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Several studies suggested the utility of artificial intelligence (Al) in screening left ventricular
hypertrophy (LVH). We hence conducted systematic review and meta-analysis comparing diagnostic
accuracy of Al to Sokolow-Lyon’s and Cornell’s criteria. Our aim was to provide a comprehensive
overview of the newly developed Al tools for diagnosing LVH. We searched MEDLINE, EMBASE,

and Cochrane databases for relevant studies until May 2023. Included were observational studies
evaluating Al's accuracy in LVH detection. The area under the receiver operating characteristic curves
(ROC) and pooled sensitivities and specificities assessed Al's performance against standard criteria.
A total of 66,479 participants, with and without LVH, were included. Use of Al was associated with
improved diagnostic accuracy with summary ROC (SROC) of 0.87. Sokolow-Lyon’s and Cornell’s
criteria had lower accuracy (0.68 and 0.60). Al had sensitivity and specificity of 69% and 87%. In
comparison, Sokolow-Lyon'’s specificity was 92% with a sensitivity of 25%, while Cornell’s specificity
was 94% with a sensitivity of 19%. This indicating its superior diagnostic accuracy of Al based
algorithm in LVH detection. Our study demonstrates that Al-based methods for diagnosing LVH
exhibit higher diagnostic accuracy compared to conventional criteria, with notable increases in
sensitivity. These findings contribute to the validation of Al as a promising tool for LVH detection.
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Left ventricular hypertrophy (LVH) is presently identified using a range of diagnostic techniques, such as elec-
trocardiography (ECG), echocardiography, and cardiac magnetic resonance imaging (cMRI)!. Among these
modalities, the utilization of ECG for LVH detection offers notable advantages in terms of time efficiency and
reproducibility.

Cornell and Sokolow-Lyon criteria have been among the most widely used in defining LVH by ECG primarily
relying on increased QRS voltage?. These criteria using summation of voltage amplitudes of S and R waves in an
ECG represent the depolarization of the left ventricle which showed the electrical activity and functioning of the
heart>!. However, this feature is not universally discernible in all patients with LVH>® as previous investigations
have revealed that the sensitivity of LVH screening ranges from 15 to 30%”® utilizing these criteria. Evidently,
these conventional criteria exhibit limited efficacy owing to their insensitivity in early LVH detection, resulting
in misclassification.
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In contrast, the emergence of novel computational algorithms, such as deep learning and machine learning-
based artificial intelligence (AI), has demonstrated remarkable performance across various medical domains,
including medical imaging and diagnosis®. In this study, we have systematically compiled and analyzed
the performance data of deep learning and machine learning-based AI algorithms in LVH detection using
electrocardiography®™¢, comparing their effectiveness with the conventional criteria. This study represents the
pioneering attempt to evaluate and juxtapose the performance of Al in detecting LVH using ECG with tradi-
tional methods.

Methods

Literature review and search strategy

Our protocol for this meta-analysis is registered with PROSPERO (International Prospective Register of System-
atic Reviews; no. CRD 42023434193). To identify studies evaluating the diagnostic accuracy of Al in detecting
LVH, a systematic literature search was conducted. The search included MEDLINE, EMBASE, and the Cochrane
Database of Systematic Reviews from inception until May 2023. The search was carried out independently by two
investigators (N.S. and N.D.) using the terms (‘artificial intelligence’ or ‘machine learning’) and (‘left ventricular’
and (‘hypertrophy’ or ‘enlargement’ or ‘dilation’)) and ‘electrocardiograph’ Only articles published in English were
included. A manual search of the references cited in the included articles was also performed. The study adhered
to the preferred reporting items for systematic reviews and meta-analysis (PRISMA) statements (Table 1).

Selection criteria

The eligible studies for inclusion in the review were cross-sectional, case—control, or cohort studies that assessed
the diagnostic accuracy of Al, and conventional 12-lead ECG, mainly Sokolow-Lyon and Cornell criteria in
detecting LVH. The articles had to provide effect estimates of overall diagnostic accuracy, sensitivity (%), and
specificity (%), along with 95% confidence intervals (ClIs). We selected the best Al feature defined as the highest
value of area under the ROC curve from each study for further analysis. There were no limitations on the size of
the studies. The two investigators independently assessed the retrieved articles for eligibility, and any discrep-
ancies were resolved through mutual consensus. The quality of the studies was appraised using the QUADAS
(Quality Assessment of Diagnostic Accuracy Studies) tool (Table 1)V7.

Data abstraction

A structured data collection form was used to extract the following information from each study: title, year of
study, name of the first author, publication year, country of study, demographic and characteristic data of sub-
jects, measurement of exposure, devices used for identifying and diagnosing LVH, diagnostic criteria defined
by individual studies for LVH, and accuracy, sensitivity, and specificity of the Al in diagnosing LVH. Two inves-
tigators (N.S. and N.D.) independently conducted the data extraction, which was subsequently cross-checked
for accuracy.

Statistical analysis
The statistical analysis was performed using R for macOS (version 3.5.3). The R package MADA was used to cal-
culate pooled sensitivity and specificity and generate summary receiver-operating characteristic (SROC) curves.

