
1

Vol.:(0123456789)

Scientific Reports |        (2024) 14:14458  | https://doi.org/10.1038/s41598-024-65463-w

www.nature.com/scientificreports

Gradient‑based autonomous 
obstacle avoidance trajectory 
planning for B‑spline UAVs
Wei Sun , Pengxiang Sun *, Wei Ding , Jingang Zhao  & Yadan Li 

Unmanned aerial vehicles (UAVs) have become the focus of current research because of their 
practicability in various scenarios. However, current local path planning methods often result in 
trajectories with numerous sharp or inflection points, which are not ideal for smooth UAV flight. This 
paper introduces a UAV path planning approach based on distance gradients. The key improvements 
include generating collision-free paths using collision information from initial trajectories and 
obstacles. Then, collision-free paths are subsequently optimized using distance gradient information. 
Additionally, a trajectory time adjustment method is proposed to ensure the feasibility and safety 
of the trajectory while prioritizing smoothness. The Limited-memory BFGS algorithm is employed 
to efficiently solve optimal local paths, with the ability to quickly restart the trajectory optimization 
program. The effectiveness of the proposed method is validated in the Robot Operating System 
simulation environment, demonstrating its ability to meet trajectory planning requirements for 
UAVs in complex unknown environments with high dynamics. Moreover, it surpasses traditional UAV 
trajectory planning methods in terms of solution speed, trajectory length, and data volume.

Keywords  B-spline, Gradient descent, L-BSGF, Trajectory planning

With the rapid development of artificial intelligence technology and machinery manufacturing, micro UAVs 
have expanded their capabilities and are now being utilized in various scenarios, not only in the military but 
also in commercial applications, including environmental detection, fire rescue, road guidance, and short-range 
transportation1,2. However, challenges such as limited load capacity and range continue to hinder the advance-
ment of micro UAVs. Additionally, researchers are faced with the issues of limited perception ability and com-
putational load of micro UAVs towards the external environment3.

In response to these problems, experts and scholars have proposed various methods for solving UAV trajec-
tories. One of the traditional path planning algorithms is the artificial potential field method, which has a simple 
structure and strong real-time performance. However, this method tends to result in local optimal solutions. To 
address this issue, many scholars have made improvements to the artificial potential field method. Fang et al. 
introduced a Piecewise-potential-field (PPF) based UAV formation trajectory planning method4. This method 
utilizes a suitable PPF function to avoid local optimal solutions while still satisfying the motion constraints. Li 
et al. proposed an artificial potential field-based particle swarm algorithm, which generates robot planning paths 
by adjusting the inertia weight parameter and ranking the position vector of particles5.

With the advancement of artificial intelligence, intelligent bionics algorithms have emerged as the principal 
path planning algorithms6–8. The graph search algorithm uses multi-source sensor information to search feasible 
path options at high frequency and finally calculates the optimal path from the starting point to the destination 
through an iterative process. Scholars have used intelligent bionic algorithms to enhance traditional graph search 
algorithms like Dijkstra and A*, significantly boosting the efficiency of local path planning. Zhang et al. proposed 
the A*-ACO algorithm by fusing the A* algorithm and ant colony optimization (ACO) to improve the blindness 
of the initial search and the convergence speed of the ant colony algorithm, but the A*-ACO algorithm may not 
be able to find the optimal path when facing complex situations9.

Model predictive control is the mainstream UAV control method. Chai et al. utilized deep neural networks 
trained with optimal trajectories generated by fuzzy multi-target transcription methods10. The trained neural 
network serves as a UAV command generator to ensure the real-time generation of optimal trajectories. Fur-
thermore, they developed a centralized robust model predictive control algorithm11. This centralized control 
structure simplifies controller development and parameter tuning while guaranteeing a stable and convergent 
attitude-tracking process through nonlinear feedback rules and stringent constraints. Lindqvist B et al. proposed 

OPEN

School of Geomatics, Liaoning Technical University, Fuxin 12300, Liaoning, China. *email: 516885735@qq.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-65463-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:14458  | https://doi.org/10.1038/s41598-024-65463-w

www.nature.com/scientificreports/

a nonlinear model predictive control algorithm to predict the future position of obstacles by parameterizing 
obstacle trajectory so as to conduct autonomous navigation experiments of UAVs12. In addition, a new nonlinear 
model predictive control framework is proposed13. Based on this framework, the UAV conforms to the dynamic 
characteristics of the UAV and effectively solves the problem of UAV estimation drift.

The gradient-based motion planning method, widely used in UAV trajectory optimization, involves trans-
forming the UAV trajectory planning problem into an unconstrained nonlinear optimization problem14,15. Ratlif-
fet et al. introduced the Euclidean Signed Distance Field (ESDF) into the field of robot motion planning16, using 
ESDF data to optimally configure the robot’s surroundings, which in turn is useful for generating collision-free 
paths for the robot.

The gradient motion planning method parameterizes trajectory planning17. However, due to the need for the 
UAV to maintain a high-speed motion state, the computational burden imposed by the optimal configuration of 
the surrounding environment is too heavy for the UAV to handle. As a result, continuous solving of the obstacle 
avoidance problem becomes challenging, leading to a low success rate18,19. To address issues such as excessive data 
volume in the gradient motion planning method, the B-spline generation method is introduced for trajectory 
initialization20,21. This method helps solve the challenging problem of trajectory solving, focusing on the smooth-
ness and glossiness of the trajectory rather than considering collision problems during the initialization process. 
The feasibility of the trajectory is ensured by the convex packet property of the B-spline. This property allows 
for a quick trajectory initialization while avoiding the need for numerous calculations to establish collision-free 
sections using conventional methods like the potential field method. After initializing, only the gradient data of 
the ESDF within a narrow range around the initial trajectory are collected22. Meanwhile, the initial trajectory 
is continuously collision-tested and iteratively optimized23,24. If a collision is detected, the trajectory undergoes 
obstacle avoidance modification to generate a collision-free trajectory. This approach significantly reduces the 
computation of data and enhances the solution speed of trajectory optimization.

