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Multicenter validation study 
for automated left ventricular 
ejection fraction assessment 
using a handheld ultrasound 
with artificial intelligence
Nobuyuki Kagiyama 1,2*, Yukio Abe 3, Kenya Kusunose 4, Nahoko Kato 5, Tomohiro Kaneko 1, 
Azusa Murata 1, Mitsuhiko Ota 6, Kentaro Shibayama 7, Masaki Izumo 8 & Hiroyuki Watanabe 5

We sought to validate the ability of a novel handheld ultrasound device with an artificial intelligence 
program (AI-POCUS) that automatically assesses left ventricular ejection fraction (LVEF). AI-POCUS 
was used to prospectively scan 200 patients in two Japanese hospitals. Automatic LVEF by AI-POCUS 
was compared to the standard biplane disk method using high-end ultrasound machines. After 
excluding 18 patients due to infeasible images for AI-POCUS, 182 patients (63 ± 15 years old, 21% 
female) were analyzed. The intraclass correlation coefficient (ICC) between the LVEF by AI-POCUS 
and the standard methods was good (0.81, p < 0.001) without clinically meaningful systematic bias 
(mean bias -1.5%, p = 0.008, limits of agreement ± 15.0%). Reduced LVEF < 50% was detected with a 
sensitivity of 85% (95% confidence interval 76%–91%) and specificity of 81% (71%–89%). Although the 
correlations between LV volumes by standard-echo and those by AI-POCUS were good (ICC > 0.80), 
AI-POCUS tended to underestimate LV volumes for larger LV (overall bias 42.1 mL for end-diastolic 
volume). These trends were mitigated with a newer version of the software tuned using increased data 
involving larger LVs, showing similar correlations (ICC > 0.85). In this real-world multicenter study, 
AI-POCUS showed accurate LVEF assessment, but careful attention might be necessary for volume 
assessment. The newer version, trained with larger and more heterogeneous data, demonstrated 
improved performance, underscoring the importance of big data accumulation in the field.
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Technological advancements in recent years have facilitated the development of portable computing devices and 
miniaturized ultrasound equipment1. This innovation has led to the introduction of a concept of point-of-care 
ultrasound (POCUS), which enables non-specialist practitioners to conduct focused, brief ultrasound examina-
tions at the bedside2,3. POCUS has gained traction in various domains, predominantly in emergency settings, 
encompassing cardiovascular applications.
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Despite its versatility, accuracy remains a prevalent concern in POCUS4,5. Proficient ultrasound examina-
tion necessitates a specific level of training; however, not all healthcare professionals engaged in POCUS have 
undergone sufficient instruction. In the cardiovascular domain, one of the most important but skill-dependent 
parameters is left ventricular ejection fraction (LVEF). Guidelines recommend the use of LVEF in the decision-
making process in various cardiovascular diseases6,7, whereas studies have shown that LVEF has significant 
inter-observer variability even among expertized sonographers8. Thus, the standardization of LVEF in POCUS 
has become an imperative issue to address.

Artificial intelligence (AI), specifically machine learning techniques including deep learning, has substantially 
enhanced the accuracy of computer vision in recent years, enabling the automatic processing of a wide range 
of information9–13. Medical imaging is no exception, with numerous publications documenting deep learning 
algorithms that automatically classify and analyze ultrasound images. Studies have shown that AI-based programs 
for automatic LVEF quantification are feasible14–16; however, the majority of these studies used high-end ultra-
sound equipment17. Emerging applications of AI-based automatic analysis on images obtained from handheld 
ultrasound devices on actual patients could contribute to addressing concerns about the accuracy of POCUS.

In light of these observations, we sought to investigate the real-world clinical feasibility of a novel deep 
learning-based automatic LVEF analysis program that is available with a handheld ultrasound device.

Methods
Patient enrollment
This study was a multicenter prospective observation including four centers in Japan (two image acquisition 
centers, one image analysis core laboratory, and one statistical analysis core laboratory). Patients who underwent 
clinically-indicated echocardiography in two hospitals were enrolled. After routine clinical echocardiography 
using high-end equipment (standard-echo), the same patient was scanned using a handheld device (KOSMOS, 
EchoNous Inc.) with an automatic LVEF analysis system (AI-POCUS). Inclusion criteria were (a) adult (20 
years old or older) patients and (b) patients who can understand the study overview and give written informed 
consent. Exclusion criteria included (a) patients with congenital heart disease, (b) patients with a previous his-
tory of cardiac surgery, and (c) patients with arrhythmia during the examination.

The study protocols complied with the Declaration of Helsinki and were approved by the institutional review 
board of each hospital (Juntendo University Clinical Research Review Committee, Tokyo Bay Urayasu Ichikawa 
Medical Center Institutional Review, the Institutional Review Board of the Osaka City General Hospital, and 
Institutional Review Board of the University of Tokushima). Written informed consent was taken from all par-
ticipants before joining the study.

