(1)K

S
=

(1− R)2

2R

Table 2.   Design parameters of experiment.

Factor Unit Code Lower limit Upper limit

Concentration wt.% X1 20 100

Time min X2 30 120

pH – X3 5 9

Temperature ◦
C X4 40 100

Table 3.   Design matrices of the experiment.

Run

Control parameters Response Dataset of fold 1

X1 X2 X3 X4 Y1 Y2 Training Testing

1 20 75 7 40 1.19 ± 0.01 1.31 ± 0.01  +  −

2 20 75 5 70 3.85 ± 0.04 1.47 ± 0.01  +  −

3 20 30 7 70 2.11 ± 0.02 1.28 ± 0.01  +  −

4 20 120 7 70 3.36 ± 0.02 2.2 ± 0.02  +  −

5 20 75 9 70 2.33 ± 0.01 1.72 ± 0.01  +  −

6 20 75 7 100 2.24 ± 0.03 1.86 ± 0.2  +  −

7 60 75 5 40 3.07 ± 0.05 1.65 ± 0.01  +  −

8 60 30 7 40 3.11 ± 0.03 1.88 ± 0.01  +  −

9 60 120 7 40 2.56 ± 0.02 2.15 ± 0.01  +  −

10 60 75 9 40 2.4 ± 0.03 1.81 ± 0.01 −  + 

11 60 30 5 70 4.38 ± 0.07 1.8 ± 0.01  +  −

12 60 120 5 70 7.19 ± 0.09 5.59 ± 0.05 −  + 

13

60 75 7 70

5.59 ± 0.04 2.51 ± 0.02  +  −

60 75 7 70

60 75 7 70

60 75 7 70

60 75 7 70

14 60 30 9 70 2.78 ± 0.03 2.52 ± 0.02  +  −

15 60 120 9 70 5.11 ± 0.06 3.44 ± 0.03  +  −

16 60 75 5 100 7.46 ± 0.08 3.19 ± 0.03  +  −

17 60 30 7 100 6.01 ± 0.05 2.79 ± 0.02  +  −

18 60 120 7 100 7.82 ± 0.11 5.04 ± 0.04  +  −

19 60 75 9 100 6.84 ± 0.07 5.38 ± 0.05  +  −

20 100 75 7 40 4.28 ± 0.06 2.55 ± 0.02 −  + 

21 100 75 5 70 7.82 ± 0.08 2.55 ± 0.02  +  −

22 100 30 7 70 5.04 ± 0.06 2.79 ± 0.03  +  −

23 100 120 7 70 9.04 ± 0.16 3.12 ± 0.03  +  −

24 100 75 9 70 7.69 ± 0.05 4.31 ± 0.06  +  −

25 100 75 7 100 9.23 ± 0.19 5.27 ± 0.05  +  −
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fastness was done in accordance with ISO 105-C06 (A1S): 2010 test method. Evaluation of the change in color of 
the specimen was done using gray scale (rating from 1 to 5) and ISO 105-A02. The standard ISO 105-B02:2013 
and a blue scale (rating from 1 to 8) were used for the purpose of evaluating the dyed fabrics’ light fastness. Color 
fastness to dry rubbing and wet rubbing fastness were tested in accordance with ISO 105-X12: (2016) test method 
using a manually operated Crockmeter and grey scale.

Soft computation
Data pre‑processing and post‑processing
In the process of constructing a model based on specific data, evaluating the correlation between variables is 
imperative to circumvent multicollinearity. Multicollinearity arises when two or more independent variables in 
a model exhibit substantial correlation. This heightened correlation introduces challenges to the model, such as 
unreliable coefficients, diminished statistical significance, augmented standard errors, escalated variance infla-
tion factor (VIF), and increased model instability15. Consequently, the utilization of the Pearson’s correlation 
coefficient (PCC) through Eq. (2) was deemed essential for this purpose.

By calculating Eq. (2) for the gathered data, Fig. 1a, is obtained. It is evident from the results that the cor-
relations among the input data are notably low. Conversely, the correlations among the output data exhibit an 
acceptable level (78%). In general, if the PCC value surpasses 90%, it is advisable to exclude one of the correlated 
parameters during the modeling and optimization stages to mitigate redundancy. However, in the present study, 
all parameters were retained during modeling and optimization steps due to their PCC values falling below the 
critical threshold.