The primary objective of the algorithm proposed in this study is to streamline the process of initializing and 
optimizing trajectories for UAVs. The algorithm aims to enhance the smoothness of trajectories while prioritizing 
feasibility and safety, making them more suitable for high-speed UAV flight to prevent waste of power and time.

The key contributions of this paper include: (1) introducing a method for UAV trajectory initialization, where 
B-spline curve control points are chosen through polynomial fitting and connected to ensure the shortest trajec-
tory in obstacle-free scenarios. When obstacles are present, B-spline curves are created based on control points 
and basis functions, with trajectory obstacle avoidance optimization achieved through the use of the convex 
hull property. (2) Solving the UAV obstacle avoidance problem using the repulsive force algorithm, proposing a 
lightweight UAV trajectory evaluation function, and utilizing the L-BSGF algorithm for fast trajectory optimiza-
tion and quick program restart after planning failure. The proposed algorithm is verified in the Robot Operating 
System (ROS) environment.

The rest of this paper is organized as follows. Section II focuses on the initialization and obstacle avoidance 
optimization of the UAV trajectory. Section III simulates and validates the B-spline-based method of UAV trajec-
tory generation in the ROS environment. Section IV draws the conclusions of the paper.

Trajectory initialization
The UAV trajectory should be collision-free, with the shortest path length, and conform to the smooth curve of 
UAV dynamics. The B-spline is capable of generating a curve that precisely satisfies these conditions in the given 
environment. The expression of the B-spline is shown in Eq. (1).

where Ci represents the control point, Bi,k represents the B-spline basis function of order K , and u represents the 
node vector. To simplify B-spline generation and improve the efficiency of path generation, the optimal 4th-order 
basis functions are used to generate B-spline curves. The curve segmentation generates each B-spline trajectory 
by four control points and four B-spline basis functions calculated by Eq. (2)

where s from 0 to 1 represents the normalized distance, and each segment of the trajectory is generated as shown 
in Eq. (3).

where C1 , C2 , C3 , C4 is the four control points of the trajectory and Pi belongs to R3 . The complete trajectory of 
the UAV is stitched by each segment of the trajectory, and the next segment is generated by the control points 
C2 , C3 , C4 , C5 . When there are N control points, N-3 segments of UAV trajectories are generated. The velocity 
V(s) and acceleration A(s) of the position curve can be deduced from 3.

(1)P(u) =

n
∑

i=0

CiBi,k(u) u ∈ [uk−1, un=1]

(2)















































f1(s) =
1

6
(1− s)3

f2(s) =
1

6
(3s3 − 6s2 + 4)

f3(s) =
1

6
(−3s3 + 3s2 + 3s + 1)

f4(s) =
1

6
s3

(3)Pi(s) = f1(s)C1 + f2(s)C2 + f3(s)C3 + f4(s)C4



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:14458  | https://doi.org/10.1038/s41598-024-65463-w

www.nature.com/scientificreports/

Since the control points of the trajectory are immobile, differentiating the trajectory is differentiating the 
spline function. Then the velocity spline functions V1, V2, V3, V4, and the acceleration spline functions a1, a2, 
a3, a4 can be obtained.

Therefore, both the velocity and acceleration of the B-spline trajectory Pi are functions of the parameter S, 
as shown in Eqs. (8) and (9).

This shows that the end point of the former curve and the start point of the latter curve are equal in position, 
velocity, and acceleration, which ensures that the B-spline trajectory is smooth and continuous. It is also assumed 
that additional control points are added to verify that the trajectory passes through the start point and end point. 
We expand the starting point C1 as c0 , c1 , and c2 , where c1 is the origin C1 , c0 and c2 as in Eq. (10).

where v1 represents the velocity vector when the UAV passes through the point, L is a suitable constant, and 
for the experiment we take half the distance required for the UAV to gain maximum velocity. Solving Eq. (9) 
by substituting it into Eqs. (7) and (8) verifies that the trajectory passes through the starting point C1 and has 
velocity v1 acceleration a1 of zero. Similarly, the target point Cn is extended to cn−1 , cn,cn+1 and cn+1 , where cn is 
the origin Cn , cn−1 and cn+1 are denoted by Eq. (11).

The solution of the equation also verifies that the trajectory passes through the control point CN , the speed 
of the UAV is vn , and the acceleration an is zero. Therefore as long as we adjust the control points C1 , C2 , C3 , C4 , 
…, CN , the initialization of the UAV B-spline trajectory can be completed after solving.

