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Fuzzy random sensitivity analysis 
for the overall structure reliability 
of reinforced concrete freezing 
wellbores in deep alluvium based 
on hidden Markov model
Yafeng Yao 1,2,3*, Yan Zhu 1,2, Yongheng Li 3, Wei Wang 1 & Zhemei Zhang 4

To address the shortcomings of traditional reliability theory in characterizing the stability of deep 
underground structures, the advanced first order second moment of reliability was improved to 
obtain fuzzy random reliability, which is more consistent with the working conditions. The traditional 
sensitivity analysis model was optimized using fuzzy random optimization, and an analytical 
calculation model of the mean and standard deviation of the fuzzy random reliability sensitivity 
was established. A big data hidden Markov model and expectation-maximization algorithm were 
used to improve the digital characteristics of fuzzy random variables. The fuzzy random sensitivity 
optimization model was used to confirm the effect of concrete compressive strength, thick-diameter 
ratio, reinforcement ratio, uncertainty coefficient of calculation model, and soil depth on the overall 
structural reliability of a reinforced concrete double-layer wellbore in deep alluvial soil. Through 
numerical calculations, these characteristics were observed to be the main influencing factors. 
Furthermore, while the soil depth was negatively correlated, the other influencing factors were all 
positively correlated with the overall reliability. This study provides an effective reference for the safe 
construction of deep underground structures in the future.
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Abbreviations
AFOSM	� Advanced first order second moment
EM	� Expectation-maximization
HMM	� Hidden Markov model
PDF	� Probability density function

With the gradual exploitation of global coal resources, shallow resources have been almost exhausted, so a large 
number of projects are turning to deep strata for excavation. In specific deep mining processes, accidents involv-
ing frozen shafts have increased, and their reliability has become a research focus1,2. In contrast to the shallow 
shafts used previously, the practice of deep alluvium reinforced-concrete frozen shaft engineering is more com-
plicated because of the external environment. This results in obvious fuzzy randomness of the external shaft load 
and ultimate resistance and the overall reliability of the frozen shaft shows high uncertainty. However, traditional 
reliability calculations generally adopt a load-resistance model, and the results obtained only represent the final 
safety and reliability degree of the structure, thus failing to clarify the influence of different parameters on the 
degree of reliability3,4. Therefore, it is necessary to conduct a sensitivity analysis of the overall structural reliability. 
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Based on the reliability calculation, the degree of influence of different parameters on structural reliability was 
analyzed to distinguish the main and secondary factors that guide construction practice.

In recent studies the sensitivity analysis of structural reliability has been explored. Babazadeh et al.5 trans-
formed the nonlinear limit state function into a linear limit state function by Monte Carlo simulation. On this 
basis, random variables were introduced, and the reliability sensitivity parameters of the mouth brooder algo-
rithm were adopted. Wang et al.6 proposed an improved extended polynomial chaotic expansion method. This 
method models and simultaneously propagates both random and cognitive random variables, constructing a 
composite mapping from each cognitive variable to the response PDF. The global sensitivity index of the PDF was 
derived with respect to the distributed parameters. Tian et al.7 adopted a subset simulation method to develop 
a Bayesian updated structural reliability method, and established an efficient reliability-monitoring sensitivity 
analysis framework. Xiao et al.8 proposed a new effective sampling method to estimate the fault conditions and 
reliability sensitivity indices using a two-stage Markov chain Monte Carlo simulation. Considering the influ-
ence of random factors, Li et al.9 adopted Monte Carlo and adaptive Krieger-Monte Carlo simulation methods 
to analyze the reliability of cold-formed curtain wall glass. Based on this, a reliability sensitivity analysis of the 
curtain wall glass was conducted to evaluate the influence of random changes in different parameters on the 
reliability of the curtain wall. Proppe et al.10 proposed a method that extended the moving particle method to 
a sensitivity analysis based on local reliability. It was based completely on the evaluated samples for reliability 
estimation and avoided the repeated evaluation of performance functions.

In summary, most previous studies have built sensitivity analysis models using the basic theory of reliability 
analysis, ignoring the inherent uncertainty of complex environments and structural parameters. The result has 
been inaccurate sensitivity acquisition and deviation in guiding practical projects. Other studies have used 
probabilistic statistical theory to analyze the structural reliability and sensitivity; however, this only considers 
the randomness of the engineering and does not consider the fuzziness of the structure. In addition, in the 
sensitivity analysis, the sample space data are small and the calculation is complicated. As a result engineering 
applications are not extensive.

