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Case study on climate change 
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Ilya S. Belalov 2, Nazar Sotiriadi 3, Veronica Narozhnaia 3, Kirill Kovalev 3, Alexander Krenke 4, 
Nikita Lazarichev 5, Alexander Bulkin 1,6,7 & Yury Maximov 8

Agriculture, a cornerstone of human civilization, faces rising challenges from climate change, 
resource limitations, and stagnating yields. Precise crop production forecasts are crucial for shaping 
trade policies, development strategies, and humanitarian initiatives. This study introduces a 
comprehensive machine learning framework designed to predict crop production. We leverage CMIP5 
climate projections under a moderate carbon emission scenario to evaluate the future suitability of 
agricultural lands and incorporate climatic data, historical agricultural trends, and fertilizer usage 
to project yield changes. Our integrated approach forecasts significant regional variations in crop 
production across Southeast Asia by 2028, identifying potential cropland utilization. Specifically, 
the cropland area in Indonesia, Malaysia, Philippines, and Viet Nam is projected to decline by more 
than 10% if no action is taken, and there is potential to mitigate that loss. Moreover, rice production 
is projected to decline by 19% in Viet Nam and 7% in Thailand, while the Philippines may see a 5% 
increase compared to 2021 levels. Our findings underscore the critical impacts of climate change 
and human activities on agricultural productivity, offering essential insights for policy-making and 
fostering international cooperation.

Climate change has a substantial impact on crop production, which poses risks to food security globally1. The 
Secretary-General of the United Nations has highlighted that Least Developed Countries are particularly vulner-
able to these risks, especially given rising food and energy costs2. Despite technological advances since the Indus-
trial and Green Revolutions, climate change and weather variability remain the primary factors affecting crop 
production3. Anthropogenic factors exacerbate temperature and precipitation extremes, further compounding 
the issue4. Agricultural investments are highly challenging due to various financial and natural risks, including 
nutrient price volatility, market fluctuations, and supply chain disruptions5. This complexity underscores the 
necessity for precise, predictive models of crop production to support effective resource management, develop-
ment of early warning systems, and enhancement of food security strategies.

Recent advances in remote sensing technology and numerical climate modeling have enabled the acquisi-
tion of detailed climate and soil data over broad geographic areas and diverse temporal intervals. By employing 
the Climate Model Intercomparison Project Phases 5 and 6 (CMIP5, CMIP6)6,7 simulations, researchers can 
project future climatic conditions up to 2100, significantly enriching climate-agriculture integrated studies3,8,9. 
Both machine learning and physical modeling, supported by remote sensing, have proven effective in address-
ing numerous agricultural challenges. For example, research has differentiated between irrigated and rainfed 
croplands under changing climate conditions10–12 and examined the effects of climate-induced droughts, hails, 
and floods on croplands13–18. Extensive use of satellite imagery has facilitated regional crop yield mapping and 
monitoring19–22, with numerous studies leveraging satellite-derived data for yield estimation23–26.

The challenges of crop production are primarily characterized by two factors: the expansion or degrada-
tion of arable land and the significant fluctuations in crop yields. Previous research has often overlooked the 
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comprehensive interaction between these two critical aspects27,28. Our study addresses this oversight by introduc-
ing a combined methodology made of two major components. The first is a high-fidelity, data-driven approach 
to unearth historical correlations between climate variables and arable land dynamics. Based on the widely 
recognized CMIP5 climate models, we evaluate land utilization patterns. The second is a future yield changes 
forecasting based on climate conditions and fertilizer consumption, aiming to project shifts in agricultural 
production over a 7-year forecast period.

We have implemented and validated our combined approach across countries in Southeast Asia—Cambodia, 
Indonesia, Lao PDR, Malaysia, Myanmar, Philippines, Thailand, and Viet Nam - covering the period from 1966 
to 2021. This region, known for its substantial agricultural potential, is highly vulnerable to climate change and 
extreme weather events, with a critical dependency on climatic conditions for its food supply chains29. Crop 
production in Southeast Asia is a significant part of the region’s economy and food security. Cambodia, Indonesia, 
Lao PDR, Malaysia, Myanmar, Philippines, Thailand, and Viet Nam produce a range of agricultural products, 
including palm oil, rice, maize, cassava, sugarcane, and others30. The detailed distribution of crop production 
based on Food and Agriculture Organization Corporate Statistical Database (FAOSTAT) data31 is illustrated in 
Fig. 1. From here, one can observe that rice is commonly the dominant production type for this region. Our 
study particularly focuses on rice production, reflecting its foundational role in the region’s agricultural landscape 
and its importance to food security32. The rice production distribution around the globe and within Southeast 
Asia is reflected in Fig. 2.

Despite notable progress in yield and crop modeling, many countries in the Asian region are understudied 
(except for India and China). Therefore, this gap presents an opportunity to develop regionally sensitive models 
that can account for region-specific factors and provide better quality results within the areas of interest. Thus, 
our study not only fills a critical research gap but also aids in sustainable agricultural development by enabling 
regional stakeholders with the tools needed for informed decision-making in long-term agricultural planning, 
investment, and economic policy development. This collaborative effort is essential for addressing the impacts 
of climate change and securing food resources in vulnerable areas.