In order to quickly initialize the UAV B-spline trajectory, the polynomial fitting method is used for the 
selection of control points. After obtaining the starting point C1 and the ending point CN of the trajectory, the 
maximum singular value dz between the two points in space is calculated and compared with the set distance dc 
of the distribution of the control points, to determine whether to add a waypoint. If dz is larger, it is necessary to 
set waypoints. The expression for the number m of setting waypoints is:

The coordinates of the path point CN are calculated as:

(4)V(s) =
∂P(s)

∂s
=







Vx(s)

Vy(s)

Vz(s)







(5)A(s) =
∂2P(s)

∂2s
=







ax(s)

ay(s)

az(s)







(6)























v1(s) = −(1− s)2/2

v2(s) =
�

3s2/3− 2s
�

v3(s) = −3s2/3+ s + 1/2

v4(s) = s2/2

(7)



















a1(s) = 1− s

a2(s) = 3s − 2

a3(s) = 1− 3s

a4(s) = s

(8)V(s) = v1(s)C1 + v2(s)C2 + v3(s)C3 + v4(s)C4

(9)A(s) = a1(s)C1 + a2(s)C2 + a3(s)C3 + a4(s)C4

(10)
{

c0 = c1 − v1L
c2 = c1 − v1L

(11)
{

cn−1 = cn − vnL
cn+1 = cn + vnL

(12)
{

m = [dz/dc] + 1 (dz > dc)
m = 2 dz ≤ dc

(13)







xn = x0(1− n/m)+ 1
mxN

yn = y0(1− n/m)+ 1
myN (0 < n ≤ m)

zn = z0(1− n/m)+ 1
mzN



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:14458  | https://doi.org/10.1038/s41598-024-65463-w

www.nature.com/scientificreports/

After obtaining each path point it is known that m-1 segments of UAV trajectories are generated, and the 
polynomial coefficients of each UAV trajectory in the x-axis, y-axis, and z-axis directions, Fx , Fy , Fz are solved 
as shown in Eq. (14).

where, Bx , By , Bz are the parameter vectors in the x-axis, y-axis, and z-axis directions at the beginning and end 
of each UAV trajectory, and their expressions are:

where x0, y0, z0, vx0, vy0, vz0, ax0, ay0, az0 are the coordinate, velocity, and acceleration of each segment of the 
trajectory on the three axes of the starting point. xn, yn, zn, vxn, vyn, vzn, axn, ayn, azn are the coordinate, veloc-
ity, and acceleration of the corresponding segment of the trajectory on the three axes of the ending point. The 
parameter matrix in Eq. (14) is expressed as:

where t represents the time required to pass through the corresponding trajectory at the UAV’s maximum speed, 
and the time is set to be twice the time required to fly at the maximum speed, considering that the UAV may 
not be able to maintain the maximum speed during the start and end segments. tn can be formulated as follows.

After obtaining the coordinates of the waypoints and the polynomial coefficients of the m-1 group of coordi-
nates, the polynomial fitting is used to generate the coordinates of the control points, and the solution formula 
is shown in Eq. (18).

(14)











Fx = Bx/A

Fy = By/A

Fz = Bz/A

(15)







Bx = [x0, vx0, ax0, xn, vxn, axn]
By =

�

y0, vy0, ay0, yn, vyn, ayn
�

Bz = [z0, vz0, az0, zn, vzn, azn]

(16)A =















0 0 0 0 1 0
0 0 0 1 0 0
0 0 2 0 0 0
t5 t4 t3 t2 t 1
5t4 4t3 3t2 2t 1 0
20t3 12t2 6t 2 0 0















(17)







tn = 2(Cn+1 − Cn)/vmax (n = 0)

tn = (Cn+1 − Cn)/vmax (0 < n < m)

tn = 2(Cn+1 − Cn)/vmax (n = m)

(18)



























xn =
Kx

C

yn =
Ky

C

zn =
Kz

C

Figure 1.   Structure of clamped B-spline.



5

Vol.:(0123456789)

Scientific Reports |        (2024) 14:14458  | https://doi.org/10.1038/s41598-024-65463-w

www.nature.com/scientificreports/

where C is the coefficient matrix associated with the number of waypoints and Kx , Ky , Kz are the augmentation 
vector of the coefficient vector Fx , Fy , Fz of the polynomial. After obtaining the control points according to Eq. 
(3), the path initialization is completed.

The trajectory initialization process has only the starting point and the endpoint of the trajectory, and to 
facilitate the trajectory solving, the initialization process of the trajectory is calculated using the parameter S, 
but the trajectory optimization process is more convenient to use the time parameter t to solve the trajectory. 
The conversion formula for the parameters S and t of the UAV trajectory is:

(19)P(s) =





x(s)

y(s)

z(s)



 = P(t) =





x(t)

y(t)

z(t)





(20)
dP(t)

dt
=

∂P(s)

∂s
s ⇒







vx(t)

vy(t)

vz(t)






=







vx(s)

vy(s)

vz(s)






s(t)

C C C
C C

C
C

H
H H

H

H

H

Figure 2.   Trajectory obstacle avoidance control point variation diagram.

Figure 3.   Change of B-spline curve by control points selection.



6

Vol:.(1234567890)

Scientific Reports |        (2024) 14:14458  | https://doi.org/10.1038/s41598-024-65463-w

www.nature.com/scientificreports/

Optimization of trajectory
Clamped B‑splines
According to de Boor-Cor’s recursive formula (21), it can be shown that each higher-order B-spline is a convex 
linear combination of two lower first-order B-splines. Each segment of the B-spline curve must have enough 
basis functions to match the control points if the interval is legal. Therefore, in the proposed algorithm, n + 4 
node vectors (u0, · · · , un+3) are required if there are n control points. Four nodes (ui , ui+1, ui+2, ui+3) are needed 
if one wants to determine a 4th-order B-spline Pi . Neighboring B-splines have 2 control points that are the same 
to ensure that the splicing between every two segments is good.