Therefore, based on the big data algorithm environment, this study regards the freezing and shaft walls of 
deep underground frozen wellbores as fuzzy random force fields. It first establishes a big data fuzzy random 
reliability model of the entire structure of the reinforced concrete frozen wellbore. Finally, it conducts a fuzzy 
random sensitivity analysis of the reliability of the entire structure of the wellbore during the construction 
period. It is important to guide the rationality of the shaft design and improve the safety and reliability of deep 
underground engineering.

Theory
HMM model
The main goal of big data analysis is to obtain unknown and potential information patterns and rules through a 
large number of effective information means and calculation methods to extract the depth value of the data and 
provide effective data for industrial decision-making and engineering practice11–14.

The HMM is a doubly random process. It is not possible to observe its state directly, which can be implicitly 
derived from the observed vector15,16.

The main components of the HMM are as follows.

(1)	 State of the model
	   Let the set of states be s = {s1, s2, · · · , sN } and the state at time t be qt ∈ S . These states can then be 

transferred to each other.
(2)	 State transition matrix
	   A = (aij)N×N is a state matrix that describes the manner in which transitions occur between states. aij 

is the probability of state transition.
(3)	 Observed model values
	   The observed values are set for V = {v1, v2, · · · , vM} . When the state transition at time t is complete, the 

model generates an observable output yt ∈ V .
(4)	 The probability distribution matrix is output.
	   B = (bij)N×M is a probability distribution function matrix describing the output.
	   In this matrix, bij = bi(j) = bi(vj) = P(yt = vj

∣∣qt = si ) is the probability that the output is vj when the 
state is si at time t.

(5)	 Initial state distribution
	   Let π = {π1,π2, · · · ,πN } be the initial state distribution of the model, where πi = P(q1 = si) . Therefore, 

a complete HMM can be used to represent all the parameters using � = {A,B,π}.

Optimization of big data reliability algorithms
The traditional reliable AFOSM uses a Taylor series to expand its equation of state, with the first moment repre-
senting the mean value and the second moment representing the variance. Therefore, the reliability index of the 
overall structure of the approximation algorithm is the quotient of the two, as expressed in Eq. (1).

Therefore, based on the HMM of big data, an EM algorithm was adopted to improve the traditional reliability 
calculation method. The steps of the EM algorithm are as follows:

(1)β ≈
µZ

σZ
=

g(µx1 ,µx2 , · · ·,µxm)√∑m
i=1(

∂g
∂xi

)
2
σ 2

xi
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(1)	 Expectation step: calculate the maximum likelihood estimate based on the initial values of the parameters 
or model parameters of the last iteration of θ(n) , as shown in Eq. (2).

(2)	 Maximization step: fix Q(z), When the likelihood of the data is at its maximum, the parameter expectation 
estimation is calculated, as shown in Eq. (3).

(3)	 The above steps are repeated until convergence. The big-data EM algorithm flowchart is shown in Fig. 1.

Fuzzy random reliability of frozen wellbore structure
In China, the freezing section of a deep alluvial frozen shaft is typically double-walled. According to a large 
amount of engineering practice data, the inner and outer walls of a frozen shaft during construction bear mainly 
freezing and hydrostatic pressures, respectively. During the operation period, grouting reinforcement is usually 
performed between the inner and outer shaft walls, and the double shaft can be regarded as a whole. Owing to the 
friction caused by permafrost thaw settling and soil drainage settlement in the later stages, the permanent ground 
pressure is generally considered as the design control load in the safety check calculation of the entire shaft.

