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Automated segmentation 
of the median nerve in patients 
with carpal tunnel syndrome
Florentin Moser 1,2*, Sébastien Muller 3, Torgrim Lie 3, Thomas Langø 3,4 & Mari Hoff 1,2

Machine learning and deep learning are novel methods which are revolutionizing medical imaging. 
In our study we trained an algorithm with a U-Net shaped network to recognize ultrasound images 
of the median nerve in the complete distal half of the forearm and to measure the cross-sectional 
area at the inlet of the carpal tunnel. Images of 25 patient hands with carpal tunnel syndrome (CTS) 
and 26 healthy controls were recorded on a video loop covering 15 cm of the distal forearm and 2355 
images were manually segmented. We found an average Dice score of 0.76 between manual and 
automated segmentation of the median nerve in its complete course, while the measurement of the 
cross-sectional area at the carpal tunnel inlet resulted in a 10.9% difference between manually and 
automated measurements. We regard this technology as a suitable device for verifying the diagnosis 
of CTS.

Median nerve entrapment at the carpal tunnel is the most common peripheral nerve compression syndrome and 
causes substantial morbidity and economic burden1,2. Many different causes have been identified which include 
intrinsic factors like obesity, diabetes or pregnancy, as well as occupational factors like repetitive work or use 
of vibrating machines. However, in many cases the cause is elusive2. The reported prevalence of carpal tunnel 
syndrome (CTS) varies depending on method and definition. Atroshi found a prevalence of 2.7% in southern 
Sweden based on self-reported symptoms verified by clinical examination and a nerve conduction study3, while 
Ferry estimated a prevalence between 7 and 16% in the United Kingdom4. Females are found to have CTS more 
often than men and the median age at the time of diagnosis is about 50 years5.

Diagnosis is usually based on clinical examination and additional nerve conduction6,7 or imaging studies5. 
Ultrasound is a method that can be used to verify the diagnosis of CTS8. Features of the median nerve (MN) 
entrapment include flattening of the nerve9, increased stiffness, intraneural vascularity or venous congestion10–12, 
decreased mobility, change in echogenicity of the nerve13 and increased cross-sectional area. Increased cross-
sectional area is the most validated of these parameters14.

In contrast to nerve conduction studies, ultrasound not only visualizes the swollen nerve, but also can reveal 
local pathologies that may affect the nerve as tumors, ganglions or tendinopathy. A general drawback of ultra-
sound is its operator dependency, therefore substantial effort has been put into formalizing and standardizing 
ultrasound studies in rheumatology15,16. Additional technologies such as automated annotation, segmenta-
tion, and measurement of critical structures by machine learning algorithms have been proposed to minimize 
operator-dependency17–19.

Two topics of debate in CTS are the optimal site of measurement of the cross-sectional area (CSA) of the 
median nerve and the cut-off used to determine whether the nerve is pathologically enlarged. This is because 
of the relatively wide range of CSA depending on sex, age, site of measurement, ethnicity and method of meas-
urement. One review reported a CSA at the middle-forearm and at the carpal tunnel inlet of 7.07 mm2 and 
8.27 mm2, respectively, with generally larger CSA in men compared to women, possibly more related to higher 
weight20. Some authors propose measuring CSA at the entrance of the carpal tunnel, while others recommend 
measuring inside the carpal tunnel or comparing CSA at different locations like proximal, inside or distal of the 
carpal tunnel, respectively21.

The scope of this paper comprises segmentation of the median nerve covering its course along the distal half of 
the forearm and comparing manual measurements with automated measured CSA. This includes measurements 
of the CSA at the carpal tunnel inlet, comparing the manual measurement of CSA with automated measured 
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CSA, measurement of CSA by two operators as well as comparing the inter-observer variability with the vari-
ability between manual and machine measurements.