The UAV trajectory initialization process, by assuming the increase of control points to ensure that the UAV 
passes through the trajectory start point, the solution passes through is the beginning and end of the two points 
of the velocity of v1 and vn , respectively. However, the speed of the UAV in the beginning two points can only 
be zero. Therefore, in the trajectory solution process outlined in this paper, the first four and the last four node 
vectors remain consistent. This B-spline is called clamped B-spline and its structure is shown in Fig. 1.

The graph features 10 control points and 14 nodes with node vectors [0, 0, 0, 0, 0, 0.125, 0.25, 0.375, 0.5, 0.625, 
0.75, 0.875, 1, 1, 1, 1]T. Figure 1 perfectly illustrates the two main properties of the clamped B-spline. The curve 
passes through the head and tail control points and has a strong convex hull25,26. Strong convex hull property 
means that if the node vectors u are located in [ui , ui+1] , then the curve P(u) is located within the convex hull 
defined by control points Ci , Ci−1, Ci−2, Ci−3 (i ≥ 3) , which indirectly verifies that a control point only affects 
local trajectories. The B-spline function is localized, and this property can solve the problem of local changes 
in the trajectory affecting the overall trajectory planning when the UAV encounters an obstacle. The collision 
part of the trajectory is changed by adjusting the relevant control points, while the convex hull of the B-spline 
ensures that the trajectory meets the restricted range.

Obstacle avoidance optimization
When a trajectory collides with an obstacle, the control point of the collision is selected, and the correspond-
ing point of the control point is generated on the surface of the obstacle. Each control point Ci may have more 
than one corresponding point ρi,j on the obstacle surface, but each corresponding point ρi,j belongs to only one 
control point. According to the corresponding repulsive direction vector Hi,j generated by the positions and ρi,j , 
the relationship between the three is shown in Fig. 2. i coincide with the index of the original control point, and 
j is the index of the corresponding point and the opposite direction vector. The distance between the obstacle 
surface point and the original control point is calculated as shown in Eq. (22).

Since the trajectory is continuously collision detected and optimized, to avoid the resulting duplicates of 
Hi,j and ρi,j , we consider obstacles encountered by the control points Ci as newly discovered obstacles only by 
restricting Di,j > 0. This restriction helps us to find obstacles that affect the new trajectory, reducing the amount 
of computation that can be done to update the new trajectory faster.

Environment as an important reference factor in UAV obstacle avoidance algorithms, a large amount of 
environmental data must be stored as a prerequisite for obstacle avoidance, and at the same time, appropriate 
trajectory algorithms are established to avoid obstacles. This means that there is a large amount of data to be 
computationally processed, which is undoubtedly an insurmountable problem for the arithmetic power of micro 
UAVs. The article algorithm only needs to store the environmental data in the narrow space near the B-spline 
trajectory, while the repulsive force algorithm is simple and efficient, which greatly reduces the amount of 
computation27. Moreover, because it does not require a lot of environmental information, it avoids the problem 
of UAVs falling into local minima and does not require collision-free trajectories to be generated in advance.

Since the trajectory is generated based on the B-spline curve, it is affected by the selection of basis function 
and control point, the B-spline curve structure is shown in Fig. 3. The distance between control points has a 
great influence on trajectory generation. If the distance between the trajectory control points is too large, the 
trajectory deformation caused by each iteration of the trajectory will be large, and unnecessary UAV performance 
waste will occur when facing small obstacles. If the distance between control points is too small, more iterative 
calculations are needed and even failed to planning when facing large obstacles.

Gradient‑based trajectory optimization
According to Eq. (12) it can be seen that in the B-spline parameterization process, we use a uniform B-spline so 
that the time interval �t in the control points is the same and very small, so the UAV velocity vi , acceleration ai , 
and jerk ji  between the two control points can be expressed as:

(21)















Bi,1(u) =

�

1 ui < ui+1

0 otherwise

Bi,k =
u− ui

ui+k−1 − ui
Bi,k−1(u)+

ui+k − u

ui+k − ui+1
Bi+1,k−1(u)

(22)Di,j =

(

Ci − ρi,j

)

·Hi,j



7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:14458  | https://doi.org/10.1038/s41598-024-65463-w

www.nature.com/scientificreports/

The trajectory planning task for UAVs is carried out in a differentially flat space with set control points Ci , 
Ci ∈ R3 , so the trajectory optimization process transforms into:

where Js is the smoothness penalty, Jc represents the collision penalty, Jf  represents the feasibility penalty, �s , �c 
and �f  are the weights of the three penalties.

Smoothness penalty: the smoothness penalty is formulated as the curvature of the trajectory, the smoothness 
of the trajectory is judged by the geometric information of the human–computer trajectory, if the higher cur-
vature of the trajectory represents more difficulty for the UAV to track the trajectory. Therefore, the functional 
expression of the smoothing penalty is:

Minimizing each control point acceleration ai and jerk ji , makes the whole trajectory smooth.
Collision penalties: the purpose of establishing collision penalties is to keep the UAV away from obstacles 

and keep the two at a safe distance sf  . A segmentation function is established to determine the rate of change of 
the collision penalty based on the size of Di,j . Therefore, the expression of the collision penalty function for the 
corresponding point ρi,j of each control point is:

where jc(i, j) is the cost of generating the repulsive direction vector Hi,j at the corresponding point ρi,j on the 
control point Ci . The cost of each control point is calculated independently, and when a control point generates 
multiple repulsive direction vectors, it represents an increase in the cost of obstacle avoidance. Thus, the collision 
penalty incurred by a control point is calculated as:

where e is the number of control points generating repulsive direction vectors H . The cost of a UAV trajectory 
collision is the accumulation of the collision penalty Jc(i) for all control points. Therefore, the total cost of the 
collision penalty is:

To obtain the total cost of collision Jc , we obtain the gradient by deriving it with the expression:

Feasibility penalty: we need to constrain the UAV trajectory in x, y, and z directions to ensure that the speed, 
acceleration, and jerk of the UAV in each dimension satisfy the UAV performance constraints. Due to the convex 
envelopment of the B-spline, we can restrict the UAV trajectory by restricting the derivatives of the control points.

where wv , wa and wj are the weights of the feasibility penalty in terms of velocity, acceleration and jerk. F is a 
quadratically continuous differentiable function of the higher-order derivatives of the control points.

