www.nature.com/scientificreports

scientific reports

OPEN

W) Check for updates

Fuzzy random sensitivity analysis
for the overall structure reliability
of reinforced concrete freezing
wellbores in deep alluvium based
on hidden Markov model

Yafeng Yao23*, Yan Zhu'?, Yongheng Li?, Wei Wang* & Zhemei Zhang*

To address the shortcomings of traditional reliability theory in characterizing the stability of deep
underground structures, the advanced first order second moment of reliability was improved to
obtain fuzzy random reliability, which is more consistent with the working conditions. The traditional
sensitivity analysis model was optimized using fuzzy random optimization, and an analytical
calculation model of the mean and standard deviation of the fuzzy random reliability sensitivity

was established. A big data hidden Markov model and expectation-maximization algorithm were
used to improve the digital characteristics of fuzzy random variables. The fuzzy random sensitivity
optimization model was used to confirm the effect of concrete compressive strength, thick-diameter
ratio, reinforcement ratio, uncertainty coefficient of calculation model, and soil depth on the overall
structural reliability of a reinforced concrete double-layer wellbore in deep alluvial soil. Through
numerical calculations, these characteristics were observed to be the main influencing factors.
Furthermore, while the soil depth was negatively correlated, the other influencing factors were all
positively correlated with the overall reliability. This study provides an effective reference for the safe
construction of deep underground structures in the future.
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Abbreviations

AFOSM  Advanced first order second moment
EM Expectation-maximization

HMM Hidden Markov model

PDF Probability density function

With the gradual exploitation of global coal resources, shallow resources have been almost exhausted, so a large
number of projects are turning to deep strata for excavation. In specific deep mining processes, accidents involv-
ing frozen shafts have increased, and their reliability has become a research focus'2. In contrast to the shallow
shafts used previously, the practice of deep alluvium reinforced-concrete frozen shaft engineering is more com-
plicated because of the external environment. This results in obvious fuzzy randomness of the external shaft load
and ultimate resistance and the overall reliability of the frozen shaft shows high uncertainty. However, traditional
reliability calculations generally adopt a load-resistance model, and the results obtained only represent the final
safety and reliability degree of the structure, thus failing to clarify the influence of different parameters on the
degree of reliability**. Therefore, it is necessary to conduct a sensitivity analysis of the overall structural reliability.
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Based on the reliability calculation, the degree of influence of different parameters on structural reliability was
analyzed to distinguish the main and secondary factors that guide construction practice.

In recent studies the sensitivity analysis of structural reliability has been explored. Babazadeh et al.” trans-
formed the nonlinear limit state function into a linear limit state function by Monte Carlo simulation. On this
basis, random variables were introduced, and the reliability sensitivity parameters of the mouth brooder algo-
rithm were adopted. Wang et al.® proposed an improved extended polynomial chaotic expansion method. This
method models and simultaneously propagates both random and cognitive random variables, constructing a
composite mapping from each cognitive variable to the response PDE. The global sensitivity index of the PDF was
derived with respect to the distributed parameters. Tian et al.” adopted a subset simulation method to develop
a Bayesian updated structural reliability method, and established an efficient reliability-monitoring sensitivity
analysis framework. Xiao et al.® proposed a new effective sampling method to estimate the fault conditions and
reliability sensitivity indices using a two-stage Markov chain Monte Carlo simulation. Considering the influ-
ence of random factors, Li et al.” adopted Monte Carlo and adaptive Krieger-Monte Carlo simulation methods
to analyze the reliability of cold-formed curtain wall glass. Based on this, a reliability sensitivity analysis of the
curtain wall glass was conducted to evaluate the influence of random changes in different parameters on the
reliability of the curtain wall. Proppe et al.'® proposed a method that extended the moving particle method to
a sensitivity analysis based on local reliability. It was based completely on the evaluated samples for reliability
estimation and avoided the repeated evaluation of performance functions.

