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Compact stars with non-uniform
relativistic polytrope

Mohamed I. Nouh'™, Mona M. Foda? & Mohamed S. Aboueisha®

This paper presents new relativistic composite polytropic models for compact stars by simultaneously
solving Einstein field equations with the polytropic state equation to simulate the spherically
symmetric, static matter distribution. Using a non-uniform polytropic index, we get the Tolman-
Oppenheimer-Volkoff equation for the relativistic composite polytrope (CTOV). To analyze the star’s
structure, we numerically solve the CTOV equation and compute the Emden and mass functions for
various relativistic parameters and polytropic indices appropriate for neutron stars. The calculation
results show that, as the relativistic parameter approaches zero, we recover the well-known Lane-
Emden equation from the Newtonian theory of polytropic stars; thus, testing the computational
code by comparing composite Newtonian models to those in the literature yields good agreement.
We compute composite relativistic models for the neutron star candidates Cen X-3, SAXJ1808.4-
3658, and PSR J1614-22304. We compare the findings with various existing models in the literature.
Based on the accepted models for PSR J1614-22304 and Cen X-3, the star’s core radius is predicted to
be between 50 and 60% percent of its total radius, while we found that the radius of the core of star
SAXJ1808.4-3658 is around 30% of the total radius. Our findings show that the neutron star structure
may be approximated by a composite relativistic polytrope, resulting in masses and radii that are
quite consistent with observation.
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Within the context of the general theory of relativity, research on compact objects and strange stars has emerged
as a major topic in theoretical astrophysics in recent years. General relativistic models have been used for fluid
spheres with intense gravitational fields, such as neutron stars and strange stars'->. Compact objects (white
dwarfs, neutron stars, black holes, and quark stars) are the ultimate stages in the evolution of normal stars.
Compact stars are distinguished from high density because nuclear processes cease to exist in their interiors;
they cannot support themselves against gravity*. The pressure of degenerate gas resists gravity in white dwarfs
and neutron stars. The star material is compressed to an infinite density in black holes due to the force of grav-
ity’s full dominance over other forces®.

Polytropic equations of state have been widely applied to explore the stellar structure and have played an
impressive role in astrophysics®. This equation of state has been studied in general relativity, for example, by’.
These studies provide an approximate analytical solution for models with different polytropic indices and relativ-
istic parameters. Still, general relativistic polytropes have been thoroughly studied in more compact configura-
tions, such as neutron stars and super Chandrasekhar white dwarfs”!°-1>,

Most galaxies have stars that develop in gas and dust clouds with a non-uniform matter distribution. Compact
stars are isotropic in general; however, isotropy is not a universal property of stellar objects. The extreme interior
density and high gravity of compact objects suggest that the pressure within them may not be an ideal fluid.
This suggestion implies that the pressure inside the fluid sphere may be split into two nonidentical parts, radial
pressure and transverse pressure, which operate in opposite directions'. For a relativistic core-envelope model of
compact stars, for example'®, developed an anisotropic core-envelope neutron star model using polytropic index
n = 1 for the core layer representing Bose-Einstein condensate matter and polytropic index n = 2 for the envelope
layer, which represents the crust. Abellén et al.’ provided a generic framework for modeling general relativistic
polytropes where both pressures satisfy a polytropic state equation and anisotropic pressure is present. Mathias
etal.'” generated a core envelope star model in Karmarkar condition where the core is described as a quark matter
and the envelope a neutron fluid'®, generate a charged star model satisfying three layers with distinct equations
of state'®, constructed exact model for a dense stellar object utilizing the Einstein-Maxwell system of equations
comprises three interior regions with distinct equations of state, and* established a two-layered model with a
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quadratic EoS in the envelope layer and a polytropic core. An alternative approach may be called a non-uniform
polytrope to model the internal structure of stars and planets (e.g.,?"*).

Neutron stars are one of the most compact in the cosmos, named after their core composition of massive
neutrons. A neutron star’s core crust with diluted neutron matter resembles unitary Fermi gas. Fermion couples
with opposite spins behave like bosons at very low temperatures because they have zero total angular momentum.
The Pauli exclusion principle does not apply to bosons, unlike fermions. They condense into the lowest-energy
single-particle state below a minimal temperature, leading to superfluidity and Bose-Einstein Condensation
(BEC)?. These stars serve as laboratories for studying high-density nuclear matter using a suitable equation of
state (EoS) that relates matter density to pressure. Neutron stars typically have a mass of one to two solar masses
(M ~ 1-2 Mg) and a radius of around 10—14 km. The mass density (p) is around 10" g cm™3, which is almost
three times the standard nuclear density (p.) of a heavy atomic nucleus (2.8 x 10 g cm™)**%.

In astrophysics, composite polytropic models are occasionally employed to simulate the interior structure of
stars where equilibrium conditions vary across different zones®!. Among the examples are stars in the late stages
of evolution (e.g., white dwarfs and neutron stars) and stars with radiative envelopes around convective cores,
or vice versa. Matter in neutron stars can be as diverse as nuclei buried in a sea of electrons at low densities in
the outer crust, structures in the inner crust that are becoming more and more neutron-rich, uniform matter
in the outer core that is extremely neutron-rich, and potentially exotic states of matter at high densities in the
inner core. As a result, the double-layered hypothesis (core-envelope), which considers two neighboring layers
of the star with distinct matter distributions and macroscopic physical characteristics, starts to make sense'®*%.