(23)



























vi=
Ci+1 − Ci

�t

ai =
vi+1 − vi

�t

ji =
ai+1 − ai

�t

(24)J = �sJs + �cJc + �f Jf

(25)Js =

n
∑

i=0

√

|ai|
2|vi|

2 − (vi · ai)2
/

|vi|
3

(26)
jc(i, j) =















0
�

wi,j ≤ 0
�

w3
i,j

�

0 < wi,j ≤ sf
�

3sf w
2
i,j − 3s2f ci,j + 3s3f

�

wi,j > sf
�

wi,j = sf − Di,j

(27)Jc(i)=

e
∑

j=1

jc(i, j)

(28)Jc(i)=

e
∑

j=1

jc(i, j)

(29)
∂Jc

∂Ci
=

n
�

i=1

e
�

j=1

Hi,j















0
�

wi,j ≤ 0
�

−3w2
i,j

�

0 < wi,j ≤ sf
�

−6sf wi,j + 3s2f
�

wi,j > sf
�

(30)Jf =

n
∑

i=1

wvF(vi)+

n−1
∑

i=1

waF(ai)+

n−2
∑

i=1

wjF(ji)



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:14458  | https://doi.org/10.1038/s41598-024-65463-w

www.nature.com/scientificreports/

where cr ∈ C ∈
{

vi , ai , ji
}

 , a1 , b1 , c1 , a2 , b2 and c2 are able to satisfy the second-order continuity of the function 
F . cm is the limit of the derivatives, cj is the node of the second and third intervals. � is the elasticity coefficient 
and 0 < � < 1 to make the final result satisfy the constraints.

Time adjustment
The time Ti of an individual trajectory segment Pi is mainly determined by the number and position of control 
points. In the initialization phase of the trajectory, we assign times to individual segments. When the UAV 
changes its path due to an obstacle, the speed Vi , acceleration Ai and jerk Ji of the UAV exceed the UAV’s own 
limits, needs to adjust the time, the expression for the time conversion ratio is:

where vm , am and jm respectively represent maximum speed, acceleration, and jerk on the x, y, and z-axis. The 
time for the UAV to complete the reassignment of the path fragments is as follows:

Numerical solution
This paper proposes the use of gradient for trajectory optimization, which can be seen as solving extreme value 
problems of multivariate objective functions28. The optimal approach for solving such unconstrained optimiza-
tion problems is to use the Newton method. By utilizing the solved data during the objective function generation 
process, the requirement for the fast restart of trajectory computation can be met, and repeated computation 
can be avoided, thereby improving the solving speed. However, solving the UAV trajectory requires extremely 
high real-time performance. In the solving process of Newton’s method, the inverse of the Hessian matrix needs 
to be computed, which exceeds the computational power of the UAV. Therefore, the proposed quasi-Newton 
algorithm is used for solving29–31.

There are various quasi-Newton algorithms, and in this paper, the L-BFGS algorithm is utilized32–34. This 
algorithm ensures a high success rate in obstacle avoidance and also exhibits good performance in terms of 
solving accuracy and restart loss. The solution process is as follows, x ∈ R3 , f (x) and the update formula for x is:

where λ is the learning rate and the iterative formula for HK is:

where ρk = (yTk sk)
−1 , vk = I − ρkyks

T
k  , sk = xk+1 − xk , yk = ∇fk+1 −∇fk . HK also does not need to be solved 

explicitly, and HK is approximated by Bk . Thus, the proposed Newtonian condition is:

(31)F(c) =
∑

r=x,y,z

f (cr)

(32)f (cr) =



































a1c
2
r + b1cr + c1 (cr ≤ −cj)

(−�cm − cr)
3 (−cj < cr < −�cm)

0 (−�cm ≤ cr ≤ �cm)

(cr − �cm)
3 (�cm < cr ≤ cj)

a2c
2
r + b2cr + c2 ( cr ≥ cj)

(33)u = max

{

|vm/Vi|,
√

|am/Ai|,
3

√

∣

∣jm/Ji
∣

∣

}

(34)Ti′ = uTi

(35)xk+1 = xk − �H−1
k ∇fk

(36)Hk+1 = VT
k HkVK + ρksks

T
k

Figure 4.   Simple experimental environment.



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:14458  | https://doi.org/10.1038/s41598-024-65463-w

www.nature.com/scientificreports/

Make Pk and Qk satisfy:

(37)Bk+1sk = yk

(38)Bk+1 = Bk + Pk + Qk

(39)
{

Pksk=yk

Qksk = −Bksk

Figure 5.   Path generation process in a simple obstacle environment.