It is imperative to normalize experimental data prior to formulating the objective function to enhance the 
efficacy of the model. When data exhibit variations across different scales, quantitative interactions among them 
can be compromised. Therefore, normalization proves advantageous in mitigating scale sensitivity, expedit-
ing convergence, facilitating gradient descent, preventing issues related to vanishing or exploding gradients, 
enhancing generalization, and ensuring numerical stability16. Equation (3) is employed for the normalization 
of all data, encompassing both control factors and response variables, as an essential preprocessing step before 
the modeling phase.

where a and b denote the upper (= 0.9) and lower (= 0.1) limits of the normalization domain, respectively. Sub-
sequent to the normalization process, a division of the data was executed with a split ratio of 90:10, creating two 
distinct datasets comprising training and testing groups. Following this, a fourfold cross-validation method was 
employed to assess both the generality and average performance of the objective function as shown in Fig. 1b.

Modeling step
To optimize the hyper parameters of objective functions, encompassing ANN and RSM, a criterion is essential 
to evaluate model performance during the training phase. Previous research17 has demonstrated that the efficacy 
of models developed through either ANN or RSM can be quantified using a metric known as the Total Good-
ness Function (TGF). The TGF comprehensively assesses the performance of the objective function across both 
training and testing phases. Moreover, it amalgamates the coefficient of determination and mean squared error, 
enhancing its robustness. Mathematically, the determination of TGF is articulated as follows:

(2)PCC =

∑
(Xi − X)(Yi − Y)√∑

(Xi − X)
2 ∑

(Yi − Y)
2

(3)Xn = (a− b)
X − Xmin

Xmax − Xmin
+ b

Figure 1.   (a) Pearson’s heatmap correlation matrix of data, and (b) fourfold cross-validation of data with a data 
split ratio of 9:1.
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In which

In the aforementioned expression, the symbols represent the following: e designates the actual value, p denotes 
the predicted value, e signifies the average of the actual values, n stands for the number of data points, and N 
represents the total number of data points.

Response surface methodology
RSM proves to be a highly efficacious approach not only in the design of experiments but also as a robust method 
for formulating objective functions and conducting optimization procedures. It furnishes a range of polynomial 
equations that serve to establish a meaningful relationship between control factors and the response variable. 
Broadly, RSM is advantageous for streamlined optimization, comprehensive exploration of factor interactions, 
minimization of required experimental runs, precise quantification of optimal conditions, rigorous statistical 
analysis, graphical representation of response surfaces, robustness testing, systematic sequential optimization, 
accommodation of nonlinear relationships, and judicious resource utilization18. In the present study, four dis-
tinct control factors are under consideration, each influencing a singular response variable. Mathematically, the 
expression of the RSM model is articulated as follows:

where a0 , ai , aii , and aij are offset, linear coefficient, quadratic coefficient and linear–linear interaction coefficient 
of model, respectively. It is noteworthy to highlight that, owing to the employment of diverse criteria for assess-
ing the performance of the RSM model, the Solver toolbox within the Excel software was employed to derive 
the offset and coefficient values.

Artificial neural network
In the domain of modeling, the ANN, particularly the feed-forward back-propagation architecture, stands out 
as a potent network for establishing relationships between control factors and response variables. Diverging 
from RSM, an ANN model can be structured to map from multiple factors to multiple response variables. It is 
noteworthy that both ANN and RSM lack differentiability. Consequently, vector-based optimization methods, 
such as genetic algorithms (GAs), particle swarm optimization (PSO), simulated annealing, differential evolution 
(DE), ant colony optimization (ACO), Bayesian optimization, grid search and random search, hybrid meth-
odologies, and covariance matrix adaptation evolution strategy (CMA-ES), have been explored to address this 
challenge19,20. In the present study, the optimal model was identified with a neural network topology of 4–5-1 as 
shown in Fig. 2a, demonstrating the highest Total Goodness Function (TGF) value, quantified at 2. The training 

(4)TGF =
ntrain

N
(R2

+ e−MSE)train +
ntest

N
(R2

+ e−MSE)test

(5)R2
= 1−

∑n
1 (s − p)2

∑n
1 (s − s)2

(6)MSE =

∑n
1 (s − p)2

n

(7)f̂ (x1. . . . .x4) = a0 +

4∑

1

aixi +

4∑

1

aiixi
2
+

4∑

1

4∑

1

aijxixj

Figure 2.   (a) Topology of developed artificial neural network, (b) relative importance of input parameter in 
networks.
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process employed a learning rate of 0.6 and a momentum value of 0.9, determined as optimized parameters. The 
Levenberg–Marquardt algorithm was utilized to train the neural network efficiently. Additionally, the transfer 
functions for the hidden layer and output layer were designated as Eq. (8) and (9), respectively.