Methods
Subject inclusion
Patients with CTS were recruited from the orthopedic department St. Olavs hospital, Trondheim (Norway). All 
patients scheduled for surgery with carpal tunnel release were defined as established CTS. Exclusion criteria 
were previous fracture, previous CTS operation, and patients with established inflammatory arthritis. The result 
from the ultrasound exam did not interfere with the decision to treat by surgical release. Patients waiting for the 
operation were asked to do the ultrasound before the operation. The healthy controls were recruited from the 
rheumatologic department and SINTEF, the exclusion criteria were symptoms of CTS, former surgery or severe 
trauma of the wrist. Approval by the Regional Committees for Medical and Health Research Ethics (Regionale 
komiteer for medisinsk og helsefaglig forskningsetikk in Norwegian) was granted based on detailed consideration 
of our experimental protocol (application ID 373038). The research was performed in accordance with national 
and EU guidelines and regulations, written informed consent was obtained from all participants, and our research 
was performed in accordance with the WMA Declaration of Helsinki—Ethical principles for medical research 
involving human subjects.

Ground truth or gold standard for the diagnosis of CTS: The diagnosis of CTS was defined as established 
when the patient was accepted for surgery. But not all patients were diagnosed with electrophysiological tests, 
in some cases the patient was accepted for surgery only after a clinical evaluation and a history of a successful 
decompression of the contralateral hand.

From all participants, age, sex, self-reported weight and height were recorded. For the ultrasound scanning the 
participant was sitting in front of the operator with the arm in a supine position on a table with a slight flexion of 
the fingers. From the wrist crease was measured a distance of 15 cm up the forearm where ultrasound was taken. 
The reason to scan such a large aspect of the median nerve was to secure enough data for future studies on 3D 
visualisation of the nerve and for the possibility to calculate ratios of the CSA at different levels.

From the healthy controls only the left forearm and wrist were scanned with ultrasound. From the patients 
only the arm that was planned for operation was scanned (in patients with bilateral CTS both hands were 
scanned). All ultrasound images were taken by a rheumatologist with more than 5 years of experience in mus-
culoskeletal ultrasound (F.M.) To guarantee visualization of the median nerve in the middle of the forearm, a GE 
Logiq 10 scanner was used with a 6–15 MHz probe in a MSK mode with a depth of 3.5–4.0 cm was used. Three 
similar recordings were taken from each participant. Each video-loop of the ultrasound consisted of about 500 
frames, depending on how fast the probe was moved down the forearm.

Segmentation
The ultrasound videos were manually segmented by an experienced rheumatologist using Annotation Web22 to 
delineate the median nerve by a polygon in 30–40 ultrasound images per participant. Each anatomical structure 
that was segmented, a different colour was assigned to (Fig. 1b). The epineurium (nerve sheath) of the median 
nerve was not included in the segmentation or outlining (Fig. 1). The images selected for segmentation were 
selected from all parts of the ultrasound scans, not only close to the wrist. Images were chosen according to 
their quality, so in areas with very blurry images segmentation was dropped, but in areas with good quality in 
the sense of distinguishability of the structures, images were segmented in close succession.

Measurement of the median nerve
For the measurement of the cross-sectional area (CSA) of the median nerve, only images taken to the very inlet 
of the carpal tunnel with visualization of both the scaphoid and the pisiform were used. The CSA of the median 
nerve was manually traced at the inside of the high echogenic epineurium from each participant. We performed 
three manual measurements from each participant and copied the CSA calculated by the scanner. Additionally, a 
similar measurement was taken further proximally at the level of the pronator quadratus muscle. The trained AI 

Figure 1.   (a) Wrist flexor side, transverse at the crease without segmentation, (b) same frame as in A, but 
outlined the scaphoid bone to the left (orange), the pisiform on the right side (white), and the median nerve 
(blue).
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algorithm was used to automatically calculate the CSA from the same image that were used for the first manual 
CSA measurement for each patient.

Inter‑observer variability
In a minor sample of the patients (n = 8), manual segmentation of the median nerve was performed by F.M. and 
I.S. separately for inter-observer testing. From each participant 30 frames were randomly picked by a non-expert, 
so both operators were annotating identical frames.