In summary, most previous studies have built sensitivity analysis models using the basic theory of reliability
analysis, ignoring the inherent uncertainty of complex environments and structural parameters. The result has
been inaccurate sensitivity acquisition and deviation in guiding practical projects. Other studies have used
probabilistic statistical theory to analyze the structural reliability and sensitivity; however, this only considers
the randomness of the engineering and does not consider the fuzziness of the structure. In addition, in the
sensitivity analysis, the sample space data are small and the calculation is complicated. As a result engineering
applications are not extensive.

Therefore, based on the big data algorithm environment, this study regards the freezing and shaft walls of
deep underground frozen wellbores as fuzzy random force fields. It first establishes a big data fuzzy random
reliability model of the entire structure of the reinforced concrete frozen wellbore. Finally, it conducts a fuzzy
random sensitivity analysis of the reliability of the entire structure of the wellbore during the construction
period. It is important to guide the rationality of the shaft design and improve the safety and reliability of deep
underground engineering.

Theory
HMM model
The main goal of big data analysis is to obtain unknown and potential information patterns and rules through a
large number of effective information means and calculation methods to extract the depth value of the data and
provide effective data for industrial decision-making and engineering practice!'~!%.

The HMM is a doubly random process. It is not possible to observe its state directly, which can be implicitly
derived from the observed vector!>'.

The main components of the HMM are as follows.

(1) State of the model
Let the set of states be s = {s1,52,- - - , sy} and the state at time ¢ be g¢ € S. These states can then be
transferred to each other.
(2) State transition matrix
A = (aij) NN is a state matrix that describes the manner in which transitions occur between states. a;
is the probability of state transition.
(3) Observed model values
The observed values are set for V= {v, v, - - - , var}. When the state transition at time t is complete, the
model generates an observable output y; € V.
(4) The probability distribution matrix is output.
B = (bij) N« is a probability distribution function matrix describing the output.
In this matrix, bjj = b;(j) = b;j(vj)) = P(yr = vj‘qt = s;) is the probability that the output is v; when the
state is s; at time ¢.
(5) Initial state distribution
Letw = {m}, 72, - - , wn} be the initial state distribution of the model, where 7; = P(q; = s;). Therefore,
a complete HMM can be used to represent all the parameters using 2 = {A, B, w}.

Optimization of big data reliability algorithms

The traditional reliable AFOSM uses a Taylor series to expand its equation of state, with the first moment repre-
senting the mean value and the second moment representing the variance. Therefore, the reliability index of the
overall structure of the approximation algorithm is the quotient of the two, as expressed in Eq. (1).

Mz g(ays Mgy - - o5 Moy,)
oz / g \2 (1)
eril(fi) szi

Therefore, based on the HMM of big data, an EM algorithm was adopted to improve the traditional reliability
calculation method. The steps of the EM algorithm are as follows:

B =
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(1) Expectation step: calculate the maximum likelihood estimate based on the initial values of the parameters
or model parameters of the last iteration of ", as shown in Eq. (2).

Qi(z") == p(z?|x?; 6) @)

(2) Maximization step: fix Q(z), When the likelihood of the data is at its maximum, the parameter expectation
estimation is calculated, as shown in Eq. (3).

) x® z(i); 2]
0 := argmax Z Z Q=) (z(’)) log P(Q(z(’))) (3)
i z(i) !

(3) The above steps are repeated until convergence. The big-data EM algorithm flowchart is shown in Fig. 1.

Fuzzy random reliability of frozen wellbore structure
In China, the freezing section of a deep alluvial frozen shaft is typically double-walled. According to a large
amount of engineering practice data, the inner and outer walls of a frozen shaft during construction bear mainly
freezing and hydrostatic pressures, respectively. During the operation period, grouting reinforcement is usually
performed between the inner and outer shaft walls, and the double shaft can be regarded as a whole. Owing to the
friction caused by permafrost thaw settling and soil drainage settlement in the later stages, the permanent ground
pressure is generally considered as the design control load in the safety check calculation of the entire shaft.
Therefore, the overall force on the inner and outer walls of the deep frozen shaft can be regarded as a fuzzy
random force field, and the static earth pressure of the deep alluvial layer and the overall resistance of the rein-
forced concrete double wall can be analyzed using fuzzy random analysis to obtain fuzzy random equations, as
shown in Egs. (4) and (5)1718.