In this context, the variable y represents the sum of weights multiplied by signals from various nodes, along 
with the inclusion of a bias value. It is imperative to emphasize that the fine-tuning of hyperparameters for 
the ANN model was conducted through a dedicated program implemented in MATLAB, employing the grid 
search method. Likewise, the Total Goodness Function (TGF) served as the criterion for discerning the most 
optimal performing network. To elucidate the relative significance of control parameters, a sensitivity analysis 
was employed as outlined below21:

The weight between the i-th node in the input layer and the j-th node in the hidden layer is denoted as Wij , 
and the weight between the j-th node in the hidden layer and the output layer is denoted as Vj ​. Here, nI ​ represents 
the number of nodes in the input layer, and nH ​ represents the number of nodes in the hidden layer. Figure 2b 
illustrates the outcomes of the sensitivity analysis. In the case of the network developed for polyamide 6 fabric, 
the control parameter X4 has the highest contribution at 32%, while the control parameter X2 has the lowest 
contribution at 17%. On the other hand, in the woolen fabric network, the control parameters X3 and X4 have 
contributions of 35% and 16% respectively, impacting the output.

Development of cost function
In engineering, the establishment of objective functions enables optimization processes, which involve determin-
ing a set of parameters for purposes such as maximization, minimization, and objective optimization. Optimiza-
tion is a fundamental element in engineering design, analysis, and decision-making22,23. This research focuses 
on maximizing color strength, denoted as K/S, representing the ratio of light absorbed (K) to scattered (S) by 
a material. In the context of textiles, enhancing K/S is advantageous for multiple reasons. A higher K/S value 
signifies increased light absorption, contributing to a more profound and vibrant color appearance, particularly 
significant in the textile industry where fabric aesthetics strongly influence consumer preferences. Elevated K/S 
also enhances resistance to fading, allowing manufacturers to create textiles with prolonged color intensity despite 
exposure to environmental factors. Fabrics with heightened K/S are associated with superior quality, leading to 
increased consumer demand. Consistency in maintaining a high K/S is vital for uniformity in textile appear-
ance, meeting quality standards, and fulfilling customer expectations. For textile manufacturers and fashion 
brands, achieving vibrant and enduring colors contributes to a positive brand image, fostering consumer loyalty 
in competitive industries where superior K/S provides a distinct advantage. Consumers actively seek products 
with enduring aesthetic appeal, making fabrics with superior K/S highly desirable. Utilizing a GA as an optimi-
zation tool necessitates defining the cost function, expressed as the negative normalized value of color strength 
of polyamide 6 fabric, as detailed in Eqs. (11).

For woolen fabric, we have

where −→x  is a vector to store control parameters, with their upper and lower limits aligning with the boundaries 
specified in the control parameters table.

Optimization
The GAs are computational optimization and search technique inspired by the process of natural selection and 
genetics. It is a heuristic algorithm used to find approximate solutions to optimization and search problems. 
Developed based on the principles of evolution, genetic algorithms are particularly effective for solving complex 
problems where traditional optimization methods may struggle. The basic idea behind a GA is to mimic the pro-
cess of natural selection by evolving a population of potential solutions to a problem over multiple generations. 
The algorithm starts with a population of individuals, each representing a potential solution, and applies genetic 
operators such as selection, crossover, and mutation to produce new generations of individuals. Over successive 
generations, the algorithm tends to converge towards solutions that are better suited to the optimization prob-
lem. GAs are versatile and have been applied to a wide range of optimization problems, including engineering 

(8)tansig
(
y
)
=

2(
1+ e−2y

) − 1

(9)purelin
(
y
)
= y

(10)Ri(%) =

∑nH
j=1

[
|Wij||Vj|∑nI
l=1

∣∣Wlj

∣∣

]

∑nI
i=1

[∑nH
j=1

[
|Wij||Vj|∑nI
l=1

∣∣Wlj

∣∣

]] × 100

(11)Minimize : f
(
−→x

)
= −Ynylonn

(
−→x )