Therefore, the overall force on the inner and outer walls of the deep frozen shaft can be regarded as a fuzzy 
random force field, and the static earth pressure of the deep alluvial layer and the overall resistance of the rein-
forced concrete double wall can be analyzed using fuzzy random analysis to obtain fuzzy random equations, as 
shown in Eqs. (4) and (5)17,18.

where P̃ is the static earth pressure suffered by the entire wellbore during operation, and  H̃ is the soil depth 
of different well sections. Considering the uncertainty of the parameters of the deep alluvium, they are fuzzy 
random variables.

where R̃k is the fuzzy random value of the ultimate bearing capacity of the reinforced concrete double wall; �̃R 
is the uncertainty coefficient of the calculation model; R̃aNandR̃aW are the compressive strength of the inner 
and outer shaft wall concrete axes, respectively; µ̃Nandµ̃W are the ratio of the annular reinforcements of the 
inner and outer shaft walls, respectively. �̃Nand�̃W are the thickness-to-diameter ratio of the inner and outer 
shafts, respectively. All of these are fuzzy random variables. mNandmW are the inner and outer wall concrete 
strength enhancement coefficients, respectively; RgNandRgW are the strengths of the steel bars in the inner and 
outer shaft walls, respectively; considering the degree of influence on the ultimate bearing capacity, the above 
values are expressed in fixed form.

Based on the above big-data EM algorithm, the load and resistance equations are introduced into the reli-
ability equation of fuzzy randomization, and the fuzzy random function of the overall structure of a deep alluvial 
reinforced concrete double-layer wellbore is established using the HMM model, as shown in Eq. (6).

(2)Qi(z
(i)) := p(z(i)

∣∣∣x(i); θ )

(3)θ := argmax
∑

i

∑

z(i)

Q(i)
(
z(i)

)
log

p
(
x(i), z(i); θ

)

Qi

(
z(i)

)

(4)P̃ = 0.013H̃

(5)R̃k = �̃R · (mN �̃NR̃aN +mW �̃WR̃aW + µ̃NRgN + µ̃WRgW )
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Figure 1.   Reliability optimization with big data algorithm.
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In Eq. (6), the corresponding parameters have the same meaning as before.
Big data from engineering examples show that the triangular fuzzy factor can be used to characterize the 

uncertainty of the fuzzy random threshold b̃ , which is closer to the actual working conditions. Therefore, the 
fuzzy random state equation for the overall structure can be expressed as follows:

Similarly, the corresponding fuzzy stochastic equations for the effective and failure states of the overall struc-
ture are expressed as

According to the big data algorithm, for the fuzzy random equation of state (Eq. 7) of the overall structure, 
the cut set region of the constraint level α is considered, and its interval equation is expressed as:

where, S̃α =
{(

0.013H̃
)−
α
,
(
0.013H̃

)+
α

}
,

R̃α = {θ : [�̃R · (mN �̃NR̃aN +mW �̃WR̃aW + µ̃NRgN + µ̃WRgW )]−α ,

θ : [�̃R · (mN �̃NR̃aN +mW �̃WR̃aW + µ̃NRgN + µ̃WRgW )]+α },
b̃α = [b̃−, b̃+]α = [b+ (α − 1)d, b+ (1− α)d].
According to the fuzzy interval algorithm, the fuzzy interval of the decomposed function is

According to the algorithm flow of the HMM of big data, the fuzzy random function of the overall well wall 
is expanded into a Taylor series and substituted into the partial derivative of the corresponding variable19,20, and 
the following results can then be obtained:

The fuzzy random reliability index for big-data analysis is expressed as follows:

In order to better illustrate the advantages of fuzzy random reliability, the freezing double-layer shaft lining in 
deep alluvial in Lianghuai mining is taken as an example. The traditional reliability and fuzzy random reliability 
of the overall structure are shown in Table 121,22.

Fuzzy stochastic reliability sensitivity optimization model
Fuzzy random reliability sensitivity
Structural reliability sensitivity reflects the importance of the basic parameters for the safety of the entire struc-
ture. Usually, the importance of each parameter is determined by calculating the partial derivative of the struc-
tural parameters and failure probability23,24.