Figure 1.   Percentage distribution of crop production across Southeast Asian countries, based on data from31 
(This figure was created in Python 3.10 and the Jupyter Notebook programming interface).

Figure 2.   (a) Global Rice Production; (b) Rice Production in Southern Asian Countries in 202231. (This figure 
was created in Python 3.10 and the Jupyter Notebook programming interface).
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Results and discussion
The agricultural productivity of croplands is influenced by a combination of climatic and anthropogenic factors, 
including temperature, precipitation, pesticide/herbicide application, pollution, fertilizer usage, pH regulation, 
tillage practices, and others33–35. Given the complexity and interdependence of these elements, our study adopts 
a holistic approach by focusing on the primary determinants of agricultural output: climate and fertilizers. By 
developing models to examine the cropland dynamics and project changes in fertilizer consumption, we aim to 
predict shifts in rice production, taking into account potential shifts in arable lands, yield variations and fertiliz-
ers usage. The methodology of our research is illustrated in Fig. 3, which also outlines the data sources we have 
utilized. Detailed information on the datasets can be found in the “Data and preprocessing” section.

Over the past 150 years, the application of fertilizers has significantly enhanced crop yields36. Figure 4 dem-
onstrates the agricultural consumption of three major types of fertilizers in the years 1966–2021, along with 
projections for the next decade, based on our autoregression model (detailed in the “Rice yield model” section). 
The data reveal distinct consumption patterns for each country, reflecting varying fertilizer usage dynamics. 
These patterns suggest that appropriate fertilizer use could potentially mitigate the negative effects of climate 
change on crop production.

Our research aims to account for the influence of climate on cropland status, incorporating social factors for 
a more comprehensive analysis. In actual agricultural practice, lands suitable for crop cultivation are selected 
based on their potential, either as a conscious decision of farmers or processes analogously to natural selection, 
which identifies the most suitable combinations of land characteristics and other variables. This makes cropland 
suitability dependent on both social and climate conditions. Therefore, we consider past agricultural land as a 
predictive factor together with climate conditions to capture complex interactions between socioeconomic and 
climatic patterns.

Cropland suitability
To model cropland suitability, we integrated climate and elevation data to develop a range of machine learning 
models, aiming to effectively incorporate social factors. These models range from conventional algorithms to 
more advanced neural network architectures, including Multilayer Perceptrons (MLP) and Convolutional Neural 
Networks (CNN). CNNs have garnered significant attention in climate and weather forecasting owing to the 

Figure 3.   Research methodology. (This figure was created with Miro online whiteboard (no version provided) 
www.​miro.​com).

Figure 4.   Historical and projected consumption of three primary fertilizers types: (a) Nitrogen, (b) 
Phosphorus, (c) Potassium. The solid line represents consumption data from 1966 to 2021, while the dashed 
line indicates projections from 2022 to 2031, measured per unit of arable area (This figure was created in Python 
3.10 and the Jupyter Notebook programming interface).

http://www.miro.com
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spatial nature of the data25,37,38. Recent research extends beyond these methods to consider recurrent neural 
networks and deep neural networks for capturing intricate spatio-temporal relationships in the data19,39–41 for 
regression problems in weather forecasting and climate modeling. Additionally, we used bioclimatic variables, 
which are climate indices updated annually, to analyze trends in temperature and precipitation. These variables 
offer insights into the current climate conditions (for more details, see “Data and preprocessing” section). These 
indexes are crucial for identifying and understanding climatic patterns.

In order to conduct a fair evaluation of the models, it is essential to select appropriate metrics for the task in 
question. Balanced accuracy is a performance metric that measures the percentage of correct predictions with 
respect to the share of each class, making it particularly useful when dealing with imbalanced classes where 
one class is underrepresented compared to the other. In this study, we use balanced accuracy to evaluate the 
performance of our classifier in distinguishing between the presence and absence of crops (denoted as class 1 
and class 0, respectively). We estimate the precision (the tendency not to predict false croplands) and recall (the 
ability not to predict false non-croplands) using the optimal threshold based on maximizing the F-Measure—the 
harmonic mean of precision and recall. Among the models tested, the XGBClassifier42 outperforms its coun-
terparts (see Table 1). While slightly behind CNN, CatBoost, and Random Forest, this model has the highest 
Balanced accuracy, Recall, and ROC-AUC values, indicating its superiority in cropland modeling based solely 
on climate conditions.

Having identified the XGBClassifier as the top-performing model for cropland suitability classification, we 
trained it on both climate conditions and social factors. For the social factors, we considered land usage over 
the 7 years preceding the prediction date. This period reflects the socioeconomic influences on agricultural land 
use. A feature importance analysis conducted using the SHAP tool, which applies Shapley values from game 
theory to explain model outputs43, confirms that prior land use is the major factor contributing to the superior 
performance of the resulting model (Fig. 5).