The Tolman-Oppenheimer-Volkoff (TOV) equation constrains the structure of spherically symmetric objects
of isotropic material in static gravitational equilibrium, as modeled by general relativity. Besides applying the
TOV equation to compact stars, there are many applications in astrophysics; for example, Gupta et al.?® deter-
mined the hydrostatic masses of the Galaxy cluster observed using Chandra X-ray data. Inspired by the new
findings of star motions under the influence of dark matter, Bors and Stanczy? explore the model representing
the interaction of relativistic gravitationally attractive diffusive fermionic particles evaporating at high energy
clusters of stellar systems™.

In the present paper, we derive the composite TOV equations (CTOV) with a non-uniform polytropic index
to model condensed matter in compact stars. We numerically integrate the CTOV equations for a wide range of
the polytropic index and relativistic parameters. We will compute composite polytropic models with n=1 and
n=2 for neutron stars. The structure of the paper is as follows: in “Formulation of CTOV equation”, we derived
the CTOV equation, “Results” deals with the results, and “Conclusion” is devoted to the conclusion.

Formulation of CTOV equation
The line element describing the interior space-time of a static spherically symmetric star in standard coordinates
x% = (t,1,0, ), takes the following form”

ds® = 2" 2gp2 _ 2MN g2 2 (d@z + sin® 9d¢2), (1)

where v and / are functions of  only. Assuming that the matter distribution within the star is isotropic with the
energy-momentum tensor in the form

P
Top = puatip + 5 (uatip = gup), ©)

where p is the mass density, P is the isotropic pressure and u, is the four-velocity vector satisfying the condi-
tion uyug = 1. The Einstein field equations for the metric Eq. (1) and energy-momentum tensor Eq. (2) can
be written as
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where G is the gravitational constant and c is the speed of light.
Using the radial component of the conservation law of energy-momentum tensor (Tf);;ﬁ = 0) one can obtain
the following relation '

(pc* +P)V (r) = —P'(r), (6)

From Eq. (3) we get

-1
2 <1 _ M) , )

c2r

where m(r) is the gravitational mass enclosed in a sphere with radius r and is given by
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m(r) = /471 " pdr. (8)

0

The first derivative of the mass function can be obtained from Eq. (4) as
ngm(r) + ‘“CTTGPr3

rlr—2%m(r . ©)
[~ %00)

By inserting Eq. (8) in Eq. (6), the TOV-equation can be written as

V(r) =

C%m(r) + —4Z4GPr3

r(r — i—?m(r)) 4 (10)

Imposing the pressure P is related to the density p in the form of the polytropic equation of state as

P(r)= —(pc2 +P)

P=kp'ts, (11)
where

p = pb", (12)

where p, is the central density, k is the pressure constant, and 6 is the Emden function (the ratio of the density
to the central density p/p.). The polytropic index is denoted by #, which is given by the non-uniform formula
adopted by®! as

n=a — btanh (7q_ql>, (13)
€

where a and b are determined according to the physical situation of the stellar internal structure (e.g., the star
with radiative core and convective envelope), where g; = rp/R denotes the core boundary, g = r/R, and € is the
width of the transition layer.

According to the definition of the variable polytropic index, Eq. (13), n might take any possible values between
the polytropic indexes n, and n, (where n, works for the region from the center of the star to the first boundary
of the transition region determined by € while n, works from the transition region’s second boundary to the star’s
surface). From Eq. (13), as g takes values between 0-1, the polytropic indexes take values between n, and n,. As
a result, the star is modeled by a composite polytrope, not a double polytrope. For example, Wei*! takes n, =4,
n,=1.5,a=2.75,b=1.25, q;=0.7, and €=0.001 to model the internal structure of the sun.

Performing the first derivative to Eq. (11) gives

144
dp dp: " 1+1 dontl
- k9n+l ¢ + kpc n . (14)
, . dr dr dr
To obtain “29—, we let
1
y= pc1+“ R (15)
then
1
In (y) = (1 + ;) In (p¢). (16)
Differentiate both sides, we get
1d —n
;%znﬂmm, (17)
where
b _
n = —ﬁsech2 <%) (18)
Now, using Eq. (17), we can write
de% a ; 9—49
c _ 45 24— 41 19
I = wRe pe " In(p.) sech ( . ) (19)

n+1
To calculate dgdr , we let
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Z =" (20)
then
In(Z) =(m+1)In (), (21)

differentiate both sides, we get

1 1
7 = ®) + %9/. (22)
Substitute Eq. (18) into Eq. (22), we get
1 b — 1
EZ/ = —R—esechz(iq 6‘]1) In (0) + l’l;— o, (23)
then
dontl b (94— ¢ - nt+1
= —Esech (T>6" In(9) + TG” 0. (24)

Substitute Eqgs. (19) and (24) into Eq. (14), we obtain

e b ntl 1+ 24— q1
o = R pe "Inlposecht( =
(25)

1 b 1 —
+(n+ l)kpcl+”9”9’ — R—k,ocH" sech? (u)enﬂ In (8),
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Equation (25) shows that the constant a disappeared due to the differentiation of Eq. (13); as a result, the
constant b is only found in Equation (25).
Then, we can rewrite Eq. (25) as
dp b -
— = —Psech? (u
€