P =0.013H (4)

where P is the static earth pressure suffered by the entire wellbore during operation, and H is the soil depth
of different well sections. Considering the uncertainty of the parameters of the deep alluvium, they are fuzzy
random variables.

R = Og - (myinRan + mwdwRaw + finRey + fiw Rew) (5)

where Ry is the fuzzy random value of the ultimate bearing capacity of the reinforced concrete double wall; Or
is the uncertainty coefficient of the calculation model; R;yandR,w are the compressive strength of the inner
and outer shaft wall concrete axes, respectively; giyandjiy are the ratio of the annular reinforcements of the
inner and outer shaft walls, respectively. AyandAw are the thickness-to-diameter ratio of the inner and outer
shafts, respectively. All of these are fuzzy random variables. myandmyy are the inner and outer wall concrete
strength enhancement coefficients, respectively; RoyandRqw are the strengths of the steel bars in the inner and
outer shaft walls, respectively; considering the degree of influence on the ultimate bearing capacity, the above
values are expressed in fixed form.

Based on the above big-data EM algorithm, the load and resistance equations are introduced into the reli-
ability equation of fuzzy randomization, and the fuzzy random function of the overall structure of a deep alluvial
reinforced concrete double-layer wellbore is established using the HMM model, as shown in Eq. (6).
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Figure 1. Reliability optimization with big data algorithm.

Scientific Reports |

(2024) 1415584 | https://doi.org/10.1038/s41598-024-65914-4 nature portfolio



www.nature.com/scientificreports/

Z=R-8=06:[0g- (myinRay + mwiwRaw + finRen + ftwRgw) — 0.013H] (6)

In Eq. (6), the corresponding parameters have the same meaning as before.

Big data from engineering examples show that the triangular fuzzy factor can be used to characterize the
uncertainty of the fuzzy random threshold b, which is closer to the actual working conditions. Therefore, the
fuzzy random state equation for the overall structure can be expressed as follows:

(:)R . (mN/NlNRaN + mW/leliaW + l]-NRgN + ,ELngw) —0.013H = B (7)

Similarly, the corresponding fuzzy stochastic equations for the effective and failure states of the overall struc-
ture are expressed as

O - (mNj.NRgN + mwiwﬁaw + ANReN + AwRew) — 0.013H > b (8)

@R . (mN;lelaN + mw;lwf{aw + IINRgN + ﬂ,ngw) — 0.013P~I < I~7 9)
According to the big data algorithm, for the fuzzy random equation of state (Eq. 7) of the overall structure,
the cut set region of the constraint level « is considered, and its interval equation is expressed as:

Ry —8,=6: [éR - (mnANRaN + mwiwRaw + finRgy + fiwRew) — 0.013H = be (10)

where, §, = { (0.013f1), (0.0138)  },
Ry = {0 : [Or - (myinRan + mwiwRaw + finRen + AwRgw)1y
0 : [Or - (mn/NRan + mw iw Raw + ANRN + fiwRgw) 13,
by =[b", bTly = [b+ (@ — 1)d, b+ (1 —a)d].
According to the fuzzy interval algorithm, the fuzzy interval of the decomposed function is
Zy =Ry -Sf=0: { [@R - (myJnRan + mwiwRaw + finRey + ;legW)M - [0.0131?]:} =b;
(11)
+_ B+ o . 5 s 3% ~ - + ke it
Zy =R, =S, =0: {(’DR - (mNANRaN + mw AwRaw + ANReN + ungw)]a — [0.013H]a =b,
(12)
According to the algorithm flow of the HMM of big data, the fuzzy random function of the overall well wall

is expanded into a Taylor series and substituted into the partial derivative of the corresponding variable'**’, and
the following results can then be obtained:

n
- a
Z%g(uxpllxpn-)ﬂxn)'k E (xi_Mxi)BQf
i=1 !