Data acquisition and analysis
Standard-echo was performed by a clinical sonographer in the two centers, recording apical two- and four-
chamber views for at least three cardiac cycles. Subsequently, a cardiologist who was blinded to the results 
of standard-echo scanned the patients using the POCUS machine and acquired 5-s videos of apical two- and 
four-chamber views. Internally, the videos were analyzed to calculate LVEF by a deep learning-based program 
in the device. In this study, however, the cardiologists used a custom version of the device that does not display 
automatic LVEF results so that they can perform unbiased image acquisition. In other words, the cardiologists 
were blinded to the AI-POCUS LVEF and the endocardial borders that the algorithm depicted.

The standard-echo images were transferred to the image analysis-core lab, where an expert cardiologist 
who was blinded to the AI-POCUS results analyzed LVEF for all standard-echo images with a manual biplane 
method of discs in accordance with published guidelines6. The images acquired using the POCUS machine were 
automatically analyzed at the time of scanning by the deep learning-based program, which had been developed 
by the company (EchoNous Inc.) using a completely different dataset. In this study, two different versions of the 
program were applied to the images in order to investigate the improvement of the software in the newer version. 
The following results present the results from the older version if not particularly mentioned because this version 
was commercially available at the time of drafting this manuscript in August 2023. These AI-POCUS results were 
transferred not to the image analysis-core lab, but to the statistical analysis-core lab, where a researcher compared 
the manual standard-echo data and the AI-POCUS data. This researcher was blinded to all echocardiographic 
images. Figure 1 shows the overall study pipeline.

Image quality was classified into three grades as follows; (a) good: all segments are visible throughout the 
cardiac cycle, (b) fair: one to two segments were poorly visible, and (c) poor: three or more segments were poorly 
visible in the six segments from apical views.

Statistical analysis
Data are presented as mean ± standard deviation or medians [1st and 3rd interquartile ranges] for continuous 
variables as appropriate, and as frequencies (%) for categorical variables. Group differences were evaluated using 
Mann–Whitney U tests for continuous variables and the chi-square test or Fisher’s exact tests for categorical 
variables. Confidence intervals for sensitivities and specificities were calculated using exact Clopper–Pearson 
confidence intervals.

Consistency between the LVEF with standard-echo and that with AI-POCUS were assessed using intraclass 
correlation coefficients (ICC), and Bland–Altman plots were drawn to check the systematic bias between these 
two LVEF values. Limits of agreement were calculated as ± 1.96 standard deviations. LVEF was also categorized 
into reduced (< 50%) or preserved (≥ 50%) in accordance with clinical classification, and sensitivity, specificity, 
accuracy, and positive and negative predictive values of AI-POCUS were calculated with the standard-echo as 
clinical standard values. Subgroup analyses were performed for subtypes of patients based on the presence/
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absence of coronary artery disease, wall motion abnormality, and the institute of data acquisition. Using the 
Fisher r-to-z transformation, the significance of the difference between two correlation coefficients was assessed 
as the difference between two z values. All statistical analyses were performed with MedCalc version 20.218 (Med-
Calc Software Ltd, Ostend, Belgium) and R version 4.3.2 (The R Foundation, Vienna, Austria). In all analyses, a 
two-tailed p < 0.05 indicated statistical significance.

Results
Feasibility and accuracy of automated LVEF
Among a total of 200 enrolled patients, one patient was excluded because of a history of previous mitral valve 
surgery. Image quality assessed by the human reader was significantly better for the standard-echo images (good 
197, fair 1, poor 1) than POCUS images (good 169, fair 22, poor 8; p = 0.001). These patients with poor image 
quality were excluded from the analysis. Additionally, eight cases were excluded because the images were rejected 
by AI-POCUS with the older software (version 2.0) due to insufficient quality. The number of rejections was 
significantly greater when using the latest version of the software (version 3.0, exclusion = 31, p < 0.001 vs. version 
2.0), although the reasons for these rejections were not clear. Interestingly, these images judged as suboptimal 
by the AI-POCUS program were classified as good image quality by the human reader. Table 1 summarizes the 
patient characteristics of 182 patients whose images were analyzed by the software version 2.0. The mean age 
was 63.2 ± 14.9 years old, and LVEF by standard-echo was 47.8 ± 12.6 [ranges 14.9–70.7].

Figure 1.   Study pipeline. Data acquisition was performed in each hospital both for standard-echo and for 
AI-POCUS. Acquired DICOM video clips of standard-echo were sent to the image-analysis core-laboratory, 
where all images were analyzed offline. The data from AI-POCUS (without going through image-analysis core-
laboratory) and the results from image-analysis core-laboratory were sent to statistical-analysis core-laboratory.