(12)Minimize : g
(
−→x

)
= −Ywoolenn(

−→x )

(13)−→x = {x1i , x2i , x3i , x4i}i = 1. . . . .k
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design, scheduling, financial modeling, and machine learning. Their effectiveness lies in their ability to explore 
a large search space efficiently and find near-optimal solutions in complex and non-linear problem domains24. 
In the context of this research, a population size of 100 individuals was established, with a termination criterion 
defined as 50 generations. The generation of individuals involved the application of a uniform function, while 
the scaling of these individuals was executed using a fitness scaling function. Parental selection was achieved 
through a roulette function, incorporating a two-point crossover function with a fraction of 0.8, and introducing 
a viable mutation with a fraction of 0.2. Furthermore, migration was permitted bidirectional with a fraction of 0.7.

Figure 3 illustrates the flowchart of the devised multi-approach procedure. The process commences with 
an analysis and interpretation of the impact of control parameters on the response variables. Subsequently, in 
accordance with the formulated hypotheses, an experiment is designed and executed. Following the normaliza-
tion and shuffling of data, two methodologies, namely ANN and RSM, are employed to construct the objective 
functions. Thereafter, GA is integrated with both models, and optimization procedures are conducted. Lastly, 
the optimized dyeing parameters are utilized for dyeing polyamide 6 and woolen fabrics with plum-tree leaves.

Results and discussions
Statistical analysis
The significance of various terms in the RSM models are determined through Analysis of Variance (ANOVA). 
The results of the ANOVA analysis are summarized in Table 4, reflecting a 95% confidence level for the developed 
RSM models. Notably, several terms in both RSM models exhibit p-values higher than 0.05, suggesting that they 
could be excluded. Nevertheless, these terms were retained to enhance the performance of the RSM models.

Selection of objective function
The optimization step benefits from a procedure yielding the best-performing objective function. Remarkably, 
both ANN models yielded nearly identical models with a goodness of fit of 1, as depicted in Fig. 4a–c while RSM 
models suffered from lack of fit due to complexity of the relationship between parameters as shown in Fig. 4b–d. 
A R2 value of 1 signifies a perfect prediction of the response variable based on control parameters, explain-
ing 100% of the variability. While this scenario is rare and may suggest overfitting, caution is warranted with 
extremely high R2 values, as they may indicate poor generalization to new data. In practice, R2 values typically 
range between 0 and 1, signifying the model’s fit to the data. However, high R2 alone does not ensure predictive 
ability on new data; additional metrics and techniques, such as cross-validation, are essential for assessing gener-
alization performance. A fourfold cross-validation demonstrated consistent model performance across all folds.

The weight and bias values of the developed ANN models of polyamide 6 and woolen fabrics are presented 
in Tables 5 and 6, respectively. Employing these identical values within a network characterized by fixed weight 
and bias parameters facilitates the replication of the outcomes depicted in Figure.

Optimization results
Figure 5a,b depict the optimization performance of ANN-GA of polyamide 6 and woolen fabrics, respectively. 
Both models exhibit significant diversity during the optimization process and converge after 50 generations. 
The convergence of GAs implies that a state has been reached where further iterations do not yield substantial 
improvements in performance or optimization objectives. This stabilization is associated with the algorithms 

Figure 3.   Flowchart of developed multi-approach procedure.
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finding solutions meeting specified criteria. Figure 5c,d compares the visual appearance of optimized and non-
optimized samples, revealing that the optimized sample has a higher K/S value.

In Table 7, a comparison between GA and DOE-guided samples in predicted and experimental scenarios has 
been made. In the case of polyamide 6 fabric, the GA-guide sample experienced an increase in time from 75 to 
86 min, and an increase in pH from 7 to 8.28. The concentration (100 wt.%) and temperature (100 °C) remained 
consistent. The error of blind prediction of K/S with an experimental value of 10.21 is acceptable, with a value 
of 5.97%. For the woolen fabric, the concentration declined from 60 wt.% to 55.85 wt.%, while the temperature 
increased from 70 °C to 99.79 °C. The maximum K/S was 7.65 with a prediction error of 3.52%.