=8 (U WRyy> PRy Wi K> 0 15> ~0-013(H = ) (13)
+ Ox(Ray — Mj;aN)(mNzN) + OxRaw — M}}aw)(mw}»w) + Or(un — Hin)(ReN)
+ Or(Uw — M) Rgw) + Or(AN — 15, (my Ran) + Or(Aw — M;W)(mWRuW)

The fuzzy random reliability index for big-data analysis is expressed as follows:

~ ,U«Z ~ . ~
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(14)

In order to better illustrate the advantages of fuzzy random reliability, the freezing double-layer shaft lining in
deep alluvial in Lianghuai mining is taken as an example. The traditional reliability and fuzzy random reliability
of the overall structure are shown in Table 12122,

Fuzzy stochastic reliability sensitivity optimization model

Fuzzy random reliability sensitivity

Structural reliability sensitivity reflects the importance of the basic parameters for the safety of the entire struc-
ture. Usually, the importance of each parameter is determined by calculating the partial derivative of the struc-

tural parameters and failure probability®*?*.
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Fuzzy random | Fuzzy random

reliability index | reliability
Depth (m) | Conventional reliability index | Conventional reliability | A~ Bt P P}
391-437 2.9683 0.9985 1.9300 | 2.9677 |0.9732 | 0.9985
437-502 3.2401 0.9994 2.1083 | 3.2388 | 0.9825 |0.9994
502-530 3.1528 0.9991 2.0198 |3.1213 | 0.9783 | 0.9991
530-564 2.9905 0.9986 1.9899 |2.9888 |0.9767 | 0.9986

Table 1. Fuzzy random reliability compared with conventional reliability.

However, traditional reliability sensitivity is primarily based on the basic theory of traditional reliability
calculations, ignoring the inherent uncertainty of complex environments and structural parameters and not
considering the fuzziness and randomness of deep underground engineering.

To meet the need for fuzzy random reliability combined with actual working conditions, fuzzy random
optimization of the sensitivity should also be conducted. Fuzzy random sensitivity is mainly concerned with the
importance of these uncertain parameters in engineering, affecting the overall structural safety and reliability*>?.
For this reason, the fuzzy random reliability sensitivity can be expressed by Eq. (15).

3Py 9Py

When the characteristic distribution of the parameters is biased, the fuzzy random reliability sensitivity can
be transformed into?”%:

oFr 9 oFr 0P
(a,é 07t 0 a6x,.> (1o

Combined with the fuzzy random reliability theory, the fuzzy random failure probability and fuzzy random
reliability index are substituted into Eq. (16), and the following can be obtained:

o f _ 3<1—\/%fio fﬁzd") 3(’5) _ <%> exp {_1</1Z)2} (17)
2

873 . Ofl; 85 Ok, N2moy

~ ~ 1 B —ix? L AN
Py 9p 3(1 ~ 7w e d") 3(%> _ (67) oo _l(ﬂz)z (18)
3 00y 3B 06y, NPY T P172\5,

Taking the horizontal cut set of Eqgs. (17) and (18), whose constraint level is, the fuzzy random reliability
sensitivity model can be expressed as

~ S\ - N
b b b
Hxi o ae(0,1] Hexi o Hxi o
b ab \~ [ob\ "
Ty _ oYy el
(a&x.) = U “Ka&x.) ’(a&x_) } (20)
') a ae(0,1] ") ') a

Among them:
b\~ <E> IRYA%
f ) = inf U o o ex (Hz) }

= = - —exp [—= | =— (21)
<8M’Ci P we(0,1] V2moy | 2\oz o

~ o\ + 0z r

3Pf) (5) 1<ﬂz>2}

— = sup U o | — —— €Xp |—Z | = (22)
(mei @ ae0,1] V2moy | 2\oz
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In the above equation, inf (-) and sup(-) are the minimum and maximum values, respectively, of the fuzzy
random horizontal cut set interval.

Fuzzy random reliability sensitivity model of frozen wellbore mold overall structure

Using the HMM and EM algorithms for big data, the partial derivatives of each main fuzzy random variable were
obtained according to the fuzzy random function of the overall structure of the reinforced concrete double-layer
wellbore with a deep alluvial layer. The relevant digital feature function was substituted into Egs. (19)-(24). The
main parameters for a fuzzy random sensitivity optimization model of the reliability of a reinforced concrete
double-layer shaft structure with a deep alluvial layer can then be obtained*-*°.