0 50 100 150 200 250 300
Time(s)

0

0.5

1

1.5

Ve
l.(
m
/s
)

x
y

0 50 100 150 200 250 300
Time(s)

0

0.005

0.01

Ve
l.(
m
/s
)

z

Figure 6.   UAV three-axis speed in simple obstacle environment.



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:14458  | https://doi.org/10.1038/s41598-024-65463-w

www.nature.com/scientificreports/

Figure 7.   Comparison of trajectories in Experiment 1.

Table 1.   Path comparison of the three algorithms.

Algorithms Lengths (m) Time (s) Nodes used

A* 34.705 20.15 1540

JPS 33.529 19.29 3126

Bezier curve 31.572 20.52 1728

Proposed 30.956 20.32 236

Figure 8.   Comparison of trajectories in Experiment 2.

Table 2.   Comparison of paths in complex environments.

Algorithms Lengths (m) Time (s) Nodes used

A* 73.24 42.32 3751

JPS 72.85 41.25 23,466

Bezier curve 73.59 42.68 3962

Proposed 72.30 40.11 952



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:14458  | https://doi.org/10.1038/s41598-024-65463-w

www.nature.com/scientificreports/

The iterative formula for the algorithmic matrix Bk+1 can be obtained after obtaining the appropriate Pk and 
Qk:

The L-BFGS algorithm requires H0
k to be a positive definite matrix in order to ensure gradient descent. To 

achieve convergence, a monotone line search is performed under strong Wolfe conditions, with the Hessian 
matrix H0

k being used.

Experiment results and analysis
Utilizing the ROS platform35, we conducted UAV autonomous flight experiments across various simulated envi-
ronments and compared them with other algorithms to assess the proposed algorithm’s effectiveness. During the 
experiment, the UAV faced limitations in acquiring global obstacle information. When approaching an obstacle, 
the UAV was able to gather local obstacle information through a simulated camera. This information may not 
even be all the information about an obstacle.

Initially, the simulation experiment was conducted in a setting with simple obstacles. In experiments, the UAV 
flew from an initial point to a target point at a constant speed and stable attitude, while traversing an area with 
four obstacles. Four obstacles were distributed within the simulation map of [25.0 m, 25.0 m, 5.0 m], consisting of 
three cylinders with varying thicknesses and a wall. Experiments can intuitively reflect the trajectory generation 
process of UAVs. When the trajectory generated in the previous iteration fails to avoid obstacles, the proposed 
algorithm can quickly generate a new path. The experimental environment is depicted in Fig. 4.

The UAV trajectory is generated in segments, without considering collision during the initialization process. 
The B-spline order is 3, resulting in approximately 25 control points per segment of the trajectory. Each segment 
has a horizontal length of around 7 m, with an initial distance interval of about 0.3 m between neighboring points. 
The safety distance between the UAV and obstacles is set at 0.8 m. These parameters are considered optimal as 
they effectively balance the degrees of freedom and complexity of the UAV trajectory. Experiment 1 involves 
generating the UAV running trajectory using the B-spline algorithm in a simple obstacle environment. The total 
length of the trajectory is 30.956 m. The process of UAV running obstacle avoidance is illustrated in Fig. 5, and 
the UAV’s three-axis speed is shown in Fig. 6.

(40)Bk+1 = Bk +
yky

T
k

yTk sk
−

Bksks
T
k Bk

sTk Bksk

(41)H0
k =

sTk−1yk−1

yTk−1yk−1

I

Figure 9.   Obstacle avoidance trajectory of UAV in special obstacle environments: (a) L-shape obstacle; (b) 
H-shape obstacle; (c) U-shape obstacle; (d) Omega shape obstacle.

Figure 10.   Comparison of UAV trajectory lengths.



12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:14458  | https://doi.org/10.1038/s41598-024-65463-w

www.nature.com/scientificreports/

In this paper, the proposed path planning algorithm is compared with two traditional graph search algo-
rithms, A* and Jump Point Search (JPS), as well as the Bezier curve fitting algorithm. Three algorithms require 
sensing most of the obstacles in the environment in order to discover the optimized path. The article algorithm 
focuses more on path optimization compared to the other three algorithms, particularly in a simple environment, 
resulting in smaller data processing. The paths generated by the three algorithms in the identical experimental 
environment are compared, and the results are shown in Fig. 7.

Based on the findings presented in Fig. 7 and Table 1, it can be observed that the A* and JPS algorithms 
demonstrate better performance in terms of time efficiency in simple environments. This is mainly because the 
obstacle environment is relatively simple, and the data processing amount is too small. When faced with more 
complex environments, the advantages of algorithms will be shown. Meanwhile, these algorithms are not as 
effective as the algorithm proposed in the paper in terms of the trajectory length and the number of nodes used. 
On the other hand, the B-spline trajectory planning method algorithm and Bezier curve algorithm generate 
smoother trajectories that are well-suited for UAV dynamics and can be easily implemented in real-life scenarios.

To further validate the effectiveness of the algorithm proposed in this paper, Experiment 2 randomly gener-
ated 300 cylindrical obstacles and Circular obstacles within a square range of 50 m on each side. The position, 
radius, and height of each cylindrical obstacle were randomly generated, and there was no overlap between the 
obstacles. Three path planning methods operate independently in the same environment mentioned above. The 
UAV initiates its flight from the coordinates [− 25, − 25, 5] and navigates towards the final destination point5, 

25. The resulting trajectories generated by the UAV using the three trajectory calculation methods are illustrated 
in Fig. 8.