(6)Z̃ = R̃ − S̃ = θ : [�̃R · (mN �̃NR̃aN +mW �̃WR̃aW + µ̃NRgN + µ̃WRgW )− 0.013H̃]

(7)�̃R · (mN �̃NR̃aN +mW �̃WR̃aW + µ̃NRgN + µ̃WRgW )− 0.013H̃ = b̃

(8)�̃R · (mN �̃NR̃aN +mW �̃WR̃aW + µ̃NRgN + µ̃WRgW )− 0.013H̃ > b̃

(9)�̃R · (mN �̃NR̃aN +mW �̃WR̃aW + µ̃NRgN + µ̃WRgW )− 0.013H̃ < b̃

(10)R̃α − S̃α = θ :
[
�̃R · (mN �̃NR̃aN +mW �̃WR̃aW + µ̃NRgN + µ̃WRgW )− 0.013H̃

]
α
= b̃α

(11)

Z̃−
α = R̃−

α − S̃+α = θ :
{[

�̃R · (mN �̃NR̃aN +mW �̃WR̃aW + µ̃NRgN + µ̃WRgW )

]−
α
−

[
0.013H̃

]+
α

}
= b̃−α

(12)

Z̃+
α = R̃+

α − S̃−α = θ :
{[

�̃R · (mN �̃NR̃aN +mW �̃WR̃aW + µ̃NRgN + µ̃WRgW )

]+
α
−

[
0.013H̃

]−
α

}
= b̃

+
α

(13)

Z̃ ≈g(ux1 ,µx2 , . . . ,µxn)+
n∑

i=1

(xi − µxi )
∂g

∂xi

=g (uH̃ ,µR̃aN
,µR̃aW

,µµ̃N
,µµ̃W

,µ
�̃N
,µ

�̃W
,−0.013(H − µH )

+ �̃R̃(RaN − µR̃aN
)(mN �̃N )+ �̃R̃(RaW − µR̃aW

)(mW �̃W )+ �̃R(µN − µµ̃N
)(RgN )

+ �̃R(µW − µµ̃W
)(Rgw)+ �̃R(�N − µ

�̃N
)(mNR̃aN )+ �̃R(�W − µ

�̃W
)(mWR̃aW )

(14)

β̃ =
µ̃Z

σ̃Z
≈ θ : {[�̃R · (mNµ�̃N

µR̃aN
+mWµ

�̃W
µR̃aW

+ µµ̃N
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However, traditional reliability sensitivity is primarily based on the basic theory of traditional reliability 
calculations, ignoring the inherent uncertainty of complex environments and structural parameters and not 
considering the fuzziness and randomness of deep underground engineering.

To meet the need for fuzzy random reliability combined with actual working conditions, fuzzy random 
optimization of the sensitivity should also be conducted. Fuzzy random sensitivity is mainly concerned with the 
importance of these uncertain parameters in engineering, affecting the overall structural safety and reliability25,26. 
For this reason, the fuzzy random reliability sensitivity can be expressed by Eq. (15).

When the characteristic distribution of the parameters is biased, the fuzzy random reliability sensitivity can 
be transformed into27,28:

Combined with the fuzzy random reliability theory, the fuzzy random failure probability and fuzzy random 
reliability index are substituted into Eq. (16), and the following can be obtained:

Taking the horizontal cut set of Eqs. (17) and (18), whose constraint level is, the fuzzy random reliability 
sensitivity model can be expressed as

Among them:

(15)

(
∂P̃f

∂µ̃xi

,
∂P̃f

∂σ̃xi

)

(16)

(
∂P̃f

∂β̃
·
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,
∂P̃f

∂β̃
·
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)

(17)∂P̃f
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·
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∂
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1− 1√

2π

∫ β

−∞ e−
1
2 x

2
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Table 1.   Fuzzy random reliability compared with conventional reliability.

Depth (m) Conventional reliability index Conventional reliability

Fuzzy random 
reliability index

Fuzzy random 
reliability

β− β+ P−
s P+

s

391–437 2.9683 0.9985 1.9300 2.9677 0.9732 0.9985

437–502 3.2401 0.9994 2.1083 3.2388 0.9825 0.9994

502–530 3.1528 0.9991 2.0198 3.1213 0.9783 0.9991

530–564 2.9905 0.9986 1.9899 2.9888 0.9767 0.9986
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In the above equation, inf (·) and sup(·) are the minimum and maximum values, respectively, of the fuzzy 
random horizontal cut set interval.

Fuzzy random reliability sensitivity model of frozen wellbore mold overall structure
Using the HMM and EM algorithms for big data, the partial derivatives of each main fuzzy random variable were 
obtained according to the fuzzy random function of the overall structure of the reinforced concrete double-layer 
wellbore with a deep alluvial layer. The relevant digital feature function was substituted into Eqs. (19)–(24). The 
main parameters for a fuzzy random sensitivity optimization model of the reliability of a reinforced concrete 
double-layer shaft structure with a deep alluvial layer can then be obtained29,30.