1 P,
= Re ) <ﬁln (oc) —In (9)) +(n+ 1)59 (), (26)

Inserting Eqgs. (11), (12), and (26) into Eq. (6) yields
dv

1
(pcenCZ + kpcl+n91+n) 27
dr

b L - 1 1
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where the relativistic parameter o is given by

1
_ P, _ kol
pec? 2

After some manipulations, Eq. (28) can be written as
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Inserting Egs. (29), (30) and (7) into Eq. (4), we get
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Multiply the last equation by r? we obtain

_ 2Gm(r) _2r o0 24—\ (1 _ _2m+Dor N 2G, 1 dm
<1 2r > (1 Re 14+006) sech ( € n? In(pe) = 1In(6) (1+006) v ! ct koe'0 dr — 0,
(32)

where we use
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dm(r)

o 4712 p 0", (33)

Using Eq. (29), we get

2G m(r) 2br o0 24— q 1
<l— 2, >(1—E(1+09)sech< . )(ﬁln(pc)—ln(é?)))
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(34)

2r dr

Now, we can rewrite Eq. (34) as
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(35)
Let
12
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where M and [ are the characteristic mass scale and characteristic length scale of the polytrope.
Using Eq. (36), Eq. (35) can be written as
o(n+1) _2GUMl ﬁ_}_Gle
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Knowing that
4o, (1 +n)ov
M= g v= Gl , & =IR, (38)
then Eq. (37) can be written as
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tot o0 — o
o —_— =
v it
and
V') =£%0"(%) (40)
where the Egs. (39) and (40) must be solved under the boundary conditions
00) =1, v(0) =0 (41)
Results

As we see from Egs. (11), (12), and (39), the physical parameters of the polytrope are functions of the Emden and
mass functions (6,v).To calculate the Emden and the mass functions (6,v), we numerically integrated Egs. (28)
using the Rung-Kutta method package of Mathematica 13.2. The inputs to the code are the relativistic parameter
(0), the core boundary (q,), the ratio g, and the width of the transition layer (¢).The appropriate values of the
constants a and b in Eq. (13) could be determined from the two relations a=(n, +n,)/2 and b=n,-a, where n,
and n, are the polytopic indices of the first and second polytropes, respectively. In Table 1, we listed some of
the possible values of a, b, n,, and n,. We can compute the model with a single polytrope if we use n,=n, (i.e.,
a=nand b=0).

We test the code by performing different calculations: the first test is for the Newtonian and relativistic single
polytrope with n=3 (i.e., n;=3,n,=3, a=3, b=0). In Fig. 1, we plot the Emden (the upper panel) and mass (the
lower panel) functions calculated with the relativistic parameters ¢ = 0 for Newtonian polytrope and ¢ = 0.3 for
relativistic polytropes. For comparison, the calculations for the single Newtonian and relativistic polytropes are
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Table 1. The constants a and b in Eq. (13) and the corresponding polytropic indices of the first polytrope n,
and the second polytrope n,.

225 ] nq=3, n=3
c=0
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Figure 1. Comparison between solutions of composite polytrope (n, =3 and n,=3, CTOV equation-solid lines)
and single polytrope (n=3, TOV equation-dashed lines) with n=3, 6=0 and 0.3. The upper panel is for the
Emden function, and the lower panel is for the mass function.
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taken from?®, which indicates that we agreed with maximum absolute errors of 107 and 10~ for the Newtonian
and relativistic polytropes, respectively.

Now, we shall move to the calculation of composite Newtonian polytrope (i.e. 0 = 0, n; to n,). We calcu-
lated a model appropriate for the planet with a mass of 10 M o (M ¢ is the mass of the earth), n;=0.5, n,=1,
and a central density of 22.79 g cm™*°. Figure 2 displays the density profile of the planet model. The calculation
revealed that the density at the n;-n, interface is 4.51 g cm™, which agrees with the interface density (0.4.47 g
cm™?) calculated by*..

A neutron star (NS) interior comprises two primary components: the solid crust and liquid core. Nuclear
clusters comprise the non-uniform crust, whereas the core is homogenous and uniform. We calculated composite
polytropic models using n; =1 and n, =2 with two values of the central pressures P, = 1 x 10*> and 2 x 10%
dyne cm™ and different central densities, as listed in Table 2. The relativistic parameter is calculated from the
equation o = P./(p, ¢*); the maximum value of o that fulfils the causality condition is given by 0 ., =n/(n+1),
where the sound velocity (v;) must be smaller than the speed of light (v,/c <1). It is important to mention that
the interface of the present composite models occurs when the polytropic index changes at the interface from
n=1to n=1.00001; this indicates that the models are of multi-layered polytrope, not double-layered polytrope.

The results of calculations are plotted in Fig. 3 for the density profiles, pressure distributions, masses-radius
relations, and the compactification factors (CF=m(r)/r). Comparisons between models with the same central
densities but different central pressures (i.e., varying relativistic parameters), for example, model 1 and model
5 or model 2 and model 6, show that increasing the o lead to increase the radius of the star by about 30%. Also,
as the o increases, the mass of the star increases. In Table 2, we list the CF calculated against the relativistic
parameter o, for any two models with the same central densities but different central pressures: the C.F. increases
with increasing o (i.e., increasing P,). For instance, the C.E of model 1 is about 60% of the CF of model 5 (the
central pressure of model 5 is double that of model 1). Also, the CF of model 3 is about 50% of that of model 1
(the central density of model 3 is double that of model 1). The density and pressure profiles vary smoothly from
the center toward the surface of the polytrope without discontinuity through the transition region (with width

n=1, p=4.51 g cm-3

-0.5

log p (g cm)

1
-
|

-1.5

| | | | | | | | |
0 01 02 03 04 05 06 07 08 09 1

r'lR

Figure 2. Composite polytropic model for the planet with 10 M g, n, =0.5 and n, =1, central density 22.79 g
cm™.