Interpretation of results
The effect of design parameter on the color strength
Investigating the effect of dyeing parameters on the color strength of polyamide 6 and woolen dyed with plum-
tree leaves show that in order to create color with good quality, each effective parameter in dyeing process have 
to be set in a certain value. Figure 6a shows that increasing the dye concentration up to 90 wt.% has significantly 
increased the color strength of the dyed polyamide 6 fabrics. An increasing the dye concentration more than 90 
wt.%, had very little effect on the color strength. Also, Fig. 7a shows that increasing the dye concentration up to 
55.85 wt.% has increased the color strength of dyed wool fabrics. Increasing the dye concentration more than 
55.85 wt.% has reduced the absorption and color strength in woolen fibers. Using more than the proposed value 
of the dye concentration might lead to over-exhaustion, causing adsorption of dye on the fiber’s surface and poor 
fixation of color on the polyamide 6 fibers. Figure 6b shows that increasing the dyeing time up to 86.06 min 
has caused a slight increase in the color strength on polyamide 6 fibers. Increasing the dyeing time more than 
86.06 min has not had a significant effect on the color strength. The results of the effect of dyeing time on wool 
fibers are different. Figure 7b shows that by increasing the dyeing time up to 120 min, the color strength has 
increased, significantly. In Figs. 6c and 7c, the effect of pH on the color strength is given. Figure 6c shows that 
the maximum dye absorption in polyamide 6 fibers was around the neutral region (pH level of 8.28). In wool 
fibers, with a decrease in pH level, the color strength has increased, significantly. Figures 6d and 7d show that 
increasing the temperature in the dyeing process up to 80 °C in polyamide 6 fibers and up to 100 °C in wool 
fibers has increased the color strength.

In general, the above results show that the best dyeing conditions to create the highest color strength in 
polyamide 6 fibers are 100 wt.% dye concentration, 86.06 min dyeing time, pH level of 8.28 and 100 °C dyeing 
temperature. Also, the highest color strength in wool fibers is created at 55.85 wt.% dye concentration, 120 min 
dyeing time, pH level of 5 and 100 °C dyeing temperature.

In Fig. 8, the mutual influence of dye concentration, dyeing time, pH level and dyeing temperature on the 
dye absorption in polyamide 6 and wool fibers are shown. The results indicate that all the investigated dyeing 
parameters were effective on the dye absorption. Among the examined parameters, dyeing temperature and dye 
concentration were the most effective parameters on the dye absorption in polyamide 6 fibers, respectively. In 
polyamide 6 fibers, the dyeing time had the least effect on the absorption. Increasing the temperature of the dye-
ing bath causes swelling in the polyamide 6 fibers, and as a result, the ligands in the polyamide 6 fiber are easily 
accessible to dye molecules. Also, increasing the temperature has reduced the dye accumulation and increased 
the dye permeation and dye absorption in polyamide 6 fibers25.

Table 4.   ANOVA analysis of different terms of RSM-based models. D.F is the degree of freedom, S.S is the 
adjusted sum of squares, and M.S is the adjusted means squares.