Figure 5.   Feature importance evaluated using the SHAP tool for models with different feature sets. Features: 
lc—land class 7 years prior; bio1 to bio12—see notations in Table 5. (a) XGBClassifier via climate features, (b) 
XGBClassifier via climate features and previous land usage (This figure was created in Python 3.10 and the 
Jupyter Notebook programming interface).

Table 1.   Classification metrics on test data. The standard deviation was computed based on a sample size of N 
= 10. Bold values represent the highest metrics.

Model Classification threshold Balanced accuracy Precision Recall ROC-AUC​

Cropland suitability via climate conditions

Logistic Regression44 0.15 0.750 0.296 0.610 0.871

Random Forest Classifier45 0.24 0.699 0.657 0.415 0.914

Naive Bayes46 0.98 0.733 0.376 0.534 0.891

MLP Classifier47 0.24 0.797 0.455 0.651 0.909

AdaBoost Classifier48 0.32 0.770 0.437 0.598 0.714

CatBoost Classifier49 0.32 0.802 0.660 0.624 0.959

XGBClassifier42 0.34 0.813 0.651 0.653 0.960

Convolutional Neural Network50 0.31 0.792 0.669 0.501 0.822

Cropland suitability via climate and socioeconomic conditions

XGBClassifier 0.49± 1.8×10−2 0.959± 1.3×10−6 0.939± 3.2×10−6 0.924± 2.8×10−6 0.992± 5.3×10−5
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These findings highlight the importance of considering past agricultural land use when predicting the future 
status of croplands. This observation can be interpreted from various perspectives that are not mutually exclu-
sive. First, it suggests that landowners may rely heavily on traditional farming methods instead of adapting new 
techniques that account for shifts in climate conditions. Second, it indicates that landowners might consider local 
factors not captured in our climatic and agricultural datasets. Third, landowners employing effective practices, 
whether based on empirical evidence or not, may benefit from a positive feedback loop, gaining better access to 
resources like fertilizers or financial assets. Overall, this feature highlights the critical socioeconomic conditions 
influencing cropland usage.

Variations of land arability and rice production due to the climate change
Country-level agricultural rice production depends on the total area dedicated to arable lands and fertilizer use. 
Thus, we model potential changes in cropland area pixel-wise for Southeast Asia and fertilizer usage for each 
country.

Climate change leads to variations in cropland suitability, which we model using XGBClassifier, considering 
socioeconomic and climate change factors. Figure 6 shows the map with marked pixels having a high prob-
ability of crop status changes in the year 2028 compared to the year 2021, according to our model. Green color 
highlights the pixels with arable lands potential to expand, while red color—those with the potential to degrade.

In Cambodia, one can observe that the area near the Mekong River at the intersection of Kampong Cham, 
Kampong Thom, and Kratié provinces is to experience the most intense risk for arable lands in 2028, further, are 
to the South-East from the Tonle Sap Lake is under moderate risk. However, the North-Easten half of the country 
becomes potentially opportune for arability. Moreover, South-Western regions, such as areas near Kampong 
Chhnang city and Pursat province that are close to Lake Tonlé Sap and areas in the Aural District, West of the 
capital Phnom Penh, close to the Cardamom Mountains, are also potentially favorable for arability.

Considering Lao PDR, the proximities of the Mekong River near Nen Ngam Reservoir are projected to be 
more suitable for arability with minor exclusions. Overall, the southern and Western parts of the country dem-
onstrate moderate potential for arability.

Khorat Plateau in Thailand is projected to be under moderate arability risk, along with areas near Ping River 
in the middle part of the country. Moreover, arable lands in the Chachoengsao district, on the border with 
Cambodia, and some lands in the North near Myanmar are at high risk. However, North-Easter lands near Lao 
PDR are demonstrating high potential prior to 2028.

In the Philippines, Mindanao islands are projected to have a favorable environment for arable lands. However, 
the central parts of Luzon islands are considered to be under moderate risk with minor high-risk fields.

Viet Nam’s arable lands are projected to be among the most at risk in Southeast Asia. Arable lands around 
Hanoi, South-West towards Thanh Hoa, and down the Ca river near Vinh city are under arability loss risk in 2028. 
Also, Tay Ninh, An Giang, Kien Giang provinces, Tan Hung and Vinh Hung districts are under high cropland 
suitability loss risks, together with areas near Song Ray Lake and areas South of Can Tho city. On the other hand, 
areas North of Hanoi and a few areas on the intersection of Phu Yen, Dak Lak, and Bihn Dihn provinces show 
some potential for new arable lands.

Finally, Myanmar has no significant loss of arable lands. It has moderately risky areas in Ayeyarwady, Bago, 
and Magway provinces and arability-gain areas dispersed among the Sagaing, Kachin, and Shan provinces. On 
the other hand, the vast majority of the country has moderate potential for arability gain in the Eastern and 
Southeast provinces.

Table 2 demonstrates the results of rice yield modeling utilizing the cropland suitability model and ferti-
lizer usage. See section “Rice yield model” for the modeling details. Here, yield is estimated per modeling grid 
cell of 49 km2 area. A negative yield or production percentage value indicates a decrease, whereas a positive 
value represents an increase. The combined yield model shows R2

= 0.97 and mean absolute percentage error 
MAPE = 4.2% on test data.