P, =1 x 10% (dyne cm™?) P, =2 x 10% (dyne cm™?)

models 0:(10%%) (g cm™3) o R (km) M (M) CF models pc(101) (g cm™3) o R (km) M (M) CF
Model 1 1 0.1111 8.7969 0.7848 0.090 Model 5 1 0.2222 12.0391 1.7721 0.147
Model 2 1.5 0.0744 5.8619 0.3658 0.062 Model 6 1.5 0.1481 8.1546 0.9056 0.111
Model 3 2 0.0555 4.3964 0.2106 0.048 Model 7 2 0.1111 6.2230 0.5542 0.090
Model 4 2.5 0.0444 3.5171 0.1366 0.038 Model 8 2.5 0.0888 4.4740 0.3649 0.073

Table 2. Values of the central densities, central pressures, and relativistic parameters for eight composite
models calculated with polytropic indexes n;=1to n,=2.
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Figure 3. Density profiles, pressure profiles, mass-radius relations, and compactification factor for eight
composite relativistic polytropic models computed for polytropic indexes from n=1to n=2.

€) between n; and n,. In the present calculations, we propose €=0.01 to allow a larger range of the variation of
the polytropic index when crossing the transition region.

To model the structure of the neutron star candidates Cen X-3 (mass 1.49 +0.49 M, and radius 9.51+0.13
km?>?), PSR J1614-2230 (mass 1.97 +0.04 Mg and radius 13 +2 km>***®), and SAX]J1808.4-3658 (mass 0.9+0.3
M, and radius 7.951 + 1 km*®), we computed four polytropic models for each star. Tables 3, 4 and 5 provide the
relativistic parameter (o), the central density (p.), and the central pressure (P.) as input parameters to the code;

Model P 0c(10) | P.(10%) | pi(10%%) | P,(10%) | R, (km) | R (km) | M (Mo)
Model_Cenl | 0.150 |1.20 1.61784 |0.7707 | 0.6787 | 5.889 917 | 1.03
Model_Cen2 | 020 | 130 233688 |0.7818 |0.8453 | 6116 |10.17 |14l
Model_Cen3 | 0214 |1.35 25958 07948 |0.8994 [6.117 1039 | 1.50
Model_Cend | 0.220 | 1.40 27683 08162 |0.9414 [5993  |10.28 |1.48

Table 3. Physical parameters of the polytropic models for Cen X-3.

Model o 0:10%) | P,(10%) | pi(10%) | P,(10%) |R.(km) | R (km) | M (Mo)
Model_PSR1 | 0250 |1 22470 055799 |0.69412 |7.125 | 127701 |2.02548
Model_PSR2 | 0290 | 0.7 1.8245 | 0.4909 |0.8975 |9.170  |13.076 | 1.8406
Model_PSR3 | 0.298 | 0.7 1.8749 | 0.4875 [0.9093 |9.380 | 13.469 | 1.9705
Model_PSR4 | 030 | 0.75 20223 |03835 |0.5288 8259 | 16.1530 |2.8407

Table 4. Physical parameters of the polytropic models for PSR J1614-2230.
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Model o 0:(10%) [P, (10%) | p;(10%) | P,(10%) | R, (km) | R (km) | M (M)
Model_SAX1 0.086 |1.25 0.9745 0.4210 0.1097] 3.163 9.3920 0.8686
Model_SAX2 0.095 | 1.5 1.2807 0.4816 0.1320] 2.891 9.0060 0.8902
Model_SAX3 0.10 1.5 1.3482 0.4689 0.1317] 2.853 9.1277 0.9230
Model_SAX4 0.12 2 2.1571 0.5596 0.1689| 2.422 8.6593 0.9813

Table 5. Physical parameters of the polytropic models for SAX]1808.4-3658.

the output parameters are the interface density(p;), the interface pressure (P,), the radius of the core (R,), the
radius (R), and the mass (M). These computed physical quantities may be compared to the values of core-envelope
models computed for n, =1 in the core and n,=2 in the crust for Cen X-3, PSRJ1614-2330, and SAXJ1808.4-
3658'%%2 In Figs. 4, 5 and 6, we plotted the variation of the Emden function (upper left), mass function (upper
right), density (middle left), pressure (middle right), and mass (bottom) of the composite relativistic models for
the three neutron stars. In what follows, we shall present results obtained for each star.

Cen X-3, an occulting spectroscopic binary system member, is located in the galactic plane approximately
5.7 kiloparsecs away from the Carina-Sagittarius arm*”. The visible component is Krzeminski’s Star, a supergiant,
whereas the X-ray is a revolving, magnetized neutron star. In Fig. 4, we plotted the density, pressure, and mass
variation with the radius of the three models. In all models, the distributions of 6,v, p, and P decreases smoothly
from the center to the surface without discontinuity. The observed mass and radius values (M =1.49 My, R=9.51
km) fit approximately model_Cen4 with a total mass M =1.48 Mg and radius R=10.28 km. Comparison of the
interface range of density and pressure of our models (p;=0.7707-0.8162 g cm™, P,=0.6787-0.9414 dyne cm™)
for the star Cen X-3 and that from® (p; = 1.2051 x 10> gcm™and P; = 1.977 x 10® dyne cm~2) gives smaller
values of the interface density and pressure but a larger radius for the four models, that is simply because the core
in our models represents about 60% of the total radius of the star while in?® the core occupied about 33% only.