Source D. F

S. S M. S P-value Coefficient-value

Polyamide 6 Wool Polyamide 6 Wool Polyamide 6 Wool Polyamide 6 Wool

Model 14 135.59 36.97 9.68 2.64 0.00 0.00 0.1156 0.2060

x1 1 65.43 9.63 65.43 9.63 0.00 0.00 0.2080 0.2116

x2 1 11.31 5.99 11.31 5.99 0.00 0.00 0.1089 0.1661

x3 1 3.65 0.72 3.65 0.72 0.07 0.22  − 0.1778  − 0.4176

x4 1 44.05 12.36 44.05 12.36 0.00 0.00 0.3873  − 0.7974

x1
2 1 1.00 0.48 1.00 0.48 0.33 0.32  − 0.2420  − 0.3158

x2
2 1 0.80 0.40 0.80 0.40 0.38 0.36  − 0.2144 0.2293

x3
2 1 0.02 0.81 0.02 0.81 0.90 0.20  − 0.0276 0.3539

x4
2 1 2.65 0.52 2.65 0.52 0.12 0.29  − 0.3958 0.3337

x1x2 1 1.89 0.09 1.89 0.09 0.19 0.66 0.4275  − 0.1713

x1x3 1 0.48 0.57 0.48 0.57 0.49 0.27 0.2163 0.4380

x1x4 1 3.80 1.18 3.80 1.18 0.07 0.12 0.5902 0.7427

x2x3 1 0.06 2.06 0.06 2.06 0.81 0.05  − 0.0951  − 0.6001

x2x4 1 1.39 0.98 1.39 0.98 0.25 0.16 0.3669 0.5742

x3x4 1 0.00 1.03 0.00 1.03 0.98 0.15 0.0093 0.5804

Residual 14 13.62 6.18 0.97 0.44

Total 10 149.20 43.15
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pH level and dye concentration have the highest effect on the dye absorption in wool fibers. In wool fibers, 
the temperature had the least effect on the dye absorption. The use of acids and the reduction of pH in the dyeing 
process causes the hydrolysis of the Ligand group in the plum tree leaves. In this case, the affinity of these groups 

Figure 4.   Pearson correlation heat map matrix of (a) training and testing step of ANN, (b) training and testing 
step of RSM model for polyamide 6 fabric (c) training and testing step of ANN, and (d) training and testing step 
of ANN for woolen fabric.
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to connect with metal or natural mordant (especially with coordinate covalent), increases. In addition, the acidic 
condition facilitates the effective transfer of electrons from the carboxyl and amino groups in the wool structure 
to the used mordants and the formation of coordinate covalent bonds between these group26.

The effect of bio‑mordants on the color strength
In dyeing with natural dyes, in order to achieve an appropriate colorfast shades, it is necessary to treat the fibers 
with mordants. Traditionally, metal salts such as Al3+, Cu2+, Cr2+, and Fe2+ have been used as mordant. Some of 

Table 5.   Weight and bias values of the ANN model for polyamide 6 fabric.

Weight Bias

W  − 1.9081  − 0.3914 0.6955  − 0.7066 1  − 0.1550

 − 1.6402  − 0.6561  − 2.1239  − 0.0170 1.0360

1.0881 0.4659  − 0.6768 1.3734 0.7681

 − 0.6385  − 1.9450 1.1608  − 3.2947  − 0.9855

 − 0.3262 1.1239 1.2294  − 1.5772  − 1.5330

V  − 0.8986  − 0.2427  − 1.0823  − 0.7352  − 0.3494 2  − 0.0304

Table 6.   Weight and bias values of the ANN model for woolen fabric.

Weight Bias

W 1.5727 1.0439 1.8911 2.7729 1  − 3.2672

0.0312  − 2.1175  − 0.1403 0.6810  − 0.2401

 − 4.0678  − 0.6270 0.5521  − 1.9067  − 1.5018

 − 0.8151  − 0.3422  − 1.0256  − 0.0315  − 1.9647

 − 1.2034 1.8901  − 2.3527 0.9119  − 4.0079

V 0.6950 0.0751  − 0.2046  − 1.0171 1.2517 2 0.3994

Figure 5.   Optimization performance of (a) ANN-GA model of polyamide 6 fabric, (b) ANN-GA model of 
woolen fabric, (c) visual comparison between optimized and non-optimized polyamide 6 fabric, (d) visual 
comparison between optimized and non-optimized woolen fabric.
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these metals such as Cu and Cr are toxic and dangerous and have harmful effects on aquatic life, water quality 
and soil fertility27. Therefore, there is a growing trend to replace these harmful metals with eco-friendly and 
sustainable materials such as plant phenolic materials3,5,6. In this study, metal salts like Fe, Cu, Cr, and Zn as well 
as such phenolic extract from Juglans R, Rhus coriaria L., Terminalia chebula, Carthamus tinctorius, and Urtica 
were used to act as mordant. Due to the presence of hydroxyl and carboxyl groups in the structure of these plant 
materials (See Fig. 9), the biomolecules interact with the ligands in the polyamide 6 and wool fibers as well as 
the dye, forming additional H-bonds that help create new colorfast shades28. In addition, the composition of 
these biomolecules enhances the development of darker shades with stable hues, making them an attractive 
alternative to toxic metal mordants.

In Tables 8, 9, 10, 11, present the colorimetric and fastness results for dyed polyamide 6 and woolen fabrics, 
both without mordants and with metal and plant mordants. The a* and b* values indicate that different mordants 
affect these parameters, but there was no shift in the a*-b* quadrant of the CIELab color space. Both control and 
mordanted samples fall within the red-yellow quadrant of the CIELab color space.

Table 7.   Comparison between GA and DOE-guided samples in predicted and experimental scenarios.