Algorithm training
The images used to train the segmentation AI-models were exported from the GE Logic scanner with minimal 
noise filtering and processing. The images were downscaled to fit a network input size of 256 × 256 pixels. For 
the algorithm training the ultrasound images were used in their unprocessed form without any augmentation 
of contrast The CNN architecture used in this study was a fully-convolutional encoder–decoder U-net type 
network23. This architecture has six levels with cross-over connections and uses 2 × 2 max pooling in the encoder 
and 2 × 2 repeat upsampling in the decoder. Two 3 × 3 convolution layers are used at each level, together with 
ReLU activation. The output is a segmentation of the same size as the input image.

The neural networks were trained using Keras with 10-fold cross-validation, Adam optimizer, 150 epochs 
and a Dice loss function. The patients were randomly divided into 10 groups with 4–5 patients in each group. 
For each of the cross-validation folds, data from one group was set aside for testing of the trained model, one 
group was used as a validation set during training and 8 groups were used as a training set. The test results from 
each fold were averaged for the final test result. Random augmentations were used during training to reduce 
overfitting19. The following augmentations were used:

•	 Gamma intensity transformation.
•	 Rotation with a maximum angle of 10 degrees.
•	 Gaussian shadows: Dark shadows applied to the image at random locations and with random sizes.
•	 Depth: Cuts the image bottom at random depths.
•	 JPEG compression: Compresses the image with a random quality setting.
•	 Elastic image deformation.

Diagnostic power of cross‑sectional area
A secondary branch of our study, independently from machine learning-based segmentation of the median 
nerve, was to assess the relationship between the cross-sectional area (CSA) of the median nerve and the patient 
being diagnosed with carpal tunnel syndrome. This was done using the CSA measured manually by delineating 
the nerve using a dedicated function of the ultrasound scanner, and a second time using the CSA predicted by 
the machine learning model to compare if the diagnostic power was comparable to that of the first method.

Manually measured cross‑sectional area
The data was preprocessed by averaging the three repeated measurements and removing outliers of cross-sec-
tional area (CSA) of the median nerve, following the criteria of 1.5 times interquartile range. Variables were 
normalized using a standard scaler, to achieve a mean of zero, and standard deviation of one. A preliminary 
linear regression was fitted to the CSA as a function of height, weight, age, and gender. Variables were further 
binned to improve parsimony of the following models. A logistic regression was fitted to the diagnostic status of 
the subject as dependent variable, using a generalized linear model with logit link. All analyses were performed 
using R Statistical Software (v4.3.3; R Core Team 2024). Independent variables, or predictors, were the manually 
measured CSAs of the median nerve, as well as height, weight, age, and gender of the patients. The model was 
weighted to compensate for any uneven distribution of patients versus control. The model was built incrementally 
from a null model to a set of independent variables so that the marginal goodness of fit overcomes the additional 
degrees of freedom measured by maximum likelihood and chi squared test.

where Diagnosis is the binary dependent variable of the logistic regression, and CSAs and heights are the scaled 
or normalised version of CSA of the median nerve and subject height, respectively.

Though this method balances goodness of fit and parsimony, we combined the predictive value of the model 
for final selection of the model. The latter was calculated by letting the logistic regression predict the classes 
(standard probability cut-off of 0.5) and building a confusion matrix from results and reference classes of diag-
nosis. Additional standard metrics of accuracy, sensitivity and specificity are also reported. Reproducibility of the 
three repeated measurements was tested using the test-retest reliability (intraclass correlation coefficient—ICC).

Machine learning‑estimated cross‑sectional area
The machine learning-simulated cross-sectional areas were compared to the manually measured ones in paired 
t-test and Wilcoxon paired samples test to determine systematic bias of estimation. Additionally, the diagnostic 
value of the simulated CSAs was tested using the same logistic regression as for the manual ones. The classifica-
tion as healthy or carpal tunnel syndrome with the standard metrics allows for comparison of diagnostic powers.

Results
20 patients and 26 healthy controls were enrolled. Table 1 shows patient and healthy controls characteristics.