PSR J1614-2230 is a millisecond pulsar in a binary system with a white dwarf in the Scorpius constellation.
It spins on its axis around 317 times per second for a duration of 3.15 ms. It was discovered in 2006 using the
Parkes telescope while studying unexplained gamma-ray sources in the Energetic Gamma Ray Experiment Tel-
escope catalog®. The mass of PSR J1614-2230 (1.97 M) is the second greatest among all known neutron stars.
A neutron star of such great mass limits the composition and structure of neutron stars, which are little known?®.
Our result for this star is listed in Table 4 and displayed in Fig. 5. The polytropic models predict that the core
is about 60%-70% of the star’s radius, so we found that the values of the density and pressure at the interface
are smaller than those of the core-envelope model®*. The observed mass and radius of the star are well fitted to
model_PSR3 (the accepted model for PSR J1614-2230) with total mass M=1.97 Mg and radius R=13.46 km,
which are in good agreement with observations.

In 1998, the Italian-Dutch BeppoSAX spacecraft detected SAX J1808.4-3658, the first accreting millisecond
pulsar. NASA’s RXTE satellite observed X-ray pulsations at the 401 Hz neutron star spin frequency during an
outburst in 1998%. A brown dwarf binary partner with a predicted mass of 0.05 solar masses orbits the neutron
star every 2.01 h. SAX J1808.4-3658 has shown X-ray burst oscillations, quasi-periodic oscillations, and coherent
X-ray pulsations, making it a key to understanding the timing behavior of low-mass X-ray binaries. The mass
and radius from model_SAX4 (with total mass and radius 0.9813 Mg and 8.6593 km) best fit the observed mass
and radius (Fig. 6). The accepted model for this star predicts density and pressure at the center are as 2x 10° g
cm™ and 2.157 x 10* dyne cm™? higher than that predicted by'® and model_SAX1 (model_SAX1 is computed
at the same values of the central density and pressure as'®). )

In Figs. 4, 5, and 6, we plotted the metric potentials e and e=?*(") for the models proposed for the three
stars. As is shown in the figures and demonstrated by Tooper’, the two metrics have to be well-defined at the
center and re§ular as well as singularity-free throughout the interior of the star. The metric functions of the model
satisfy e 240 = 1 and e2*© = const, i.e., finite at the center (r=0) of the stellar configuration. Moreover, the

/

derivatives of these potentials vanish at the center of the star, i.e., (ez");=0 = (e*”*)r=0 = 0, which implies that
22

the metric is regular at the center and well-behaved throughout the stellar interior. The component g, = e~
is always greater than or equal to unity, while the component g, = e?” is always less than unity and has a
minimum at r=0.

To infer the stability of the accepted CTOV models for the three stars, the following conditions should be

fulfilled!”'8:

(1) The density p and the pressure P should be positive, finite, and have regular behavior free from singularity
within the stellar interior, i.e.,0 > 0, P > 0. According to Figs. 4, 5 and 6, we can see that this condition is
satisfied by the models.

(2) The gradients of the density and pressure must be negative inside the star, i.e., ”gll—’: < 0,‘;—? < 0Oand the pres-
sure should vanish at the stellar boundary; these are shown graphically in Figs. 7a, 8a, and 9a.

(3)  For stable stellar configurations, the speed of sound within the star must be less than the speed of light,
ie,0 < Z—P < 1. This is known as the causality condition, and it is satisfied by the model, see Figs. 7b, 8b,
and 9b.

(4) For an isotropic fluid sphere, the following energy conditions should be satisfied for stability.

Null energy condition (NEC): p > 0.
Weak energy condition (WEC): p + P > 0.
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Figure 4. Variation of the Emden function (upper left), mass function (upper right), density (middle left),
pressure (middle right), mass (bottom left), and the metric potential (bottom right) of the composite relativistic
models for the star Cen X-3. The observed mass and radius are M =1.49 My and R=9.51 km.

Strong energy condition (SEC): p + 3P > 0.
Dominant energy condition (DEC): p — P > 0.
The models fulfill all these energy conditions see Figs. 7c, 8c, and 9c.
(5) Stability via adiabatic index: To obtain a sable model for a relativistic isotropic fluid sphere, the adiabatic
index’ S}:Ol;lpd be greater than 4/3%. The adiabatic index for isotropic stellar configuration is given by®
r=>=~ .
FigurelsJ 7 ctli,p 8d, and 9d show that the adiabatic index is greater than 4/3 throughout the stellar interior.
(6) For the matter within the star to be non-exotic, the value of the EoS parameter w should be positive and

must satisfy Zeldovich’s condition,0 < w = % < 1, at the stellar center®. The models fulfill this condition;
see Figs. 7e, 8e, and Ye.
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Figure 5. Variation of the Emden function (upper left), mass function (upper right), density (middle left),

pressure (middle right), mass (bottom left), and the metric potential (bottom right) of the composite relativistic

models for the star PSRJ1614-2330. The observed mass and radius are M=1.97 M and R=13 km.