Analyzing the results indicated in Table 2, we emphasize that under a negative scenario of no action to reach 
for utilizing potentially arable lands (Overall Croplands, bold column), Viet Nam, Philippines, Philippines, Lao 
PDR and Indonesia are expected to loss significant number of total arable lands, meanwhile Thailand, Myanmar 
and Cambodia are expected to have moderate losses. On the other hand, having reached for potential lands, all 
countries may not even mitigate severe losses but increase the total area of arable lands, except Indonesia (Overall 
Croplands, parenthesized column). A similar picture is for paddy rice fields only (Paddy Rice Croplands column).

Due to the climatic conditions in 2028 and forecasts of fertilizers usage (see Fig. 4), per area yield is considered 
to fall for each country, except for the Philippines. Note that for Cambodia, Myanmar, and Viet Nam, it is larger 
than 10% . Despite the fact that some countries like Myanmar, Thailand, and Cambodia are not to experience 
a dramatic drop in the total area of croplands and paddy rice fields, they are to experience a yield drop. This is 
caused by a drop in fertilizer usage for these countries; see Fig. 4. For Cambodia there is a low usage of Potassium, 
for Myanmar it is both Potassium and Phosphorus and for Thailand it is Nitrogen, Phosphorus and Potassium.

Next, we estimate the total Production Change for the countries’ areas in the last column. According to our 
Cropland Suitability XGBClassifier, in a negative course, i.e., no reach for potentially arable lands and loss of 
current ones, the overall picture is similar or more dramatic for all countries. However, if some countries, e.g., 
Lao PDR, Thailand, and Malaysia, reach for potentially arable lands, they might not just mitigate losses but even 
increase their production significantly.

To sum up, this study focuses on identifying potential risks rather than proposing development strategies. 
According to our findings, Cambodia and Viet Nam face severe threats in rice production, while the Philippines 
is expected to experience growth. Moreover, if countries take an opportunity to utilize potential paddy rice 
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croplands, they might mitigate production drop risks and even increase their rice output. These findings highlight 
potential risks and emerging opportunities for policymakers that define agricultural strategy.

Comparative analysis with existing research
Comparing our study’s results with those of existing research, statistical analyses, and projections provides valu-
able insights. We categorize these comparisons into two main areas: machine/deep learning modeling of cropland 
suitability and rice-related projections.

Figure 6.   Projected changes in cropland area by 2028 relative to 2021, forecasted by the climate model for 
(a) Cambodia, (b) Lao PDR, (c) Thailand, (d) Philippines, (e) Viet Nam, (f) Myanmar. The horizontal axis 
represents longitude and the vertical axis latitude. (Maps were created using Rasterio version 1.3.951 and Python 
version 3.10).
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In the field of rice yield projections, the IPCC Sixth Assessment report provides52 projections of agricultural 
production up to 2040 and 2080 for Southeast Asia countries. This report indicates similar results to those of 
our research for Thailand, Cambodia, and the Philippines, which support the validity of our research and align 
it with credible IPCC organizations. However, our research provides a more detailed analysis by countries and 
a closer projection timeline.

Moreover, research53 evaluates production potential, net exports, and yield gap projections by 2040 in South-
east Asia. The authors took into account current crop management methods via the results of questionnaires of 
agronomists collected by countries. Yield potential projection was conducted using ORYZA v3. This is a plant 
growth simulation software that is a valuable tool for understanding the genetics of a specific rice plant and 
improving local agricultural practices, but it is not built for country-scale analysis. Furthermore, their analysis of 
yield gaps and rice demand-supply relied on data from local reference weather stations. Authors in54 developed 
a probabilistic framework for predicting the Vegetation Health Index (VHI) up to 3 months in advance, using a 
Quantile Random Forest model that correlates VHI with rice price shocks54. Our approach extends this by link-
ing predicted cropland suitability directly to rice yield, providing a more direct connection to cropland status 
than just economic indicators like price shocks.

Regarding machine and deep learning, studies23,25 propose neural network frameworks for predicting yields 
of rice, soybean, and corn, leveraging recurrent and convolutional architectures. Authors consider the USA corn 
belt and China, respectively, which are already well-studied areas. These studies focus on the performance and 
analysis of neural networks tested solely, without applying them further to obtain insightful results for practical 
applications.

In contrast to the studies and reports above, our study, first, allows for a more transparent and focused 
modeling methodology and tools. Specifically, by using CMIP5 climate projections, analysis of different predic-
tor spaces—bioclimatic variables with or without socioeconomic factors and testing a wider range of learning 
models. Second, we build cropland suitability prediction and use it to project rice production up to 8 years 
ahead. Finally, our study includes risk analysis for rice production in Southeast Asia, which is understudied in 
the research field.

Materials and methods
Data and preprocessing
In this study, we develop a model employing several open datasets detailed in Table 3. We get remote sensing 
data with Google Earth Engine55, and we took MCD12Q1 Land Cover Type and TerraClimate datasets from this 

Table 2.   Projected percentage changes in yield and rice production for 2028 compared to 2021. Bolded values 
indicate changes attributed solely to arable land degradation. Values in parentheses reflect adjustments for both 
land degradation and land expansion.