Sample Method

Input parameter K/S

Error (%)X1 X2 X3 X4 Predicted Experimental

Polyamide 6
GA-Guided 100.00 86.06 8.28 100.00 9.60 10.21 5.97

DOE-Guided 100.00 75.00 7.00 100.00 9.23 9.23 0.00

Wool
GA-Guided 55.85 120.00 5.00 99.97 7.38 7.65 3.52

DOE-Guided 60.00 120.00 5.00 70.00 5.59 5.59 0.00

Figure 6.   Effect of design parameters on K/S value of polyamide 6 fabric calculated by ANN for optimized 
sample, (a) concentration, (b) time, (c) pH, and (d) temperature.
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In polyamide 6 fibers, the Juglans Regia sample exhibited significantly higher darkness and redness compared 
to other samples. For these fibers, Cr had the highest yellowness, while Juglans Regia and Rhus coriaria L. had the 
least. In wool fibers, Cr and Juglans Regia samples showed greater darkness than other metal and bio-mordant 
samples. Carthamus tinctorius and Urtica samples displayed the highest redness, whereas Cr, Carthamus tinc-
torius, and Terminalia Chebula samples had the highest yellowness.

Examining the color difference (ΔE) reveals that among metal mordants, Cr, and among bio-mordants, Jug-
lans Regia, exhibited the most significant color change compared to the non-mordanted sample.

Additionally, the non-mordanted sample demonstrated adequate color strength (8.04 in polyamide 6 and 7.71 
in wool) when compared to the mordanted samples. However, its washing, rubbing, and light fastness were signif-
icantly lower than those of the mordanted samples. According to ISO standards, the washing, rubbing, and light 
fastness of the non-mordanted sample are unacceptable (wash and rubbing fastness ≤ 4 and light fastness ≤ 5).

In polyamide 6 fibers, the color strength of the mordaned samples with Juglans R (13.26), Terminalia chebula 
(10.01) and Carthamus tinctorius (10.52) was higher than the mordanted samples with metal salts (7.42–8.00). 
Also, the wash, rubbing, and light fastness of these samples was higher than or equal to the fastness of the mor-
danted samples with metals. In polyamide 6 fibers, the mordanted samples with Rhus coriaria L. and Urtica had 
the same color strength and fastness as the metal ones. In woolen fibers, the sample mordanted with Cr had 
the highest color strength (16.38). The wash and rubbing fastness of the Cr sample is equal to the bio-mordant 
samples, but the light fastness is much lower. The used bio-mordants contain polyphenol components (see 
Fig. 9). Phenolic structures absorb UV and improve the light fastness33. In woolen fibers, after the Cr sample, 
the mordanted sample with Terminalia chebula had the highest color strength (13.99). The color strength of the 
other biomordanted samples was in the range of metal ones (except Cr sample). Also, the wash, rubbing, and light 
fastness of biomordanted samples was equal to or more than metal ones. The wash fastness of all biomordanted 
samples were the same as sample (5). However, the light fastness of Juglans R (8) and Rhus coriaria L. (7–8) 
samples was higher than the other ones. Also, the rubbing fastness of Juglans R (5) and Terminalia Chebula (5) 
samples was higher than or equal to the metal samples.

Figure 7.   Effect of design parameters on K/S value of woolen fabric calculated by ANN for optimized sample, 
(a) concentration, (b) time, (c) pH, and (d) temperature.
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In this research, although the use of bio-mordants has produced hues with appropriate color strength and 
color fastness, in some cases, such as with Juglans Regia, these mordants have altered the original hue obtained 
from the colorant (see ΔE in Tables 8 and 10). To address this issue, it is suggested to use bio-mordants without 
coloring properties.

Conclusion
This study focused on conducting an experimental inquiry into the influence of concentration, time, pH, and 
temperature on the K/S of polyamide 6 and woolen fabrics utilizing plum-tree leaves. The experiment was struc-
tured through response surface methodology. To establish a mapping function from control parameters to the 
response variable, both ANN and RSM were employed. Following the development of the objective function, 
a GA was integrated into both objective functions. Subsequently, optimization procedures were carried out, 
and the optimized set of control parameters were applied to dye polyamide 6 fabric using plum-tree leaves. The 
findings can be summarized as follows:

Figure 8.   3D plot of interaction between design parameters of K/S value for polyamide 6 fabric, (a) 
concentration vs time, (b) concentration vs pH, (c) concentration vs temperature, (d) time vs pH, (e) time 
vs temperature, (f) pH vs temperature, and K/S value for woolen fabric, (g) concentration vs time, (h) 
concentration vs pH, (i) concentration vs temperature, (j) time vs pH, (k) time vs temperature, and (l) pH vs 
temperature.
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•	 RSM not only facilitates the exploration of the parametric influence of control factors but also establishes a 
data space characterized by significant diversity.