The results presented in Fig. 8 and Table 2 indicate that the proposed algorithm effectively tackles real-time 
obstacle avoidance in randomized and complex environments. While the A*, JPS, and Bezier curve algorithms 
also demonstrate success in solving the obstacle avoidance problem during the experiment, they struggle to 
handle the significant amount of data generated by more complex environments, leading to suboptimal solu-
tions. This highlights the superior stability of the algorithms proposed in this paper. The trajectory shape in Fig. 8 
demonstrates that the proposed algorithm in the paper primarily achieves obstacle avoidance through in-plane 
roundabouts. This approach ensures the stability of the UAV while increasing the solving speed and generating 
a smoother UAV trajectory.

In addition, we conducted the autonomous flight obstacle avoidance simulation experiment of UAVs in 
L, H, U, and omega under four special obstacle environments, and the generated UAV trajectories are shown 
in Fig. 9. In these cases, the algorithm still provides a safe and smooth UAV trajectory that allows the UAV to 
traverse these obstacles.

When the UAV passes L-shaped obstacles, a smooth trajectory is generated, as shown in Fig. 9a. The UAV 
initially fits the control points by polynomial and connects the control points to generate the trajectory. When no 
obstacle is found, the trajectory flies along the line between the starting point and the destination place, as shown 
in Fig. 9b,c, which may cause the UAV to waste kinetic energy. Of course, this is limited by the UAV’s ability to 
sense obstacles, and similar situations can be avoided by carrying better sensors. Secondly, when the algorithm 
pursued smoothness, the UAV circled a part of the distance, as shown in Fig. 9c,d. However, the UAV is easier 
to complete the smoother trajectories than the sharp ones without requiring global obstacle information, and it 
has higher adaptability to the unknown environment.

Under the same conditions of obstacle generation methods, boundary constraints, and route constraints, the 
four algorithms operate independently in environments with ten different numbers of obstacles. The comparison 
of trajectory lengths generated by the four algorithms is presented in Fig. 10. In 10 obstacle density environments, 
the average trajectory lengths for the four algorithms are 71.98 m, 72.50 m, 73.69 m, and 73.47 m respectively. 
The comparison in Fig. 10 reveals that the proposed algorithm exhibits a shorter trajectory and runtime.

Conclusion
This paper focuses on developing a B-spline curve-based UAV path planner to achieve a smoother and more 
suitable flight path. The proposed algorithm demonstrates comparable performance in planning distance and 
time to other advanced path planning algorithms while producing a trajectory that is better suited for UAV flight. 
In addition, the algorithm only requires obstacle information in the narrow space around the trajectory, leading 
to reduced data processing and enabling the UAV to navigate through unknown obstacle environments swiftly 
and safely. Simulation experiments confirmed the effectiveness and reliability of the algorithm.

Data availability
The data that support the findings of this study are available on request from the corresponding author, Pengxiang 
Sun, upon reasonable request.

Received: 21 October 2023; Accepted: 20 June 2024

References
	 1.	 Xinyu, L. et al. Agricultural UAV trajectory planning by incorporating multi-mechanism improved grey wolf optimization algo-

rithm. Expert Syst. Appl. 233, 1 (2023).
	 2.	 Cheng, Z. et al. Automated UAV image-to-BIM registration for building façade inspection using improved generalised Hough 

transform. Autom. Constr. 153, 104957 (2023).
	 3.	 Pestana, J. et al. Overview obstacle maps for obstacle-aware navigation of autonomous drones. J. Field Robot. 36(4), 734–762 (2019).
	 4.	 Yuxuan, F. et al. Piecewise-potential-field-based path planning method for fixed-wing UAV formation. Sci. Rep. 13(1), 2234–2234 

(2023).



13

Vol.:(0123456789)

Scientific Reports |        (2024) 14:14458  | https://doi.org/10.1038/s41598-024-65463-w

www.nature.com/scientificreports/

	 5.	 Zheng Li, Yu. et al. Particle swarm algorithm path-planning method for mobile robots based on artificial potential fields. Sensors 
23(13), 6082 (2021).

	 6.	 Lei, Z. H. L. Intelligent control of swarm robotics employing biomimetic deep learning. Machines 9(10), 236–236 (2021).
	 7.	 Kaustubh, C. et al. Image invariant robot navigation based on self organising neural place codes 88–106 (Springer, 2005).
	 8.	 Denis, S. et al. Spatial representation and navigation in a bio-inspired robot 245–264 (Springer, 2005).
	 9.	 Chengwei, Z., & Qi, F. Research on UAV path planning combined with ant colony and A*, pp. 1228–1236 (Springer Nature Sin-

gapore, 2023).
	10.	 Chai, R. et al. Real-time reentry trajectory planning of hypersonic vehicles: A two-step strategy incorporating fuzzy multiobjective 

transcription and deep neural network[J]. IEEE Trans. Ind. Electron. 67(8), 6904–6915 (2019).
	11.	 Chai, R. et al. Attitude tracking control for reentry vehicles using centralised robust model predictive control [J]. Automatica 145, 

110561 (2022).
	12.	 Lindqvist, B. et al. Nonlinear MPC for collision avoidance and control of UAVs with dynamic obstacles[J]. IEEE Robot. Autom. 