Diagnosis ∼ CSAs + heights
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In total 2355 images were manually segmented and used for training segmentation AI-models. We trained 
tenfold cross validation, the results showed an average dice score between manual segmentation and AI-based 
segmentation of 0.76, with a standard deviation of 0.068. The average precision was 0.84 and average recall was 
slightly lower at 0.71, indicating that the models had a slight tendency to underestimate the median nerve CSA. 
The median nerve CSA in healthy subjects was 7.67 mm2, while it was 11.7 mm2 in CTS patients. The difference 
is significant with Wilcoxon P < 10

−4 , and t-test P < 10
−5.

Inter‑observer variability
For the inter-observer variability test, the total number of segmented images (including ‘no segmentation/
annotation’) was 246 for seven different subjects. Of these images, only 178 had overlapping delineations. For 
the overlapping segmentations, the average dice value was 0.78 (Fig. 2). Five images were segmented by both 
operators, but delineation did not overlap. 45 images were only segmented by expert A, four images were only 
segmented by expert B and 14 images were not segmented by any of the experts.

Anatomical variation
Bifid median nerve was found in three out of 51 wrists (5.8%), all healthy subjects. Persistent median artery was 
found in two cases (both together with a bifid median nerve, an example shown in Fig. 5).

Table 1.   Demographics of the included subjects. Age, weight, and height are reported as mean (range).

Number Gender % (%) Age (yr) Weight (kg) Height (cm)

Healthy controls
16 female 61 45.1 (22–63) 69.2 (45–91) 168 (153–180)

10 male 39 43.7 (29–53) 88.3 (67–109) 181 (172–188)

Patients

10 female
50 48.3 (35–70) 75.3 (58–93) 166 (156–174)

12 hands

10 male
50 57.9 (27–73) 91.7 (73–120) 178 (168–185)

13 hands

Figure 2.   Comparing expert A and B. The left side shows segmentation by expert A, while right shows 
segmentation of expert B. Top row close to the carpal tunnel inlet, middle row at the level of the pronator 
quadratus muscle and the lower row in the middle of the forearm. Best agreement is shown in the top row 
(Dice = 0.94), median in second row (Dice = 0.82), and worst agreement at the bottom (Dice = 0.07). At the left 
margin of all images some reverberation artefacts.
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Measurements of cross‑sectional area
The three repeated manual measurements had an intraclass correlation coefficient (ICC) of 0.902 [0.847–941], 
indicating high reliability of the repeated measurements. The variation of CSA by weight and diagnostic status 
is shown in Fig. 3. Out of 49 valid entries, 2 cross-sectional areas (CSAs) of the median nerve were removed 
as outliers. The optimum cut-off point for prediction of CTS, based on maximizing the sum of sensitivity and 
specificity, was of 9.3 mm2. The preliminary linear regression found a significant linear relationship between 
CSA and weight ( P < 0.01 ) with medium effect size (standardized slope of 0.458). For the logistic regression 
(Fig. 4), division into 6 bins was optimal and provided 7 or 8 observations per bin. A model including standard-
ized height and CSA yielded optimal goodness of fit and classification accuracy, though the height variable did 
not achieve significance in the logistic regression.

Accuracy (CI): 0.81 (0.67, 0.91), Sensitivity (recall): 0.78, Positive predictive value (precision): 0.82 (Table 2), 
and an area under the curve (AUC) of 0.89.

Additional measurements of the median nerve CSA at the proximal site (over the pronator quadratus mus-
cle) showed no difference by diagnostic status (unpaired Wilcoxon P > 0.2 , unpaired t-test P > 0.3 ), providing 
no classification information, with an accuracy of 0.51 equal to the no information rate. The ratio of distal-to-
proximal CSA provided slightly weaker classification power than distal CSA alone, with an accuracy of 0.79 and 
(0.64, 0.89) confidence interval.

For the automated measurement the algorithm failed in two cases to find the median nerve. In one additional 
case, the nerve was bifid and only one branch was detected. These three cases were removed before further 
analyses to avoid introducing a strong quantitative bias while the issue is categorical. The optimum cut-off for 

Figure 3.   Cross-sectional area of median nerve by body weight.
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prediction of CTS, point based on maximizing the sum of sensitivity and specificity, was of 11 mm2. The CSA 
estimated by machine learning was not significantly different from the manually measured ones (Wilcoxon 
paired, P > 0.05 , paired t-test P > 0.1 ), with a mean difference of 0.26 mm2, a median absolute difference of 
1.33 mm2, and a mean absolute difference of 1.56 mm2. This corresponds to a median absolute relative difference 
of 10.9% between manually measured and AI-estimated CSA.