(1)	 Fuzzy random sensitivity optimization model for compressive strength of concrete axis.

(2)	 Fuzzy random sensitivity model for circumferential reinforcement ratio of shaft wall.

(3)	 Fuzzy random sensitivity model for the thickness-to-diameter ratio of the wellbore.
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(4)	 Fuzzy random sensitivity model for calculating the uncertainty coefficient of the model.

(5)	 Fuzzy random sensitivity model for the soil layer depth.
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Figure 2.   Shaft structure of the main well.

Table 2.   Frozen geotechnical parameter.

Mine Depth (m) Lithology Water content (%) Freezing wellbore thickness (m) Mean temperature(°C)

Main shaft

425 Calcareous clay 24.21 11.6 − 18.9

480 Calcareous clay 25.66 11.4 − 18.7

523 Clay 26.02 11.5 − 18.6

Auxiliary shaft

406 Calcareous clay 25.31 11.2 − 19.1

452 Clay 27.32 10.8 − 19.6

507 Clay 26.82 11.4 − 19.8

Air shaft

421 Calcareous clay 24.58 11.8 20.6

466 Calcareous clay 25.19 12.1 21.1

530 Clay 26.73 11.7 21.3

Table 3.   Structural parameters of outer wellbore.

Mine Depth (m) Grade of concrete Inner radius (mm) Outer radius (mm)
Inner reinforcement 
ratio(%)

Outer 
reinforcement 
ratio(%)

Main shaft

391–430 C60 5250 6300 0.528 0.481

430–490 C70 5250 6550 0.562 0.538

490–545 C75 5250 6550 0.604 0.573

Auxiliary shaft

400–420 C65 5000 6000 0.682 0.667

420–480 C65 5200 6250 0.722 0.709

480–544 C70 5200 6250 0.750 0.696

Air shaft

400–430 C65 5050 6450 0.652 0.684

430–490 C65 5050 6450 0.738 0.705

490–538 C70 5100 6500 0.756 0.732
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during construction are shown in Tables 2 and 3. Among them, the uncertainty distribution characteristics of 
fuzzy random parameters are shown in Table 4.

The cumulative freezing period was assumed to be 185 days. The coefficient for enhancing the strength of 
cement in the inner and outer strata was mN = 1.5, and mW = 1.8. The yield strengths of the inner and outer wall 
steel bars were RgN = 335 N/mm2, and RgW = 400 N/mm2.

The fuzzy random limit state values were ̃b =
⋃

α∈(0,1]α[0.65+ (α − 1)0.1, 0.65+ (1− α)0.1] . The constraint 
level was set to 0.75.

Because the variables in H̃ , R̃aN , R̃aW , µ̃N , µ̃W , �̃N , and�̃W are uncertain in practical engineering, their fuzzy 
randomization generations were included in the fuzzy stochastic reliability sensitivity model established in this 
study. MATLAB software (MathWorks MATLAB R2023b, https://​ww2.​mathw​orks.​cn/​produ​cts/​matlab.​html) was 
used to compile the HMM and EM algorithm for big data to calculate the fuzzy random reliability sensitivity of 
the main well, auxiliary well, and wind well structures in each buried depth section of the deep alluvial layer31–34. 
After 1000 iterations, the Monte Carlo method calculations and comparison results of the conventional sensitiv-
ity and fuzzy random sensitivity of each parameter are shown in Tables 5, 6, 7, 8 and 9 and Figs. 3, 4, 5, 6 and 7.

According to Tables 5, 6, 7, 8 and 9, the fuzzy random sensitivity analysis of each parameter of the frozen 
wellbore fully considers the gradual evolution of underground engineering from stability to instability on the 
basis of the fuzzy random reliability theory, thus improving the previous cognition that there are only two 

Table 4.   The uncertainty characteristics of parameters.

Uncertainty characteristic 
distribution

Uncertainty of compressive 
strength of concrete axis

Uncertainty of 
circumferential 
reinforcement ratio

Uncertainty of thickness to 
diameter ratio

Uncertainty of calculating 
coefficient

Uncertainty of soil layer 
depth

Mean 0.992 1.041 1.033 0.850 0.956

Standard deviation 0.185 0.074 0.254 0.217 0.032

Coefficient of variation 0.129 0.072 0.245 0.254 0.178

Table 5.   Fuzzy random sensitivity of axial compressive strength of concrete.