Country

Cropland changes, %

Per area yield change,%
Production 
change, %Overall croplands

Paddy rice 
croplands

Cambodia − 4.3 (10.5) − 1.1 (5.3) − 13.1 − 14.1 (− 8.6)

Indonesia − 17.3 (− 1.7) − 3.5 (− 2.5) − 5.9 − 9.1 (− 8.2)

Lao PDR − 9.2 (1.7) − 1.2 (14.3) − 5.8 − 7.2 (7.4)

Malaysia − 10.4 (8.9) − 0.9 (0.9) − 1.1 − 2.0 (− 0.3)

Myanmar − 3.7 (5.8) − 1.2 (2.4) − 21.4 − 22.5 (− 19.6)

Philippines − 11.4 (10.6) − 1.5 (1.1) 6.8 5.1 (7.9)

Thailand − 2.6 (5.1) − 0.7 (10.1) − 6.1 − 6.7 (3.5)

Viet Nam − 22.5 (− 11.1) − 9.3 (− 7.2) − 10.6 − 18.9 (− 16.9)

Table 3.   Description of the datasets used in the study.

Dataset name Variable Time coverage Spatial resolution Temporal resolution

NASA SRTM Digital Elevation58 Elevation – 0.00028◦ –

MCD12Q1 Land Cover Type56 LC_pe2 2001–2022 1
20

◦ Yearly

TerraClimate59 Minimum and maximum temperatures, precipitation 1958–2023 1
24

◦ Monthly

CMIP56
Monthly mean of the daily-minimum and daily-maxi-
mum near-surface air temperatures, sum of precipitation 
at surface

1950–2100 1
2

◦
−

3
2

◦ Daily

NESEA-Rice1060 Paddy rice map 2017–2019 0.0001◦ Yearly

Global Administrative Areas61 Administrative boundaries of the countries 2022 – –

Food and Agriculture Organization Corporate Statistical 
Database31,62

Rice (production quantity), rice (area harvested), fertiliz-
ers by nutrient (agricultural use) 1961–2021 – Yearly
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platform. We assume that the elevation is invariant through all the considered time. The land classification is 
based on the University of Maryland classification56,57. We transform the land cover to binary classification with 
crops (labeled as class 12 in the source) and non-crops (all other classes). Evaluation of the initial data revealed 
an imbalanced distribution of classes, with an average of 11% of all lands assigned to crops.

We utilized TerraClimate monthly means59 as historical climate data. We consider the future climate data 
from various CMIP5 simulations based on multiple evaluations conducted by different groups63,64 to ensure the 
high-fidelity and robustness of the results. Table 4 lists simulations employed in this study under the moder-
ate Representative Concentration Pathway (RCP) 4.5 scenario of greenhouse gas concentration trajectory. To 
reach the consistent gridded data, we downscaled MCD12Q1 and CMIP5 data to the resolution of TerraClimate 
using nearest and bilinear interpolation methods, respectively. For NESEA-Rice10, we downsampled the data 
to the resolution of TerraClimate using the nearest resampling method. The grid coarsening and upscaling were 
implemented using Rasterio51. Application of these methods for up and down-scaling is a community-accepted 
approach in aligning multiple gridded data sources65.

The climate data utilized have daily (CMIP5) and monthly (TerraClimate) temporal resolution. During the 
preprocessing stage, we calculate the mean maximum and minimum temperatures, as well as cumulative pre-
cipitation figures, for each month. Furthermore, historical and future climate data are used to calculate annual 
values of bioclimatic variables according to the approach developed in66. The Table 5 contains the list of variables. 
Bioclimatic variables are important for understanding how climate affects cropland usage. These predictors 
encompass various aspects of climate, including annual conditions such as mean temperature and precipitation, 
as well as seasonal variations like temperature and precipitation extremes.

Figure 7 illustrates the density, i.e., the concentration of pixels for a specific variable bin, histograms of the 
distribution of bioclimatic indices for the pixels that either lost their crop production status (marked in red) or 
acquired it (marked in green) over the years modeled. The profiles of some features show a distinct shift, which 
is likely to aid in predicting the status of croplands. This shift indicates that relatively warm conditions, such as 
an average yearly temperature between 5 and 10◦ C and a minimum temperature of the coldest month between 
−20 and −10◦ C, are likely to result in the emergence of croplands. In contrast, harsher conditions can lead to 
their disappearance.

In agricultural settings, climatic variables have a substantial impact on the growth and development of crops. 
These effects may manifest immediately, such as when a hailstorm or flood damages crops, or they may be 
delayed, such as when soil loses vital nutrients due to prolonged changes in precipitation or droughts. Our study 
aims to predict the future suitability status of arable lands. We assume a land transformation happens a year 
after actual climate conditions occur. Recent studies12,67,68 revealed that atmospheric climate conditions play a 
significant role in cropland suitability and crop yield. Thus, we include bioclimatic variables in the predictor’s 
list. However, arable land suitability is also influenced by socioeconomic factors and water availiability. In order 
to take into account the latter and former, we include the history of previous cropland usage. More precisely, we 
model cropland usage status for a specific year by incorporating bioclimatic variables a year before and cropland 
usage status 7 years prior. We then develop a machine learning tool that utilizes climate data and land usage 
history to make these predictions (see below). Classical performance metrics were used to assess the model’s per-
formance using data bootstrapping. As our study primarily focuses on the potential decline in soil productivity, 

Table 4.   CMIP5 simulations used in this study.