Conclusions

By simultaneously solving the polytropic equation of state and Einstein field equations, this work offered inno-
vative composite polytropic models for compact stars. Using a non-uniform polytropic index, we obtained the
Tolman-Oppenheimer-Volkoff equation for the relativistic composite polytrope (CTOV). We used numerical
integration to solve the CTOV equation. We estimated the mass and Emden functions for various relativistic
parameters and polytropic indices appropriate for neutron stars to examine the star’s structure. When we test
the computational code by comparing composite Newtonian models with those published in the literature, we
find good agreement because the computation results demonstrate that, as the relativistic parameter approaches

zero, we recover the well-known Lane-Emden equation from the Newtonian theory of polytropic stars.
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Figure 6. Variation of the Emden function (upper left), mass function (upper right), density (middle left),
pressure (middle right), mass (bottom left), and the metric potential (bottom right) of the composite relativistic
models for the star SAXJ1808.4-3658. The observed mass and radius are M=0.9 Mg and R=7.951 km.

Additionally, there was good agreement between the relativistic model of the single polytrope estimated from
the TOV and that computed from the CTOV. From the star’s center to its surface, the distributions of the mass
function, the Emden function, the density, the pressure, and the mass exhibit smooth variation. One advantage
of the computed CTOV models is that they are multi-layered, not double-layered.

Using observable values of the mass and radius of the pulsars Cen X-3, PSR J1614-22304, and SAX]J1808.4-
3658 and with central density and pressure compatible with neutron core pulsars, we verified the physical
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Figure 7. Stability of model_Cen4 (Table 3) proposed for modeling the star Cen X-3.

correctness of the model. We used central density and pressure parameters similar to those in the literature to
construct four models for each star so that they could be compared. According to the accepted models for Cen
X-3 and PSR J1614-22304, the core radius of the star is estimated to be between 50 and 60% of its overall radius.
We found that the core radius of star SAXJ1808.4-3658 is around 30% of the overall radius. We computed the
masses and radii of the three stars as follows: M = 1.48 Mg and R = 10.28 km for Cen X-3, M = 1.97 Mgand R =
13.46 km for PSR J1614-2230, and M = 0.98 My and R = 8.65 km for SAX]J1808.4-3658. Taking into account the
errors in observation, the computed masses and radius are in good agreement for the three investigated stars.
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Figure 8. Stability of model_PSR3 (Table 4) proposed for modeling the star PSR J1614-22304.

The metric potentials for the models proposed for the three stars are found to be well-defined at the center
and regular as well as singularity-free throughout the interior of the star. It can be confirmed that every single
physical parameter, stability condition, and energy condition inside the stars are on a sustainable trend and vary
smoothly without interruption.

Using a single EoS may not be the best option for realistic modeling of the entire star***. For example, using
composite EoS instead of single EOS*, used polytropic equations to simulate the EoS in each location in the

Scientific Reports |

(2024) 14:16237 | https://doi.org/10.1038/s41598-024-65973-7 nature portfolio



www.nature.com/scientificreports/

-4E+14 4

-8E+14 -

" -1.2E+15 4

-1.6E+15 4

-2E+15 4

-2.4E+15 T T T T T
0 1 2 3 4 5

0.24

0.2 4

0.16 4

a
3| o0.12

0.08 4

0.04 4

2.28

2.24

2.2 4
2.16
2.12 A
2.08

2.04 4

1.96 4
1.92 4

1.88 4

1.84 T T T T T

(d)

-2E+034 —

-4E+034 —

-6E+034 —

o -8E+034 —

-1E+035 —

-1.2E+035 —

-1.4E+035 —

-1.6E4035 T T T T T T T 1

(a)

1.2E+36

RSR J1614-2230
—— WEC
——— DEC
—— SEC
—— NEC

1E+36 4

8E+35

6E+35

4E+35

2E+35 A

Energy Conditions (dyne/cm?)

0.12

0.1

0.08

3 0.06 -

0.04

0.02

(e)

Figure 9. Stability of model_SAX1 (Table 5) proposed for modeling the star SAXJ1808.4-3658.

star: the crust, the outer core, and the inner core; four polytropes are used in the crust and three in the outer and
inner cores. Then, a piecewise function with seven polytropes represents the whole EoS.

Conversely, more electromagnetic and gravitational-wave measurements are being made of neutron stars.
These measurements enable us to restrict the dense matter equation of state and comprehend the fundamental
processes inside these small objects. The TOV equations may be reversed using these accurate observations to
get the EOS for neutron stars with global parameters like mass and radius. Many techniques are implemented to
obtain EOS from the observed mass-radius relation of neutron stars; examples of these techniques are*=*%. To
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obtain a homogenous sample of the CTOV models, we can calculate the grid of models covering an extensive
range of the central density and relativistic parameters and compare the computed mass-radius relation with the
observations. Consequently, the CTOV models for neutron stars may be compared to models calculated based
on non-analytical EOS; this will be done in future work.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author upon
reasonable request.

Received: 27 February 2024; Accepted: 25 June 2024
Published online: 14 July 2024

References

NN BN =

o

10.
11.
12.