Table 1.   Patient background. BSA body surface area, BMI body mass index, LVEF left ventricular ejection 
fraction.

Values

Age, years 63.2 ± 14.9

Male, n (%) 137 (75.3%)

Height, cm 165 ± 9

Weight, kg 63.7 ± 14.4

BSA, m2 1.69 ± 0.21

BMI, kg/m2 23.3 ± 4.2

Underlying cardiac disease

 Coronary artery disease 74 (40.7%)

 Dilated cardiomyopathy 25 (13.7%)

 Hypertrophic cardiomyopathy 2 (1.1%)

 Valvular heart disease 21 (6.6%)

 Others/undetermined 42 (23.8%)

 None 13 (7.1%)

Heart rate, /min 66.1 ± 14.4

LVEF (standard-echo) (%) 47.8 ± 12.6 [ranges 14.9–70.7]

LVEF (standard-echo) < 50% 85 (53.3%)

Regional wall motion abnormality 63 (34.6%)
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Figure 2 demonstrates the correlation between LVEF by standard-echo and that by AI-POCUS (panel A) 
and Bland–Altman plots (panel B). LVEF by AI-POCUS showed a good correlation with that by standard-echo 
(ICC = 0.81, p < 0.001) with minimal systematic bias (mean bias − 1.5%, limits of agreement ± 15.0%). As shown 
in the confusion matrix in Fig. 3, reduced LVEF < 50% was detected with a sensitivity of 85% (95% confidence 
interval 76%–91%) and specificity of 81% (71%–89%) by AI-POCUS.

Subgroup of sites, body sizes, and LV wall motions
The results of the subgroup analyses are summarized in Fig. 4. The bias and limits of agreement did not differ sig-
nificantly across the subgroups of data acquisition sites, body mass index, or the presence or absence of regional 
wall motion abnormalities. The differences in bias and limits of agreement for LVEF were 2% to 3%, which are 
clinically acceptable. Importantly, although the images were acquired in two distinct sites (one university hospital 
and one public hospital), the accuracy of LVEF assessment was not different between the sites and systematic 
bias was not seen in either hospital (limits of agreement 13.4% to − 15.6% and 13.5% to − 17.5%). Similarly in 
the subgroups of body mass index and that of regional wall motion abnormality, no significant difference in the 
accuracy of LVEF was observed.

LV volume quantification
Correlations and agreements of LV volumes and stroke volumes between standard-echo and that by AI-
POCUS were shown in Fig. 5. Although consistencies were good in LV end-diastolic and end-systolic volumes 
(ICC = 0.81 and 0.82, respectively, p < 0.001 for both), AI-POCUS tended to underestimate volumes especially 
when they are greater (bias of 42.1 mL for LV end-diastolic volume). As shown in the following section and in 

Figure 2.   Correlation and bias in LVEF of AI-POCUS vs standard-echo. LVEF by AI-POCUS showed a good 
consistency with that by standard-echo (ICC = 0.81, p < 0.001) without systematic bias (mean bias − 0.2%, limits 
of agreement ± 15%).

Figure 3.   Accuracy of AI-POCUS to detect reduced LVEF. AI-POCUS detected reduced LVEF < 50% with a 
sensitivity of 85% (95% confidence interval 76%–91%) and specificity of 81% (71%–89%).
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the Supplementary materials, however, these trends of underestimation became smaller when the latest version 
of the software, maintaining similar consistencies.

Influence of software version
The same analyses using the latest version of the software (version 3.0) are summarized in the supplementary 
materials (Supplementary Figs. 1 to 4). Detailed differences in the development process are industrial secrets, 
however, the basic principle of the upgrade was to increase the size of the dataset for training deep learning mod-
els and improving the deep learning architecture. Overall, the results by the latest software had slightly better con-
sistencies with standard-echo. However, the newer version of the software accepted a narrower range of images 
than the older version, as mentioned above. Notably, the trends of underestimation of the LV volumes in larger 
LVs were clearly smaller in the newer version compared with the older version (Fig. 5 and Supplementary Fig. 4).

Discussion
In this real-world validation study, we have shown that (1) this deep learning-based AI-POCUS program that 
automatically quantifies LVEF was applicable in the majority of clinical images (91.5% of the real-world exami-
nations); (2) LVEF by AI-POCUS showed a good concordance with standard-echo (ICC = 0.81, limits of agree-
ment ± 15.0%) regardless of the image acquisition sites and other subgroups; (3) AI-POCUS underestimates LV 
volumes when the volumes are greater, although the degree of underestimation could be mitigated by updating 
the version of the software.