Mine Deep/m Conventional mean sensitivity
Conventional standard deviation 
sensitivity

Fuzzy random mean sensitivity
Fuzzy random standard 
deviation sensitivity

(

∂P̃f
∂µ̃xi

)−

α

(

∂P̃f
∂µ̃xi

)+

α

(

∂P̃f
∂σ̃xi

)−

α

(

∂P̃f
∂σ̃xi

)+

α

Main shaft

391–430 0.2508 0.0707 0.2015 0.2838 0.0679 0.0845

430–490 0.2824 0.0614 0.2340 0.3126 0.0617 0.0802

490–545 0.3037 0.0523 0.2716 0.3570 0.0504 0.0719

400–420 0.2665 0.0685 0.2255 0.3044 0.0529 0.0766

Auxiliary shaft

420–480 0.2803 0.0598 0.2629 0.3150 0.0512 0.0707

480–544 0.3249 0.0566 0.2932 0.3631 0.0478 0.0666

400–430 0.2489 0.0796 0.2179 0.2805 0.0754 0.0884

Air shaft
430–490 0.2764 0.0743 0.2401 0.2959 0.0713 0.0828

490–538 0.3120 0.0701 0.2829 0.3317 0.0669 0.0784

Table 6.   Fuzzy random sensitivity of wellbore thickness-to-diameter ratio.

Mine Deep/m Conventional mean sensitivity
Conventional standard deviation 
sensitivity

Fuzzy random mean sensitivity
Fuzzy random standard 
deviation sensitivity

(

∂P̃f
∂µ̃xi

)−

α

(

∂P̃f
∂µ̃xi

)+

α

(

∂P̃f
∂σ̃xi

)−

α

(

∂P̃f
∂σ̃xi

)+

α

Main shaft

391–430 0.2007 0.0422 0.1722 0.2405 0.0397 0.0469

430–490 0.2339 0.0386 0.2133 0.2748 0.0358 0.0438

490–545 0.2518 0.0325 0.2315 0.2980 0.0301 0.0377

400–420 0.2276 0.0447 0.1942 0.2628 0.0418 0.0501

Auxiliary shaft

420–480 0.2428 0.0388 0.2105 0.2742 0.0332 0.044

480–544 0.2663 0.0315 0.2396 0.3010 0.0294 0.0364

400–430 0.2001 0.0496 0.1702 0.2326 0.0473 0.0538

Air shaft
430–490 0.2290 0.0452 0.2013 0.2645 0.0426 0.0502

490–538 0.2493 0.0407 0.2304 0.2944 0.0378 0.0444

https://ww2.mathworks.cn/products/matlab.html
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isolated states of structural stability. By numerical calculation of the HMM and EM algorithm, it was found that 
the traditional sensitivity values of each parameter are included in the fuzzy random sensitivity interval35,36. For 
example, the conventional mean sensitivities of the axial compressive strength of the main shaft concrete were 
0.2508, 0.2824, 0.3037, and 0.2665, and the fuzzy random mean sensitivity ranges were [0.2015, 0.2838], [0.2340, 
0.3126], [0.2716, 0.3570], and [0.2255, 0.3044]. The conventional standard deviation sensitivities of the compres-
sive strength of the main shaft concrete were 0.0707, 0.0614, 0.0523, and 0.0685, and the fuzzy random standard 
deviation sensitivity ranges were [0.0679, 0.0845], [0.0617, 0.0802], and [0.0504, 0.0719]. [0.0529, 0.0766]. The 
above analysis shows that the fuzzy random sensitivity of the overall structural reliability of the reinforced 

Table 7.   Fuzzy random sensitivity of shaft circumferential reinforcement ratio.