(1) Fuzzy random sensitivity optimization model for compressive strength of concrete axis.

aP [ 6: [0k - (. J [ 1/ az)\?]]
(3 f ) —inf U ol [OR - (my 1\1+ mw Aw)] exp _E(g) (25)
AR, o we1] L V2moyz L oz/) || N
ob \ " [ 0Ok - (myin +mwiw)]l [ 1/ i2\?]]
<a~f) = sup U ol 2 1PR N I\i wAwl _E<¥) (26)
KRy o ae(0,1] L 2noz oz Y
3P\ [ 61O - (myi Iw)Piizé 12\
<a~f> —inf U ol [Or - (my N+~7’V31W w)l*iizon exp _E(g) 27)
ORq o ae(0,1] L V2moy L oz / || «
- + r - = ~ 2~ = r B 277
aP¢ 0 : [Or - (mNAN + mwiw)] Az0H 1z
P = sup U al— —3 €xp “2\&, (28)
ORq o ae(0,1] ZJTGZ oz Jda
(2) Fuzzy random sensitivity model for circumferential reinforcement ratio of shaft wall.
[ 6:[Or- Ren +R [ 1 /a2\?]]
<8 ) = inf U o|— [Or - ¢ gl\i + Rew)l exp 3 (ﬁ) (29)
Fu ae01] L V207 L 2/ 11a
[ 0:10r- Rev+Ra)] [ 1772z \?|]
<8f> = sup U o|— J2£~ L4 exp —E(&—) (30)
ae(0,1] L oz L z dda
A [ 0:16 (Rey +R [ 1 /)]
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ob;\ " [ 010k Ren + R Piizos [ 1(iiz)\*]]
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(3) Fuzzy random sensitivity model for the thickness-to-diameter ratio of the wellbore.
abr\ 0 :[Og - (myR R 1/ jiz\*
i U ol [Or - (my aN~+ mwRaw)] exp |- (@) (33)
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(4) Fuzzy random sensitivity model for calculating the uncertainty coefficient of the model.
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(5) Fuzzy random sensitivity model for the soil layer depth.
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Results and discussion
Engineering examples

(34)

(35)

(36)

(37)

(38)

(40)

(42)

(44)

(45)

(46)

A large mine in Lianghuai mining area adopts the freezing method for construction and shaft development,
through deep alluvium. The main shaft, secondary shaft, and wind shaft all adopt a reinforced concrete double
wall structure. The structure of the main shaft are shown in Fig. 2. The frozen soil and shaft structure parameters
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Figure 2. Shaft structure of the main well.

425 Calcareous clay | 24.21 11.6 -18.9
Main shaft 480 Calcareous clay | 25.66 11.4 -18.7
523 Clay 26.02 11.5 -18.6
406 Calcareous clay | 25.31 11.2 -19.1
Auxiliary shaft | 452 Clay 27.32 10.8 -19.6
507 Clay 26.82 114 -19.8
421 Calcareous clay | 24.58 11.8 20.6
Air shaft 466 Calcareous clay | 25.19 12.1 21.1
530 Clay 26.73 11.7 21.3

Table 2. Frozen geotechnical parameter.

391-430 C60 5250 6300 0.528 0.481
Main shaft 430-490 C70 5250 6550 0.562 0.538
490-545 C75 5250 6550 0.604 0.573
400-420 C65 5000 6000 0.682 0.667
Auxiliary shaft 420-480 C65 5200 6250 0.722 0.709
480-544 C70 5200 6250 0.750 0.696
400-430 C65 5050 6450 0.652 0.684
Air shaft 430-490 C65 5050 6450 0.738 0.705
490-538 C70 5100 6500 0.756 0.732

Table 3. Structural parameters of outer wellbore.
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during construction are shown in Tables 2 and 3. Among them, the uncertainty distribution characteristics of
fuzzy random parameters are shown in Table 4.