The logistic regression for the AI-estimated CSA shows that AI-estimated CSA is a significant predictor 
of CTS ( P < 0.005 ). The classification accuracy is 0.75 (0.60–0.87), with a sensitivity (recall) of 0.73, positive 
predictive value (precision) of 0.76 (Table 3), and an area under the curve of 0.77.

Discussion
The main finding of this study was that CSA estimated by machine learning was not significantly different from 
the manually measured ones. Another focus of this study was automated identification of the median nerve 
along the distant half of the forearm and automated measurement of its cross-sectional area at the inlet of the 
carpal tunnel. While the automated CSA measurement has been assessed by a number of groups24, the automated 
segmentation of the nerve over a larger area has been less studied.

In total, we achieved a dice score of 0.76 on the automated segmentation of the median nerve along the distal 
halve of the forearm, which was close to the inter-observer variability at 0.78. To our knowledge, no other study 
group has published results for automated segmentation of the median nerve as a whole. So far, measurements 
have been taken around the carpal tunnel or at distinct locations like the pronator quadratus muscle25, but not 
in a continuum.

In our study we segmented the median nerve over a length of 15 cm on the distal forearm. In the middle 
forearm the nerve is relatively easily identified between the superficial and the deep flexor muscles, but there 
are two segments where the nerve is more difficult to distinguish from the surroundings: (1) distal to the prona-
tor quadratus muscle where the nerve winds up from the deep to its more superficial localization right before 
the wrist crease and (2) at the very inlet of the carpal tunnel, when the nerve submerges under the transverse 
ligament. This may influence the precision. Other reasons for the moderate precision, recall, and dice score, 
might be caused by our choice to use unprocessed images for algorithm training. This leaves the operator with 
images with less contrast and less distinguishable structures. Processed images with enhanced contrast render 
the anatomic structures more distinguishable and makes them better suited for manual segmentation. On the 
other hand, there is the possibility that machine learning can recognize features in the unprocessed images that 
cannot be visually appreciated as shown by Faeghi et al.26.

When it comes to the manual measurements of the cross-sectional area at the carpal tunnel inlet, our results 
are very close to others. Dejaco25examined 135 patients with suspected CTS and 26 healthy controls, where 
patients with typical clinical findings and repeated pathological electrophysiological testing were considered as 
having CTS with over 90% probability. In these patients they found a median CSA at the carpal tunnel inlet of 
11.5 mm2 (7–28) and 8.0 (6–13) for the controls. These findings are almost identical with ours (11.7 and 7.7 mm2 
respectively).

Our study group made additional manual measurements at multiple anatomic sites of the distal forearm, but 
calculating ratios of the CSA at different sites did not translate into higher diagnostic accuracy. Klauser et al.21 
proposed the use of the difference between CSA measured at the crease of the wrist and the CSA more proximal 
at the level of the pronator quadratus muscle, but we could not reproduce any additional improvement for diag-
nostic precision. Torres Costoso et al.14 concluded the same way in their thorough review including 28 studies, 
that the CSA measurement of the median nerve at the carpal tunnel inlet has the highest diagnostic accuracy 
with no additional value in adding measurements at the carpal tunnel outlet.

For the interobserver variability testing, images were randomly picked distributed along the distant half of 
the forearm, similar to the segmentation used to train the AI-models. The resulting assortment of images were of 

Table 2.   Confusion matrix of the logistic regression for manually measured cross-sectional area of the 
medianus nerve.

Reference diagnosis

Predicted diagnosis Negative Carpal tunnel syndrome

Negative 20 5

Carpal tunnel syndrome 4 18

Table 3.   Confusion matrix of the logistic regression for AI-estimated cross-sectional area of the medianus 
nerve.