POCUS using handheld ultrasound devices has rapidly been spread to various medical situations including 
not only hospitals but also small clinics and pre-hospital medical scenes18. However, the interpretation of ultra-
sound images requires certain training and background medical knowledge. POCUS outside hospitals tends 
to be performed by less experienced medical staff, including non-physicians such as nurses and emergency 
team members. The image qualities of handheld ultrasound devices are generally inferior to those of high-end 

Figure 4.   Correlations of LVEF in subgroups. Bland–Altman plots revealed that the bias and limits of 
agreement were not significantly different across the subgroups of sites (panel A, B), body mass index (panel C, 
D), and wall motion abnormalities (E, F). Differences in limits of agreement of LVEF were 2% to 3%, which are 
clinically acceptable.
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ultrasound machines which offer high-resolution supreme image quality, advanced features, and a broader range 
of transducer options19. These differences in image qualities also impact the applicability of automated image 
analysis programs. Although many commercial high-end machines have automated quantification programs for 
cardiac parameters including LVEF, very limited handheld ultrasound devices have such programs.

The device used in the present study was a handheld ultrasound device with AI-based programs. This device 
(KOSMOS, EchoNous Inc) offers AI-based programs for automated LVEF measurement despite its handheld size. 
The image quality of this device was not as comparable to a high-end machine as shown in our results, however, 
the AI program on this device was able to analyze such images and return a similar result as a human expert 
reader’s measurement of LVEF using a high-end machine. Advanced algorithms enabled by recent advancements 
in deep learning, like the one employed in our AI-POCUS application, are capable of compensating for some of 
the inherent limitations of handheld devices by optimizing image processing and analysis20,21. As a result, our 
study results might demonstrate that the gap between high-end ultrasound machines and handheld devices in 
terms of diagnostic performance has narrowed, allowing for more accurate and reliable LVEF quantification 
even with a handheld device.

A recent study by Papadopoulou and colleagues also tested the ability of this same AI-POCUS automatic LVEF 
program22. The results were mostly consistent with our results. However, our study provides additional intriguing 
findings, including the reduced accuracy of AI-based programs in larger LVs and the improvement in accuracy 
with the newer version of the software, which was trained on a larger dataset. In general, when a part of the 
data is scarce, a machine learning model often fails to learn it properly, resulting in decreased performance and 
accuracy of the model23,24. Details of the development process of the present program are confidential, however, 
the newer version of the model was trained with a greater number of patients with enlarged LV according to the 
company. Thus, the present results showing improvement in the performance of LV size analysis with the newer 
version of the software further emphasize the importance of including larger, highly heterogeneous datasets for 
training AI-based programs.

Our results have clinical implications, as the AI-POCUS application offers a reliable, convenient, and non-
invasive tool for the rapid assessment of LVEF in diverse clinical settings. The ability to accurately quantify 
LVEF with a handheld ultrasound device can enhance the efficiency and diagnostic capabilities of healthcare 

Figure 5.   LV and stroke volumes. Scatterplots and Bland–Altman plots show the correlations and systematic 
bias of LV end-diastolic volume (panel A, B), end-systolic volume (panel C, D), and stroke volume (panel E, F).
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professionals, particularly in situations where access to a full-scale echocardiography laboratory may not be 
feasible. By reducing the need for manual calculations, the AI-POCUS application can facilitate quicker and 
more informed decision-making in the management of patients with cardiovascular disorders. However, clini-
cians should be aware of the limitations of the present AI-POCUS application in larger LV volumes and consider 
corroborating the findings with standard echocardiography when necessary.

Limitations
This study is best understood in the context of several limitations. First, despite a multi-center observation, the 
number of hospitals where the images were acquired was only two, both of which are large, university-level hos-
pitals. Further studies including a wider range of medical facilities should confirm the present results. Another 
important limitation is that all AI-POCUS was performed by expert echocardiographers who were capable of 
acquiring clear apical 4-chamber views. For novice observers, additional technologies such as AI-acquisition 
guidance or tele-ultrasound solutions might be necessary to help acquire appropriate images5,25,26. Next, since the 
AI-POCUS was a commercial program that had been developed by the company, details of the model architecture 
and dataset with which the program was developed were unknown. This study did not include all patients who 
were referred to echocardiography in our hospitals, and we might exclude patients whose images were obviously 
poor. However, in clinical practice, manual LVEF measurement is also impossible for such patients and thus it 
should be acknowledged as the limitation of echocardiography itself, not particularly in this program. Finally, 
we used LVEF measured by standard-echo as clinical standard values; however, it is well known that LVEF by 
2D methods has significant variability and a non-negligible difference from the gold standard measurements 
obtained by magnetic resonance imaging. Thus, it should be acknowledged that there is a risk that the label itself 
(reduced or preserved LVEF) might differ when using the gold standard.

Conclusions
In this real-world multicenter study performed by expert cardiologists, the AI-POCUS was feasible in the assess-
ment of LVEF. Careful attention might be necessary when applying the program to larger LV. These results should 
be acknowledged by clinicians as well as researchers who develop future AI-POCUS.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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