The cumulative freezing period was assumed to be 185 days. The coefficient for enhancing the strength of
cement in the inner and outer strata was my=1.5, and m,= 1.8. The yield strengths of the inner and outer wall
steel bars were R,y=335 N/mm?, and Ry, =400 N/mm?,

The fuzzy random limit state values were b = Uae(O,l]a[0'65 + (@ — 1)0.1, 0.65 + (1 — «)0.1]. The constraint
level was set to 0.75. o ~ ~

Because the variables in H, RaN, Raw, N> Lw> AN> and Ly are uncertain in practical engineering, their fuzzy
randomization generations were included in the fuzzy stochastic reliability sensitivity model established in this
study. MATLAB software (MathWorks MATLAB R2023b, https://ww2.mathworks.cn/products/matlab.html) was
used to compile the HMM and EM algorithm for big data to calculate the fuzzy random reliability sensitivity of
the main well, auxiliary well, and wind well structures in each buried depth section of the deep alluvial layer®'-3*.
After 1000 iterations, the Monte Carlo method calculations and comparison results of the conventional sensitiv-
ity and fuzzy random sensitivity of each parameter are shown in Tables 5, 6, 7, 8 and 9 and Figs. 3,4, 5, 6 and 7.

According to Tables 5, 6, 7, 8 and 9, the fuzzy random sensitivity analysis of each parameter of the frozen
wellbore fully considers the gradual evolution of underground engineering from stability to instability on the
basis of the fuzzy random reliability theory, thus improving the previous cognition that there are only two

Mean 0.992 1.041 1.033 0.850 0.956
Standard deviation 0.185 0.074 0.254 0.217 0.032
Coefficient of variation 0.129 0.072 0.245 0.254 0.178

Table 4. The uncertainty characteristics of parameters.

391-430 0.2508 0.0707 02015 0.2838 0.0679 0.0845

430-490 0.2824 0.0614 0.2340 03126 0.0617 0.0802
Main shaft

490-545 0.3037 0.0523 0.2716 03570 0.0504 0.0719

400-420 0.2665 0.0685 0.2255 03044 0.0529 0.0766

420-480 0.2803 0.0598 0.2629 03150 0.0512 0.0707
Auxiliary shaft 480-544 0.3249 0.0566 0.2932 0.3631 0.0478 0.0666

400-430 0.2489 0.0796 02179 0.2805 0.0754 0.0884

430-490 0.2764 0.0743 0.2401 0.2959 0.0713 0.0828
Air shaft

490-538 03120 0.0701 0.2829 03317 0.0669 0.0784

Table 5. Fuzzy random sensitivity of axial compressive strength of concrete.

391-430 0.2007 0.0422 0.1722 0.2405 0.0397 0.0469

430-490 0.2339 0.0386 02133 0.2748 0.0358 0.0438
Main shaft

490-545 02518 0.0325 0.2315 0.2980 0.0301 0.0377

400-420 0.2276 0.0447 0.1942 0.2628 0.0418 0.0501

420-480 0.2428 0.0388 0.2105 02742 0.0332 0.044
Auxiliary shaft 480-544 0.2663 0.0315 0.2396 0.3010 0.0294 0.0364

400-430 0.2001 0.0496 0.1702 0.2326 0.0473 0.0538

430-490 0.2290 0.0452 0.2013 0.2645 0.0426 0.0502
Air shaft

490-538 0.2493 0.0407 0.2304 0.2944 0.0378 0.0444

Table 6. Fuzzy random sensitivity of wellbore thickness-to-diameter ratio.
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391-430 0.0907 0.0264 0.0617 0.1245 0.0231 0.0308

430-490 0.1074 0.0227 0.0688 0.1374 0.0201 0.0268
Main shaft

490-545 0.1207 0.0172 0.0929 0.1422 0.0165 0.0228

400-420 0.0935 0.0277 0.0668 0.1300 0.0241 0.0322

420-480 0.1063 0.0224 0.0744 0.1341 0.0204 0.0266
Auxiliary shaft 480-544 0.1459 0.0170 0.1019 0.1605 0.0143 0.0224

400-430 0.0921 0.0286 0.0630 0.1305 0.0251 0.0331

430-490 0.0998 0.0231 0.0716 0.1402 0.0215 0.0279
Air shaft

490-538 0.1316 0.0198 0.0993 0.1619 0.0172 0.0240

Table 7. Fuzzy random sensitivity of shaft circumferential reinforcement ratio.