13.
. Astashenok, A. V., Odintsov, S. D. & Oikonomou, V. K. Maximal masses of white dwarfs for polytropes in R2 gravity and theoretical

15.
16.
17.
18.
19.
20.
21.
22.
23.
. Lattimer, J. M. & Prakash, M. The equation of state of hot, dense matter and neutron stars. Phys. Rep. 621, 127 (2016).

25.

26.
27.

28.
29.
30.
31.
32.
33.
34.
35.

36.
. Heintzmann, H. & Hillebrandt, W. Neutron stars with an anisotropic equation of state: Mass, redshift and stability. AAP 38, 51

38.

. Kuhfitting, P. K. Some remarks on exact wormhole solutions. Adv. Stud. Theor. Phys. 5, 365-367 (2011).

. Bicak, J. Einstein equations: Exact solutions. Encycl. Math. Phys. 2, 165-173 (2006).

. Haensel, P, Zdunik, J. L. & Schaefer, R. Strange quark stars. Astrophys. J. 160, 121-128 (1986).

. Kumar, J. & Bharti, P. Relativistic models for anisotropic compact stars: A review. NewAR 95, 101662. https://doi.org/10.1016/j.

newar.2022.101662 (2022).

. Karttunen, H., Kréger, P, Oja, H., Poutanen, M. & Donner, K.J. Fundamental Astronomy. Springer Study Edition. (Springer, 1987).
. Chandrasekhar, S. An Introduction to the Study of Stellar Structure (University of Chicago, 1939).

. Tooper, R. General relativistic polytropic fluid spheres. Astrophys. J. 140, 434 (1964).

. Saad, A.N. S, Nouh, M. L, Shaker, A. A. & Kamel, T. M. Stability of the relativistic polytropes. RMxAA 57, 407. https://doi.org/

10.22201/ia.01851101p.2021.57.02.13 (2021).

. Abelldn, G., Fuenmayor, E. & Herrera, L. The double polytrope for anisotropic matter: Newtonian case. Phys. Dark Univ. 28, 100549

(2020).

Herrera, L. & Barreto, W. Newtonian polytropes for anisotropic matter: General framework and applications. Phys. Rev. D 87,
087303 (2013).

Herrera, L. & Barreto, W. General relativistic polytropes for anisotropic matter: The general formalism and applications. Phys. Rev.
D 88, 084022 (2013).

Herrera, L., Di Prisco, A., Barreto, W. & Ospino, J. Conformally flat polytropes for anisotropic matter. Gen. Relativ. Gravit. 46,
1827 (2014).

Nouh, M. I et al. White dwarfs as a polytropic gas sphere. Ap 59, 540. https://doi.org/10.1007/s10511-016-9456-3 (2016).

constraints. PhRvD 106, 124010 (2022).

Aboueisha, M. S. et al. Analysis of the fractional relativistic polytropic gas spheres. NatSR 13, 14304. https://doi.org/10.1038/
541598-023-41392-y (2023).

Nasheeha, R. N., Thirukkanesh, S. & Ragel, F. C. Core-envelope polytropic star with distinct polytropic indexes. InJPh.tmp https://
doi.org/10.1007/s12648-023-02857-y (2023).

Mathias, A. V., Sunzu, J. M. & Mkenyeleye, J. M. Double-layered anisotropic stellar model of embedding class I with gaseous
envelope. NewA 106, 102115 (2024).

Olengeile, L., Sunzu, J. M. & Mkenyeleye, J. M. Three-layered super dense star with charged anisotropic fluid. NewA 110, 102229.
https://doi.org/10.1016/j.newast.2024.102229 (2024).

Lighuda, A. S., Maharaj, S. D., Sunzu, J. M. & Mureithi, E. W. Three-layered star comprising polytropic, quark and gaseous matter.
Prama 97, 5. https://doi.org/10.1007/s12043-022-02475-z (2023).

Sunzu, J. M. & Lighuda, A. S. A generalised double layered model with polytropic and quadratic equations of state. NewA 100,
101977. https://doi.org/10.1016/j.newast.2022.101977 (2023).

Liu, S. E, Guillochon, J., Lin, D. N. C. & Ramirez-Ruiz, E. On the survivability and metamorphism of tidally disrupted giant planets:
The role of dense cores. Ap] 762, 37. https://doi.org/10.1088/0004-637X/762/1/37 (2013).

Criss, R. E. & Hofmeister, A. M. Analytical representations for simple and composite polytropes and their moments of inertia.
NewA 36, 26. https://doi.org/10.1016/j.newast.2014.09.012 (2015).

Chavanis, P. H. & Harko, T. Bose-Einstein condensate general relativistic stars. Phys. Rev. D 86, 0640110 (2012).

Hebeler, K. et al. Equation of state and neutron star properties constrained by nuclear physics and observation. Astrophys. J. 773,
11 (2013).

Ozel, E. & Freire, P. Masses, radii, and the equation of state of neutron stars. Ann. Rev. A 54, 401 (2016).

Steiner, A. W. et al. Constraining the mass and radius of neutron stars in globular clusters. Mon. Not. R. Astron. Soc. 476, 421
(2018).

Gupta, S. & Desai, S. Galaxy cluster hydrostatic masses using Tolman-Oppenheimer-Volkoff equation. PDU 28, 100499. https://
doi.org/10.1016/j.dark.2020.100499 (2020).