Lett. 5(4), 6001–6008 (2020).
	13.	 Mansouri, S. S. et al. A unified nmpc scheme for mavs navigation with 3d collision avoidance under position uncertainty[J]. IEEE 

Robot. Autom. Lett. 5(4), 5740–5747 (2020).
	14.	 Quan, L. et al. Survey of UAV motion planning. IET Cyber-Syst. Robot. 2(1), 14–21 (2020).
	15.	 Li, D., Ren, X., Gu, S., et al. Attitude calculation of quadrotor UAV based on gradient descent fusion algorithm, pp. 351–360 

(Springer Nature Singapore, 2022).
	16.	 Ratliff, N., Zucker, M., Bagnell, J. A., & Srinivasa, S. Chomp: Gradient optimization techniques for efficient motion planning. In 

Proc IEEE Int. Conf. Robot. Autom, pp. 489–494 (2009).
	17.	 Zhongyang, M., Huaguang, Z., Juan, Z. et al. A novel actor–critic–identifier architecture for nonlinear multi-agent systems with 

gradient descent method. Automatica 155 (2023).
	18.	 Kalakrishnan, Z. M., Chitta, S., Theodorou, E., Pastor, P., & Schaal, S. Stomp: Stochastic trajectory optimization for motion plan-

ning. In Proc. IEEE Int. Conf. Robot. Autom, pp. 4569–4574 (2011).
	19.	 Sucan, I. A., Kalakrishnan, M., & Chitta, S. Combining planning techniques for manipulation using realtime perception. In IEEE 

International Conference on Robotics and Automation (2010).
	20.	 Aijuan, L. et al. Map construction and path planning method for a mobile robot based on multi-sensor information fusion. Appl. 

Sci. 12(6), 2913–2913 (2022).
	21.	 Wenchao, D. et al. An efficient b-spline based kinodynamic replanning framework for quadrotors. Trans. Robot. 35(6), 1287–1306 

(2019).
	22.	 Xin, Z. et al. EGO-planner: An ESDF-free gradient-based local planner for quadrotors. IEEE Robot. Autom. Lett. 6(2), 478–485 

(2021).
	23.	 Zhenping, W. et al. A vision-based approach for autonomous motion in cluttered environments. Appl. Sci. 12(9), 4420–4420 (2022).
	24.	 Theodorou, E., Buchli, J., & Schaal, S. Reinforcement learning of motor skills in high dimensions: A path integral approach. In 

IEEE International Conference on Robotics and Automation (2010).
	25.	 Yuan, Li. et al. Smooth trajectory planning for a cable driven parallel waist rehabilitation robot based on rehabilitation evaluation 

factors. Chinese J. Mech. Eng. 36(1), 1–13 (2023).
	26.	 Shamaila, S. & Muhammadl, S. Mohamed Abullah. A quadratic trigonometric B-Spline as an alternate to cubic B-spline. Alex. 

Eng. J. 61(12), 11433–11443 (2022).
	27.	 Yifei, H. et al. A path smoothing scheme for micro-line tools using cubic B-spline fitting with dominant points. J. Phys. Conf. Ser. 

2355(1), 012018 (2022).
	28.	 Orliński, M. & Jankowski, N. Fast t-SNE algorithm with forest of balanced LSH trees and hybrid computation of repulsive forces. 

Knowl. Based Syst. 206, 106318 (2021).
	29.	 Liu Yucong, Yu. & Shixing, L. T. Hessian regularization of deep neural networks: A novel approach based on stochastic estimators 

of Hessian trace. Neurocomputing 536, 13–20 (2023).
	30.	 Abhishek Kumar, K. & Parhi Dayal, R. Dynamic walking of multi-humanoid robots using BFGS Quasi-Newton method aided 

artificial potential field approach for uneven terrain. Soft Comput. 27(9), 5893–5910 (2022).
	31.	 Kadir, K. A comparison of Quasi-Newton methods considering line search conditions in unconstrained minimization. J. Inf. Optim. 

Sci. 43(8), 2031–2053 (2022).
	32.	 Nguyen, D. T. et al. Training the RBF neural network-based adaptive sliding mode control by BFGS algorithm for omni-directional 

mobile robot. Int. J. Mech. Eng. Robot. Res. 7(4), 367–373 (2018).
	33.	 Gao, F. et al. Teach-repeat-replan: A complete and robust system for aggressive flight in complex environments. IEEE Trans. Robot. 

36(5), 1526–1545 (2020).
	34.	 Keung, L. K. et al. A modified q-BFGS algorithm for unconstrained optimization. Mathematics 11(6), 1420 (2023).
	35.	 Angelos, A., Lagoudakis, M. G. & Panagiotis, P. A ROS multi-tier UAV localization module based on GNSS, inertial and visual-

depth data. Drones 6(6), 135 (2022).

Acknowledgements
The authors gratefully acknowledge the support of the Discipline Innovation Team of Liaoning Univer-
sity of Engineering and Technology (LNTU20TD-06), Liaoning Province Applied Basic Research Program 
(2022JH2-101300231).

Author contributions
Wei Sun, Pengxiang Sun, and Wei Ding wrote the main manuscript text, Jingang Zhao, and Yadan Li prepared 
Figs. 5, 6, 7 and 8.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to P.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

www.nature.com/reprints


14

Vol:.(1234567890)

Scientific Reports |        (2024) 14:14458  | https://doi.org/10.1038/s41598-024-65463-w

www.nature.com/scientificreports/

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

http://creativecommons.org/licenses/by/4.0/

	Gradient-based autonomous obstacle avoidance trajectory planning for B-spline UAVs
	Trajectory initialization
	Optimization of trajectory
	Clamped B-splines
	Obstacle avoidance optimization
	Gradient-based trajectory optimization
	Time adjustment
	Numerical solution

	Experiment results and analysis
	Conclusion
	References
	Acknowledgements