Model name Institution

CNRM-CM5 Centre National de Recherches Météorologiques, France

GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory, United States

MPI-ESM-MR Max Planck Institute for Meteorology, Germany

Table 5.   Bioclimatic variables.

Bioclimatic variable Description

bio1 Annual mean temperature

bio2 Mean diurnal range

bio3 Isothermality

bio4 Temperature seasonality

bio5 Max temperature of warmest month

bio6 Min temperature of coldest month

bio7 Temperature annual range

bio12 Annual precipitation

bio13 Precipitation of wettest month

bio14 Precipitation of driest month

bio15 Precipitation seasonality
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recall appears to be of greater significance. The significance of the delayed and immediate effects of climatic 
parameters on agricultural production also depends on other variables. Fertilizers, a major attribute of the Green 
Revolution, can help reduce the potential production loss caused by weather and generally increase land produc-
tivity. Based on agricultural statistics, one can identify trends in fertilizer consumption and predict future use.

The exact assessment of anticipated changes in land cover with respect to the impact of climate change on 
rice-growing fields is made possible by utilizing paddy rice maps. This data is available at high resolution in 
Southern Asia with the NESEA dataset60. Additionally, we make use of a wealth of national statistics from the 
Food and Agriculture Organization Corporate Statistical Database31,62.

Cropland suitability via climate and socioeconomic conditions
At this stage, we want to demonstrate the relationship between the climate and socioeconomic conditions for a 
specific arable land suitability. The area of interest is considered as a uniform spatial grid, where each pixel has 
elevation value, bioclimatic values (derived from historical climate and future climate projections), indicator 
of being used and designated land class as the target label. With collected data, we train a binary classifier to 
predict the probability of assigning either class 1 (arable land) or class 0 (not arable land) to a specific sample, 
which is described with features listed in Table 5 along with elevation and 7 years prior this specific land usage. 
The classification threshold serves as a decision threshold that maps the classifier output probability of a sample 
being assigned to class 1 (presence of crops) to its actual binary category. We consider potential lands to become 
utilized, i.e., assigned to class 1, only when the cropland suitability classifier is highly certain and there were 
active arable lands in 7 kilometers of proximity in 2021. On the other hand, for risky arable lands, i.e., class 0, we 
considered only the classifier’s certainty. Overall, this model utilizes TerraClimate and land covers class mask—
MCD12Q1. The former dataset covers the 1958–2023 year range, meanwhile the latter covers 2001–2021, thus 
leveraging a 20-year period for training.

Extreme Gradient Boosting Classifier XGBClassifier42 was chosen as a machine learning backbone since it 
performs better than other tools when applied to the same data in our pilot study (Table 1, also see69). In the first 
step, all the features are used for training with grid search and StratifiedKFold cross-validation among several 
regularizations and decision tree parameters. The procedure of choosing optimal parameters is given in section 
“Classifier parameters”.

The alteration of arable lands may pose challenges in interpreting its impact on food security, particularly 
due to the lack of information regarding the specific crop types being cultivated in various areas, except rice. 
Available paddy rice dataset60 offers an opportunity to improve the precision of land assessment for rice fore-
cast purposes. When using it as a mask for crop fields, we refer to this as the ”rice mask” and demonstrate the 
significance of utilizing these data in current research. By employing this mask, we enhance the accuracy of 
climate change impact evaluation on rice production compared to the general analysis that does not consider 
the specific location of rice fields.

Fertilizer model
Fertilizer data was obtained from FAOSTAT​62 as indicated in Table 3 and include the agricultural use of nitrogen 
N (in various chemical forms), potash K2O , and phosphate P2O5 . Fertilizer consumption data is available for the 
period of 1966–2021. Figure 4 illustrates their historical agricultural use F with solid lines. The forecast for the 
future year y is generated for country c and for each fertilizer with autoregression model and shown in the same 
plot with dash lines. We employed the Seasonal Auto-Regressive Integrated Moving Average (SARIMA) model 
for the forecast. This model takes into account the time series values in the past, modeling temporal dependen-
cies in observation noise and considering seasonal dependencies for differentials of the original time series. See, 
e.g., Chapter 10 in70, for details.