•	 ANN exhibits superior generalization to the data space of the dyeing process compared to response surface 
methodology.

•	 The integration of genetic algorithms (GA) with ANN allows for fine-tuning the dyeing process of polyamide 
6 and woolen fabrics with plum-tree leaves, contributing to enhanced optimization.

Figure 9.   The major constituents of used biomordants29–32.

Table 8.   Shade quality parameters of polyamide 6 fabric dyed with metal and bio-mordants.

Mordant used Dyed polyamide 6 fabric L* a* b* C* h° ΔE K/S (λmax)

Without Mordant 52.65 4.82 19.00 19.60 75.75 – 8.04

Cr 54.62 3.48 33.25 33.43 84.03 14.45 8.00

Zn 55.13 3.57 20.38 20.69 80.05 3.11 7.42

Cu 55.18 4.25 23.19 23.57 79.61 4.93 7.56

Fe 54.51 2.77 20.33 20.52 82.25 3.08 7.71

Juglans Regia 34.43 7.19 15.08 16.70 64.51 18.78 13.26

Rhus coriaria L 47.57 6.38 15.21 16.49 67.26 6.52 7.79

Terminalia Chebula 49.53 4.74 21.30 21.83 77.46 3.88 10.01

Carthamus tinctorius 48.94 3.97 26.94 27.23 81.61 8.81 10.52

Urtica 53.30 2.97 19.49 19.72 81.35 2.03 7.71
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•	 By optimizing the dyeing conditions and using plant materials as bio-mordant, it is possible to obtain hues 
with excellent color strength as well as washing and light fastness on polyamide 6 and wool fabrics. This 
approach provides a sustainable and eco-friendly method of dyeing polyamide 6 and woolen fabrics, which 
replaces the need for synthetic dyes and toxic metal mordants. Textile industries can adopt greener practices 
by using plant dyes and mordants while ensuring the durability and vibrancy of the dyed fabrics.

Table 9.   Fastness grading of polyamide 6 fabric dyed with metal and bio-mordants.

Mordant used Light fastness Wash fastness
Staining wash fastness-
viscose

Staining wash fastness- 
wool Dry rubbing fastness

Wet rubbing 
fastness

Without Mordant 3–4 3 3–4 3–4 3–4 3

Cr 6–7 5 4–5 5 4–5 4

Zn 4–5 3–4 4 3–4 4 4

Cu 6 4–5 5 4–5 5 4–5

Fe 6–7 4 4–5 4 5 5

Juglans R 8 5 5 5 5 5

Rhus coriaria L 6 4–5 4–5 5 4–5 4

Terminalia chebula 7–8 5 5 5 5 5

Carthamus tinctorius 6–7 4–5 5 4–5 4–5 4

Urtica 6–7 4–5 5 5 4–5 4

Table 10.   Shade quality parameters of wool fabric dyed with metal and biomordants.

Mordant used Dyed wool fabric L* a* b* C* h° ΔE K/S (λmax)

Without Mordant 50.95 10.31 19.16 27.76 61.71 – 7.71

Cr 37.03 7.88 33.57 34.48 76.78 20.18 16.38

Zn 52.21 9.36 20.68 22.7 65.65 2.19 7.13

Cu 41.21 8.57 22.95 24.5 69.53 10.6 11.74

Fe 40.71 3.98 13.77 14.33 73.88 13.19 9.71

Juglans R 37.47 9.47 15.99 18.59 59.36 13.88 11.91

Rhus coriaria L 44.78 7.93 17.11 18.86 65.15 6.93 9.68

Terminalia Chebula 48.37 8.26 28.04 29.23 73.59 9.47 13.99

Carthamus tinctorius 48.52 10.29 30.08 31.79 71.12 11.19 11.43

Urtica 42.76 12.28 19.2 22.79 57.4 8.43 10.65
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