Mine Deep/m Conventional mean sensitivity
Conventional standard deviation 
sensitivity

Fuzzy random mean sensitivity
Fuzzy random standard 
deviation sensitivity

(

∂P̃f
∂µ̃xi

)−

α

(

∂P̃f
∂µ̃xi

)+

α

(

∂P̃f
∂σ̃xi

)−

α

(

∂P̃f
∂σ̃xi

)+

α

Main shaft

391–430 0.0907 0.0264 0.0617 0.1245 0.0231 0.0308

430–490 0.1074 0.0227 0.0688 0.1374 0.0201 0.0268

490–545 0.1207 0.0172 0.0929 0.1422 0.0165 0.0228

400–420 0.0935 0.0277 0.0668 0.1300 0.0241 0.0322

Auxiliary shaft

420–480 0.1063 0.0224 0.0744 0.1341 0.0204 0.0266

480–544 0.1459 0.0170 0.1019 0.1605 0.0143 0.0224

400–430 0.0921 0.0286 0.0630 0.1305 0.0251 0.0331

Air shaft
430–490 0.0998 0.0231 0.0716 0.1402 0.0215 0.0279

490–538 0.1316 0.0198 0.0993 0.1619 0.0172 0.0240

Table 8.   Fuzzy random sensitivity of calculation model uncertainty coefficient.

Mine Deep/m Conventional mean sensitivity
Conventional standard deviation 
sensitivity

Fuzzy random mean sensitivity
Fuzzy random standard 
deviation sensitivity

(

∂P̃f
∂µ̃xi

)−

α

(

∂P̃f
∂µ̃xi

)+

α

(

∂P̃f
∂σ̃xi

)−

α

(

∂P̃f
∂σ̃xi

)+

α

Main shaft

391–430 0.2224 0.0557 0.1808 0.2534 0.0535 0.0597

430–490 0.2516 0.0471 0.2222 0.2811 0.0459 0.0537

490–545 0.2722 0.0396 0.2431 0.3130 0.0371 0.0461

400–420 0.2461 0.0522 0.2163 0.2738 0.0503 0.0582

Auxiliary shaft

420–480 0.2654 0.0485 0.2377 0.2879 0.045 0.0576

480–544 0.2876 0.0425 0.2469 0.3228 0.0356 0.0475

400–430 0.2210 0.0683 0.1914 0.2436 0.0649 0.0769

Air shaft
430–490 0.2564 0.0644 0.2232 0.2739 0.0609 0.0708

490–538 0.2749 0.0607 0.2438 0.3200 0.0562 0.0684

Table 9.   Fuzzy random sensitivity of soil depth.

Mine Deep/m Conventional mean sensitivity
Conventional standard deviation 
sensitivity

Fuzzy random mean sensitivity
Fuzzy random standard 
deviation sensitivity

(

∂P̃f
∂µ̃xi

)−

α

(

∂P̃f
∂µ̃xi

)+

α

(

∂P̃f
∂σ̃xi

)−

α

(

∂P̃f
∂σ̃xi

)+

α

Main shaft

391–430 − 0.1147 − 0.0311 − 0.0932 − 0.1435 − 0.0273 − 0.0339

430–490 − 0.1352 − 0.0272 − 0.1023 − 0.1638 − 0.0242 − 0.0293

490–545 − 0.1517 − 0.021 − 0.124 − 0.1874 − 0.0186 − 0.0247

400–420 − 0.1381 − 0.0334 − 0.1067 − 0.1682 − 0.0305 − 0.0362

Auxiliary shaft

420–480 − 0.1528 − 0.0276 − 0.1282 − 0.1846 − 0.0246 − 0.0312

480–544 − 0.1816 − 0.0218 − 0.1558 − 0.218 − 0.0183 − 0.0246

400–430 − 0.1045 − 0.0331 − 0.082 − 0.1352 − 0.0309 − 0.0357

Air shaft
430–490 − 0.1289 − 0.0293 − 0.1045 − 0.1574 − 0.0267 − 0.0325

490–538 − 0.1463 − 0.0256 − 0.1193 − 0.1737 − 0.0225 − 0.0284
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concrete double-layer wellbore optimized by the algorithm represents the fuzzy random degree of influence of 
the main parameters on the overall structural reliability of the wellbore in the form of a fuzzy interval value. This 
is consistent with the conventional sensitivity value and is more reasonable from an engineering perspective than 
the traditional fixed value representation method of sensitivity.