Figure 7.   Climatic indices density distribution of samples lost (red) or acquired (green) cropland status. 
Temperature is measured in ◦ C, and precipitation is in mm (This figure was created in Python 3.10 and the 
Jupyter Notebook programming interface).
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Rice yield model
To assess the potential effects of crop yield degradation, we build the regression model that learns the connection 
between climate, consumption of fertilizers time trends, and yield (per unit area) as the target variable following 
the methodology presented in27. We develop this approach to capture the link between socioeconomic traits and 
climate conditions. Climate features of the yield model include values of minimum and maximum for tempera-
tures and precipitations, calculated as monthly means as well as variances of these values in the monthly distri-
bution. We use climate data collected from the TerraClimate source within national borders that were acquired 
from the Global Administrative Areas dataset (see Table 3). This approach yields 72 features in total. Similarly 
to the climate model, we explore the ensemble of models listed in Table 4 to overcome potential biases of single 
CMIP projection for 2028 country-wise yield estimation. Overall, the rice yield model trains on data in the range 
of 1966–2021 and is limited by fertilizer data availability (1966–2021) and the TerraClimate range (1958–2023).

We utilize the specific year values F for nitrogen N, potash K2O , and phosphate P2O5 to serve as three fea-
tures in the modeling of yield. Mathematically, we set the functional dependence and estimate the unknown 
coefficients as follows:

where

•	 Y is rice yield,
•	 c, m, y represent country, month and year respectively,
•	 pr and prvar are precipitation level and its variance,
•	 tmax and tvarmax are maximum temperature and its variance,
•	 tmin and tvarminare minimum temperature and its variance,
•	 F are fertilizer consumptions,
•	 M is the XGBRegressor with number of ensemble members of 100, maximum tree depth of 2, the other 

parameters were set default.

To determine the yield as a target variable, we divide the rice production of a specific country by its corresponding 
cultivation area, with both values sourced from the FAOSTAT data (see Table 3). National statistics and climate 
data are utilized to obtain the necessary information for calculating yield forecasts. We then apply this regression 
model to estimate future rice yields in a given country. When combined with the expected reduction in area, it 
effectively predicts rice production.

Relative yield change
We analyze the relative yield change caused by the effects of varying fertilizer usage and potential losses or gains 
of land area on the country level in Southeast Asia.

During this analysis, we estimated potential gains and losses of arable lands using the cropland suitability 
XGBClassifier model, projections of fertilizer usage by SARIMA, and a combined XGBRegression model for 
rice yield change. Next, we compared current arable lands distribution by pixels with the results of potential 
and risky arable lands by cropland suitability model to estimate potential overall loss or gain in arable land area 
for each country in Southeast Asia. Then, by comparing the rice mask with the results of the XGBClassifier, we 
estimated the percentage of area loss or gain solely for rice fields. Finally, we combined the per-area yield model 
with the arable land area percentage of change to get the production change.

Numerical experiments
Data analysis
Our study focuses on the proposed approach and its application in Southern Asia. We cover a diverse range of 
countries with varying levels of social and economic development, including Cambodia, Indonesia, Lao PDR, 
Malaysia, Myanmar, Philippines, Thailand, and Viet Nam. The region of the study is limited to a latitude range 
of 11◦ S to 60◦ N and a longitude range of 46◦ E to 146◦ E. The spatial resolution utilized is 1◦/24 , which was deter-
mined through the algorithm described in section “Data and preprocessing”.

Classifier parameters
We performed a grid search in order to estimate optimal hyperparameters for further modeling. Table 6 displays 
the initial parameter sets and the optimal values that we chose.

Figure 7 shows the distribution of most essential features. Aside from climate data and land class, the mod-
els listed in Table 7 include elevation (elv) and land class 7 years prior (lc). The inclusion of “memory” within 
the name indicates that historical land classes, i.e., prior land usage of this land, were also used as a part of its 
feature space.

Training and testing
The training and testing subset is acquired using TerraClimate data for the period specified in Table 8. To avoid 
any potential data leakage, we take great care in selecting the train and test data. Specifically, we ensure that 
the land class in any given year is never used as both a label for training and a feature for testing. The collected 
data for these years boast complete coverage within our area of interest, allowing for a comprehensive analysis.

(1)Ycy = M
(

prcmy , pr
var
cmy , tmaxcmy , tmaxvarcmy , tmincmy , tminvarcmy , F

N
cy , F

P2O5
cy , FK2O

cy

)
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The fitted model uses CMIP5 climate projections to make a forecast. Phase 5 is chosen since it has a better 
correspondence in temperature with recently observed data71. We assume that the suitability of climate models 
may vary depending on the chosen climate zone. To improve consistency, we create an ensemble projection 
by averaging the CMIP5 simulations listed in Table 4. This approach is widely employed72,73. Finally, we tested 
fertilizer forecasting modeling together with the yield model. Specifically, we trained the fertilizer forecaster and 
yield model in the same time range from 1966 to 2019. Then, we fed forecasts of the fertilizer model into the yield 
model to make a prediction of the testing range from 2020 to 2021. The quality of the latter was estimated to be 
R2

= 0.97 and MAPE = 4.2% . To address the uncertainty of modeling, we implement a bootstrap procedure in 
both our climate and yield models. This enables us to assess the level of certainty associated with our estimations. 
Table 1 presents the variability of binary classification metrics for the cropland suitability classifier. We estimate 
the model uncertainty by building bootstrap confidence intervals for our model74,75. Figure 8 illustrates the 
distribution of projected rice yields for the countries being studied, with a 90% confidence interval.

Table 6.   Grid search ranges for hyperparameters.