391-430 0.2224 0.0557 0.1808 0.2534 0.0535 0.0597

430-490 02516 0.0471 0.2222 0.2811 0.0459 0.0537
Main shaft

490-545 02722 0.0396 02431 0.3130 0.0371 0.0461

400-420 0.2461 0.0522 0.2163 0.2738 0.0503 0.0582

420-480 0.2654 0.0485 02377 0.2879 0.045 0.0576
Auxiliary shaft 480-544 0.2876 0.0425 0.2469 03228 0.0356 0.0475

400-430 02210 0.0683 0.1914 02436 0.0649 0.0769
Air shaft 430-490 0.2564 0.0644 0.2232 0.2739 0.0609 0.0708

1r shai
490-538 0.2749 0.0607 0.2438 0.3200 0.0562 0.0684

Table 8. Fuzzy random sensitivity of calculation model uncertainty coefficient.

391-430 -0.1147 -0.0311 —-0.0932 —0.1435 -0.0273 -0.0339

430-490 —-0.1352 —-0.0272 —-0.1023 —-0.1638 —0.0242 —-0.0293
Main shaft

490-545 -0.1517 -0.021 -0.124 -0.1874 —-0.0186 —-0.0247

400-420 -0.1381 -0.0334 -0.1067 -0.1682 -0.0305 -0.0362

420-480 —-0.1528 —-0.0276 —-0.1282 —-0.1846 —-0.0246 —-0.0312
Auxiliary shaft 480-544 —0.1816 —0.0218 —0.1558 -0.218 —-0.0183 —0.0246

400-430 —0.1045 -0.0331 -0.082 -0.1352 —-0.0309 -0.0357

430-490 —-0.1289 —-0.0293 —0.1045 -0.1574 -0.0267 —-0.0325
Air shaft

490-538 —0.1463 —0.0256 -0.1193 -0.1737 —-0.0225 —0.0284

Table 9. Fuzzy random sensitivity of soil depth.

isolated states of structural stability. By numerical calculation of the HMM and EM algorithm, it was found that
the traditional sensitivity values of each parameter are included in the fuzzy random sensitivity interval®>*¢. For
example, the conventional mean sensitivities of the axial compressive strength of the main shaft concrete were
0.2508, 0.2824, 0.3037, and 0.2665, and the fuzzy random mean sensitivity ranges were [0.2015, 0.2838], [0.2340,
0.3126], [0.2716, 0.3570], and [0.2255, 0.3044]. The conventional standard deviation sensitivities of the compres-
sive strength of the main shaft concrete were 0.0707, 0.0614, 0.0523, and 0.0685, and the fuzzy random standard
deviation sensitivity ranges were [0.0679, 0.0845], [0.0617, 0.0802], and [0.0504, 0.0719]. [0.0529, 0.0766]. The
above analysis shows that the fuzzy random sensitivity of the overall structural reliability of the reinforced
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Figure 3. Fuzzy random sensitivity radar map of concrete axial compressive strength.
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Figure 4. Fuzzy random sensitivity radar map of wellbore thickness to diameter ratio.

concrete double-layer wellbore optimized by the algorithm represents the fuzzy random degree of influence of
the main parameters on the overall structural reliability of the wellbore in the form of a fuzzy interval value. This
is consistent with the conventional sensitivity value and is more reasonable from an engineering perspective than
the traditional fixed value representation method of sensitivity.

To further analyze the fuzzy random sensitivity and distinguish the importance of each parameter to the
overall reliability of the wellbore structure®”*, the conventional sensitivity mean value and standard deviation
of each major parameter can be compared with the fuzzy random sensitivity mean value and fuzzy random
standard deviation®*. The results are shown in Figs. 8 and 9.