To further analyze the fuzzy random sensitivity and distinguish the importance of each parameter to the 
overall reliability of the wellbore structure37,38, the conventional sensitivity mean value and standard deviation 
of each major parameter can be compared with the fuzzy random sensitivity mean value and fuzzy random 
standard deviation39,40. The results are shown in Figs. 8 and 9.

Through a comprehensive comparison of the fuzzy random sensitivity of each parameter, it can be seen that 
the main factors affecting the reliability of the entire structure of the frozen shaft of reinforced concrete, in order 
of importance, are the compressive strength of concrete, uncertainty coefficient of the calculation model, thick-
ness-to-diameter ratio, depth of the soil layer, and reinforcement ratio. In addition, the fuzzy random sensitivity 
analysis in this study had positive and negative symbolic characteristics. The positive/negative sign indicates that 
the parameter change had a positive/negative relationship with the reliability of the overall wellbore structure. In 
future frozen shaft excavation practices, more attention must be paid to the main factors affecting the reliability 
of the shaft and distinguishing the direction characteristics of the influence. For example, the fuzzy random sen-
sitivity numerical calculation results for the reliability of a reinforced concrete shaft in a deep alluvial layer show 
that the concrete compressive strength, uncertainty coefficient of the calculation model, thickness-to-diameter 
ratio, and reinforcement ratio are positively correlated, whereas the soil depth is negatively correlated with the 
overall shaft reliability. In addition, in order to further verify the robustness of the optimization algorithm, 
the convergence efficiency of the fuzzy random method with HMM and the traditional Monte Carlo method 
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Figure 3.   Fuzzy random sensitivity radar map of concrete axial compressive strength.
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Figure 4.   Fuzzy random sensitivity radar map of wellbore thickness to diameter ratio.
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is compared through the above engineering cases, and the results are shown in Fig. 10. It can be seen that the 
fuzzy random method is more robust and efficient than the traditional method (Supplementary information).

Conclusions

(1)	 To address the shortcomings of traditional reliability in characterizing the stability of deep underground 
structures, the AFSOM method was improved to analyze fuzzy random reliability, which is more consist-
ent with the actual working conditions. To reflect the influence of uncertain parameters on the safety and 
reliability of the entire structure, the conventional sensitivity analysis model was optimized using fuzzy 
random reliability theory, and the mean and standard deviation calculation models of the fuzzy random 
reliability sensitivity were established.

(2)	 Based on the fuzzy random analysis of the overall structural resistance and load of the frozen wellbore in 
the deep alluvial layer, the uncertainties of different variable parameters were comprehensively considered, 
and the numerical characteristics of the fuzzy random variables were replaced by the HMM and EM algo-
rithm of big data. The fuzzy random sensitivity optimization model of the concrete compressive strength, 
thick-diameter ratio, reinforcement ratio, uncertainty coefficient of the calculation model, and soil depth 
on the reliability of the entire wellbore structure were obtained.

(3)	 Engineering examples show that the optimized fuzzy random sensitivity expresses the degree of influence 
of each parameter on the overall reliability of the wellbore structure with a fuzzy interval value, which is 
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Figure 5.   Fuzzy random sensitivity radar map of shaft circumferential reinforcement ratio.
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Figure 6.   Fuzzy random sensitivity radar map of calculation model uncertainty coefficient.
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Figure 7.   Fuzzy random sensitivity radar map of soil depth.
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consistent with the conventional sensitivity value but also provides more engineering rationality than the 
traditional fixed value form of sensitivity. Therefore, this method can provide a more effective reference 
for the safe construction of deep underground structures.

(4)	 By comparing the numerical calculation results of the fuzzy random sensitivity of the main parameters, 
it can be seen that the main factors affecting the reliability of the overall structure of the deep alluvial 
reinforced concrete double-layer wellbore are, in order of importance, the concrete compressive strength, 
uncertainty coefficient of the calculation model, thickness-to-diameter ratio, soil depth, and reinforce-
ment ratio. Simultaneously, the fuzzy random sensitivity analysis also has the characteristics of positive 
and negative symbols, indicating that the concrete compressive strength, uncertainty coefficient of the 
calculation model, thickness-to-diameter ratio, and reinforcement rate have a positive relationship with 
wellbore reliability, whereas the soil depth has a negative relationship with wellbore reliability.

Data availability
All data, models, and code generated or used during the study appear in the submitted article.
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