Parameter Tested set Chosen value

reg_alpha 0, 0.1, 1 0.1

reg_lambda 1, 10, 100 1

max_depth 3, 4, 5 5

learning_rate 0.001,  0.01,  0.1 0.01

n_estimators 50, 100,  200,  400 200

Table 7.   Models with features included. Bioclimatic variables are listed in Table 5.

Model name Features

Climate model 11 bioclimatic variablies, elv

Climate model with memory 11 bioclimatic variablies, elv, lc

Table 8.   Modeling year ranges.

Model name Model type Train Test

Climate model XGBClassifier 2001–2019 2020–2021

Fertilizer model SARIMA-X 1966–2019 2020–2021

Yield model XGBRegression 1966–2019 2020–2021

Figure 8.   The uncertainty estimation for the yield model in 2028 with a 90% confidence interval, distribution 
means indicated by the green lines. The sample size for the analysis is N = 500 (This figure was created in Python 
3.10 and the Jupyter Notebook programming interface).
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Constraints of the study
The primary constraint of this study pertains to the grid roughness. The spatial resolution employed (roughly 
4500 m in cell length) is larger than the field size, resulting in several diverse areas within the same pixel. Addi-
tionally, this grid is uniform and does not correspond to the actual shapes of the fields. Lastly, our modeling relies 
on the datasets listed in Table 3. Some of these are the results of modeling studies, which inherently approximate 
natural phenomena and, therefore, are imprecise. Specifically, MCD12Q1 is a model product, meaning that 
the cropland maps are not ideal in classification. The CMIP5 projection that we used provides average climate 
evolution under the assumption of the RCP 4.5 scenario, which should be treated cautiously, taking into account 
that it is not an exact climate forecast. It influences our model and should be considered when interpreting the 
model outcomes.

Another limitation of this study is its focus on atmospheric variables without considering soil-related ones. 
This decision was based on the assumption of strong correlations between atmospheric and soil variables76. How-
ever, it is important to note that both atmospheric and soil variables are crucial factors in determining groundwa-
ter resources. Depletion of groundwater can lead to issues such as salinity hazards, which can adversely affect soil 
fertility and crop suitability77,78. Additionally, while our study indirectly models water availability through climate 
variables like precipitation, it does not directly investigate the availability and threats posed by different water 
sources, such as the distinction between surface water and groundwater irrigation. Despite Southeast Asia’s stable 
and low water stress index (see79, Chapter 1.7), incorporating irrigation patterns into modeling could provide 
additional insights for policymakers. Future studies should aim to include direct measures of water availability 
and quality to fully understand their impacts on crop productivity and land suitability.

Various studies conducted under the CMIP5/CMIP6 project can assist in overcoming the limitations of math-
ematical simulation in reproducing natural processes. Global-scale processes are incredibly complex. Accurate 
reproduction of such processes with mathematical simulations is still impossible. Each model has advantages and 
disadvantages in replicating changes occurring on land, in the atmosphere, in permafrost, or above the ocean. 
The appropriate work direction could be collecting the region-specific CMIP models of reasonable quality into 
an ensemble80. Addressing the above-mentioned drawbacks improves the accuracy of this study.

Conclusion
This work presents evidence of the impact of climate on croplands and rice production in Southeast Asia. The 
study utilized a machine learning model that gathered bioclimatic variables based on historical climate data, 
socioeconomic factors, and fertilizer usage. These climatic indices, such as annual mean temperature, maximum 
temperature, and annual precipitation, were used to predict the presence or absence of cropland in the future 
based on climate projections. The paper contributes by proposing the framework for projecting rice production 
in countries. Firstly, it combines 7× 7 km cropland suitability classifier, that takes into account both climate 
conditions and socioeconomic factors via land usage history. Secondly, it projects fertilizers usage that are the 
cornerstone of contemporary agriculture. Thirdly, it proposes a combined model that projects rice yield country-
wise. Finally, analyses the risks and potentials in cropland arability with fertilizers usage to get relative changes 
in rice production in 2028.

The results showed that even moderate modeling suggests a high likelihood of severe conditions for growing 
crops in Cambodia, Myanmar, and Viet Nam. Consequently, these lands will either undergo a land transforma-
tion or experience a notable drop in rice yield. Additionally, the results indicate that a reach for utilization of 
potentially suitable croplands might not just mitigate the production drop risks but even be a path to prosper in 
rice production. Furthermore, the study allows for comparing neighboring regions. Underrated clusters were 
identified where crop potential is high, but the share of cultivated fields is low. This finding calls for local policy 
changes and investor initiatives, which could be used for regional development planning, creating agricultural 
road maps, water management, and more.

In addition to business motivations, the topic has a more comprehensive scope as it relates to global food 
security. Climate change is responsible for rearranging conventional food supply chains on regional and inter-
national scales. Predictions based on the findings of this study can help take measures to mitigate the impact of 
climate change on food security before actual transformations occur.

Code availability
All data references, links for loading the dataset used (limited years range), and source code needed to evaluate 
the conclusions in the paper are publicly available through Zenodo at https://​doi.​org/​10.​5281/​zenodo.​79607​80.
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