Through a comprehensive comparison of the fuzzy random sensitivity of each parameter, it can be seen that
the main factors affecting the reliability of the entire structure of the frozen shaft of reinforced concrete, in order
of importance, are the compressive strength of concrete, uncertainty coefficient of the calculation model, thick-
ness-to-diameter ratio, depth of the soil layer, and reinforcement ratio. In addition, the fuzzy random sensitivity
analysis in this study had positive and negative symbolic characteristics. The positive/negative sign indicates that
the parameter change had a positive/negative relationship with the reliability of the overall wellbore structure. In
future frozen shaft excavation practices, more attention must be paid to the main factors affecting the reliability
of the shaft and distinguishing the direction characteristics of the influence. For example, the fuzzy random sen-
sitivity numerical calculation results for the reliability of a reinforced concrete shaft in a deep alluvial layer show
that the concrete compressive strength, uncertainty coeflicient of the calculation model, thickness-to-diameter
ratio, and reinforcement ratio are positively correlated, whereas the soil depth is negatively correlated with the
overall shaft reliability. In addition, in order to further verify the robustness of the optimization algorithm,
the convergence efficiency of the fuzzy random method with HMM and the traditional Monte Carlo method
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Figure 5. Fuzzy random sensitivity radar map of shaft circumferential reinforcement ratio.

—=— Fuzzy random mean (maximum) — -
—e— Conventional mean 00 —=— Fuzzy ra.ndom standard deYla_tlon (maximum)
0344 —— Fuzzy random mean (minimum) - —e— Conventional standard devu.m(.)n N
0.085 —=&— Fuzzy random standard deviation (minimum)
0.32

0.30

028 0.070 -
2 0.065 -

0.26 4 S 0060
0.24 0.055
0.050

0.045

Sensitivity

0.22

0.20

0.18

0.080 4
0.075 4

Sensitivity

0.040 4

0.035 4
T T T T T T T T T 1 0.030 T T T T T T T T T 1
S PP E
SFFEEEF S FFFTFTFFHFFS
S N S N .. » W > - - >
F @ \\7\\\% \;P& j\\@ Ao At ¥ ¥ E 6‘9\{» \\.;?\@ é}@ Aot A
A S Ll S
(a) Mean (b) Standard deviation

Figure 6. Fuzzy random sensitivity radar map of calculation model uncertainty coefficient.

is compared through the above engineering cases, and the results are shown in Fig. 10. It can be seen that the
fuzzy random method is more robust and efficient than the traditional method (Supplementary information).

Conclusions

1

)

3)

To address the shortcomings of traditional reliability in characterizing the stability of deep underground
structures, the AFSOM method was improved to analyze fuzzy random reliability, which is more consist-
ent with the actual working conditions. To reflect the influence of uncertain parameters on the safety and
reliability of the entire structure, the conventional sensitivity analysis model was optimized using fuzzy
random reliability theory, and the mean and standard deviation calculation models of the fuzzy random
reliability sensitivity were established.

Based on the fuzzy random analysis of the overall structural resistance and load of the frozen wellbore in
the deep alluvial layer, the uncertainties of different variable parameters were comprehensively considered,
and the numerical characteristics of the fuzzy random variables were replaced by the HMM and EM algo-
rithm of big data. The fuzzy random sensitivity optimization model of the concrete compressive strength,
thick-diameter ratio, reinforcement ratio, uncertainty coefficient of the calculation model, and soil depth
on the reliability of the entire wellbore structure were obtained.

Engineering examples show that the optimized fuzzy random sensitivity expresses the degree of influence
of each parameter on the overall reliability of the wellbore structure with a fuzzy interval value, which is
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Figure 7. Fuzzy random sensitivity radar map of soil depth.
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4

consistent with the conventional sensitivity value but also provides more engineering rationality than the
traditional fixed value form of sensitivity. Therefore, this method can provide a more effective reference
for the safe construction of deep underground structures.

By comparing the numerical calculation results of the fuzzy random sensitivity of the main parameters,
it can be seen that the main factors affecting the reliability of the overall structure of the deep alluvial
reinforced concrete double-layer wellbore are, in order of importance, the concrete compressive strength,
uncertainty coefficient of the calculation model, thickness-to-diameter ratio, soil depth, and reinforce-
ment ratio. Simultaneously, the fuzzy random sensitivity analysis also has the characteristics of positive
and negative symbols, indicating that the concrete compressive strength, uncertainty coefficient of the
calculation model, thickness-to-diameter ratio, and reinforcement rate have a positive relationship with
wellbore reliability, whereas the soil depth has a negative relationship with wellbore reliability.
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