Bors, D. & Stanczy, R. Mathematical model for Sagittarius A* and related Tolman-Oppenheimer-Volkoff equations. MMAS 46,
12052. https://doi.org/10.1002/mma.9165 (2023).

Martins, Y. X., de Teixeira, D. S. P,, Campos, L. E. A. & Biezuner, R. J. All-sky search for long-duration gravitational-wave transients
in the second Advanced LIGO observing run. PhRvD 99, 023007. https://doi.org/10.1103/PhysRevD.99.023007 (2019).

Wei, X. Construct a realistic stellar model with polytropic relation. A¢~C 41, 100650. https://doi.org/10.1016/j.a.doi:10.1016/j.
ascom.2022.100650 (2022).

Pant, R. P, Gedela, S., Bisht, R. K. & Pant, N. Core-envelope model of super dense star with distinct equation of states. Eur. Phys.
J. C. 79, 602 (2019).

Falanga, M., Bozzo, E., Lutovinov, A., Bonnet-Bidaud, J. M., Fetisova, Y. & Puls, J. Ephemeris, orbital decay, and masses of ten
eclipsing high-mass X-ray binaries. Astron. Astrophys. 577, A130. arXiv:1502.07126. Bibcode: 2015A&A...577A.130F (2015).
Demorest, P, Pennucci, T., Ransom, S., Roberts, M. & Hessels, J. A two-solar-mass neutron star measured using Shapiro delay.
Nature 467, 1081 (2010).

Crawford, E et al. A survey of 56 midlatitude EGRET error boxes for radio pulsars. Astrophys. J. 652(2), 1499-1507 (2006) (arXiv:
astro-ph/0608225).

Wijnands, R. & van der Klis, M. A millisecond pulsar in an X-ray binary system. Nature. 394(6691), 344-346 (1998).

(1975).
Chandrasekhar, S. The dynamical instability of gaseous masses approaching the schwarzschild limit in general relativity. Astrophys.
J. 140, 417. https://doi.org/10.1086/147938 (1964).

Scientific Reports |

(2024) 14:16237 | https://doi.org/10.1038/s41598-024-65973-7 nature portfolio


https://doi.org/10.1016/j.newar.2022.101662
https://doi.org/10.1016/j.newar.2022.101662
https://doi.org/10.22201/ia.01851101p.2021.57.02.13
https://doi.org/10.22201/ia.01851101p.2021.57.02.13
https://doi.org/10.1007/s10511-016-9456-3
https://doi.org/10.1038/s41598-023-41392-y
https://doi.org/10.1038/s41598-023-41392-y
https://doi.org/10.1007/s12648-023-02857-y
https://doi.org/10.1007/s12648-023-02857-y
https://doi.org/10.1016/j.newast.2024.102229
https://doi.org/10.1007/s12043-022-02475-z
https://doi.org/10.1016/j.newast.2022.101977
https://doi.org/10.1088/0004-637X/762/1/37
https://doi.org/10.1016/j.newast.2014.09.012
https://doi.org/10.1016/j.dark.2020.100499
https://doi.org/10.1016/j.dark.2020.100499
https://doi.org/10.1002/mma.9165
https://doi.org/10.1103/PhysRevD.99.023007
https://doi.org/10.1016/j.a.doi:10.1016/j.ascom.2022.100650
https://doi.org/10.1016/j.a.doi:10.1016/j.ascom.2022.100650
https://doi.org/10.1086/147938

www.nature.com/scientificreports/

39. Zeldovich, Y. B. & Novikov, I. D. Relativistic Astrophysics. Stars and Relativity Vol. 1 (University of Chicago Press, 1971).

40. Fronsdal, C. Stability of polytropes. PARvD 77, 104019. https://doi.org/10.1103/PhysRevD.77.104019 (2008).

41. Yagi, K, Stein, L. C., Pappas, G., Yunes, N. & Apostolatos, T. A. Why I-Love-Q: Explaining why universality emerges in compact
objects. PhRvD 90, 063010. https://doi.org/10.1103/PhysRevD.90.063010 (2014).

42. Tsang, C. Y., Tsang, M. B,, Lynch, W. G., Kumar, R. & Horowitz, C. . Determination of the equation of state from nuclear experi-
ments and neutron star observations. NatAs 8, 328 (2024).

43. Wu, Z. & Wen, D. From masses and radii of neutron stars to EOS of nuclear matter through neural network. ChPhC 48, 024101.
https://doi.org/10.1088/1674-1137/ad0e04 (2024).

44. Morawski, F. & Bejger, M. Neural network reconstruction of the dense matter equation of state derived from the parameters of
neutron stars. A¢A 642, A78 (2020).

Acknowledgements
The authors thank the editors and reviewers for their valuable comments.

Author contributions
M.N. conceived the idea of the study, analysis of the results and wrote the first draft. M.E. conducted the analytical
solution. M. A. performed the analysis of the results.

Funding
Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in coopera-
tion with The Egyptian Knowledge Bank (EKB).

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to M.I.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

Scientific Reports |

(2024) 14:16237 | https://doi.org/10.1038/s41598-024-65973-7 nature portfolio


https://doi.org/10.1103/PhysRevD.77.104019
https://doi.org/10.1103/PhysRevD.90.063010
https://doi.org/10.1088/1674-1137/ad0e04
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Compact stars with non-uniform relativistic polytrope
	Formulation of CTOV equation
	Results
	Conclusions
	References
	Acknowledgements