Reference diagnosis

Predicted diagnosis Negative Carpal tunnel syndrome

Negative 17 6

Carpal tunnel syndrome 5 16
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very different quality, some of optimal quality and others out of focus. Fourteen images were not segmented by 
any of the two operators (5.7%), these were images of so poor quality one could not identify the median nerve at 
all, especially 2–3 cm proximal to the wrist crease, where the median nerve comes up from the deep to its more 
superficial location close to the carpal tunnel. In images taken at the wrist crease, the median nerve is much 
better distinguishable. Figure 2 shows in the top row images with almost perfect identical segmentation, but 
also an example where the two operators segmented two different structures with no overlap at all. The average 
dice score between the two annotators for the images where the delineations did overlap, were very similar to 
the results for the automatic segmentation.

As earlier mentioned, the CSA is not the only feature of the median nerve that alters under compression, 
others are the nerves echogenicity and vascularity27. These alterations can be exploited by machine learning as 
newly described by Shinohara et al.28, who report an impressing diagnostic accuracy of 0.96 for CTS without 
measurement of the CSA at all. Their deep learning model was trained on recognition of the nerve echogenicity 
and alterations in the surrounding of the nerve, but it leaves the clinician with the unease of not knowing exactly 
how the machine made the diagnosis.

Our results show a significant relation between weight and CSA. The correlation between body weight or 
BMI has been documented by others as described in Ikumi et al.29, who found a correlation between weight and 
BMI and CSA in the non-symptomatic hands of patients with unilateral CTS. More data is needed on this issue, 
nevertheless the body weight should be taken into account when assessing the median nerve.

While machine learning seems to be well suited to identify and measure the median nerve in its normal con-
figuration, it still is problematic to correctly identify anatomic variations like a bifid median nerve or persistent 
median artery. In a well-designed study by Walker et al. the incidence for a bifid median nerve or a persistent 
median artery were of 8.6 and 3.7%, respectively30, while Granata found a frequency of 15.4% in healthy subjects 
and 18.5% in CTS patients31.

To guarantee sufficient training for machine learning, a large number of subjects with anatomical variants 
are needed. So far patients with bifid nerve have been excluded from studies with automated measurements32. 
In our population three healthy subjects had a bifid median nerve (5.8% of all wrists), two of them also had 
additional persistent median artery dividing the nerve bundle. The number of participants was too low to train 
the algorithm on identifying bifid nerves, so this problem still is unsolved.

This study has some limitations. The number of participants is relatively small and no patients or controls 
other than of European origin were included. Segmentation and measurement of CSA was made after recording 
of US, but no true blinding was established as it was possible to see from the registration chart which category 
(patient/control) the subject belonged to. Only the second operator I.S. involved in the inter-observer variability 
test was completely blinded. Limitations in the inter-observer variability: For measurement of interobserver 
variability both observers had to segmentate identical images that were chosen randomly. This random choos-
ing of images was at the expense of image quality and in some images the structure of interest was difficult to 
be identified. Quality of segmentation: For training of the algorithm the US images were used without contrast-
enhancement, which makes it more difficult to trace precisely the outline of the structures of interest, that means 
in real life setting the operator has an optimized image on the screen.

In conclusion the carpal tunnel inlet is a site easy to identify by visualization of the scaphoid and the pisiform 
bone. We believe that machine learning algorithms will evolve to a useful tool for a CSA measurement of the 
median nerve with high diagnostic accuracy. Automated segmentation and 3D visualization has the potential to 
improve the use and user experience of ultrasound and will make this imaging technique more accessible and 
user-friendly to a broader range of medical staff.

Data availability
The ultrasound datasets generated and analysed during this study, including annotations and AI model, are not 
publicly available due to the protocol and ethical approval of the Regional committees for medical and health 
research ethics in Norway (application ID 373038), but parts of the data (e.g., anonymised) could be made avail-
able from the corresponding author on reasonable request.

Received: 13 March 2024; Accepted: 24 June 2024

Figure 5.   (a,b) are identical images showing the bifid nerve with the speckled pattern (blue) and between them 
the persistent artery.
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