The adjusted point estimates from each study were combined using the generic inverse variance approach
of DerSimonian and Laird"®, which assigned weights to each study based on its variance. Due to the likelihood
of increased inter-observation variance, a random-effects model was used to assess the pooled sensitivity and
specificity of wearable devices, and Cochran’s Q test and I statistics were employed to determine between-study
heterogeneity. An I? value of 0-25% represented insignificant heterogeneity, 26-50% indicated low heterogeneity,
51-75% suggested moderate heterogeneity, and >75% indicated high heterogeneity.

A bivariate random-effects regression model was used for pooling sensitivity and specificity, and SROC
curves were generated based on the bivariate model. An area under the receiver operating characteristic (ROC)
curve between 0.9 and 1.0 was considered excellent diagnostic accuracy, 0.8-0.9 indicated a good test, 0.7-0.8
represented a fair test, and 0.6-0.7 indicated a poor test.

A DeeK’s funnel plot" was generated to evaluate publication bias. A statistically significant asymmetry, indi-
cated by a P-value less than 0.10 for the slope coefficient, was considered indicative of publication bias.

Results

We initially identified 139 articles as potentially eligible through our search strategy. 18 duplicate studies were
removed. After excluding 110 articles (case reports, letters, review articles, in vitro and animal studies, inter-
ventional studies, and duplicates), 11 articles underwent full-length review. 1 article was excluded because no
outcome of interests reported and 2 articles were excluded because of absence of full text paper. Ultimately, our
analysis included 8 observational studies (one case—control, five retrospective cohorts, and two prospective
cohorts) involving 66,479 participants. Figure 1 illustrates the literature retrieval, review, and selection processes,
while Table 1 presents the characteristics and quality assessment of the included studies.

Characteristics and quality assessment

The majority of the included studies focused on a female population of 56%. All participants can classify into
2 groups which are 14,190 individuals with LVH and 52,289 individuals with non-LVH. Six studies utilized
echocardiogram as the diagnostic tool for LVH detection, while two studies employed cardiac magnetic reso-
nance imaging (MRI). In terms of Al classifier, neural network (NN) was used as an Al model in 6 studies which
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139 relevant articles were identified from search
of PubMed, Cochrane Database of Systematic
Reviews and Scopus

Titles and abstracts review for screening

110 articles were excluded because of title and
abstract for clearly not fulfilling criteria
regarding type of article, study design,
population, or outcome of interest

18 articles were excluded because they were
duplicates

v

11 potentially relevant articles included for full
length article review

| 1 article were excluded because they did not
report the outcomes of interest

2 articles were excluded because they did not

have full text paper

-
v

8 articles included were identified

Figure 1. Flowchart of the literature retrieval, review, and selection processes of articles.

are convolutional NN (CNN) in 3 studies, ensemble NN (ENN) in 2 studies, and 1 study of back propagation NN
(BPN) and non-NN was used in the other 2 studies which consist of Bayesian additive regression trees (BART)
and C5.0 algorithm. The median QUADAS score of included studies was ranging from 12 to 13 which indicates
high quality of included studies.

Diagnostic accuracy of artificial intelligence for the presence of LVH (Fig. 2)

The overall analysis’'® revealed an area under the Summary Receiver Operating Characteristic (SROC) curve
of 0.87 (Fig. 3). The pooled sensitivity was 69% (95% CI 47-85%), and the pooled specificity was 87% (95% CI
76-94%). Considerable heterogeneity was observed among the included studies (I*=100%).

Diagnostic accuracy of Sokolow-Lyon’s criteria for the presence of LVH (Fig. 4)

The overall analysis®'¢ yielded an area under the SROC curve of 0.68 (Fig. 3a). The pooled sensitivity was
25% (95% CI 18-32%), and the pooled specificity was 92% (95% CI 88-94%). Considerable heterogeneity was
observed among the included studies (I*=95%).
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Figure 2. Forest plot of sensitivity and specificity of Artificial Intelligence for the presence of LVH.

Diagnostic accuracy of Cornell’s criteria for the presence of LVH (Fig. 5)

The overall analysis®~'° yielded an area under the SROC curve of 0.60 (Fig. 3b). The pooled sensitivity was 19%
(95% CI 7-41%), and the pooled specificity was 94% (95% CI 81-98%). Considerable heterogeneity was observed
among the included studies (I>=98%).

Publication bias
The slope coefficient of Deek’s funnel plot exhibited a relatively symmetrical distribution, as depicted in Fig. 6,
with a P-value of 0.9177. This finding implies the absence of publication bias.

Discussion

Our study aimed to assess the diagnostic accuracy of Al in detecting LVH with electrocardiography and compare
it to the conventional criteria, including Cornell’s and Sokolow-Lyon’s criteria. Our findings suggest that, by
SROC, AI was associated with higher diagnostic accuracy as compared to the other two conventional criteria’s.
Further, we observed a notable increase in sensitivity for LVH detection by AI, when compared to Sokolow-Lyon’s
and Cornell’s criteria. However, the specificity of AI was comparatively lower than that of the conventional
criteria. Due to its enhanced sensitivity, Al could be used as a screening tool in conjunction with conventional
criteria to identify LVH.

To improve diagnostic performance in ECG detection of LVH, several ECG criteria have been iteratively
refined over decades®. For instance, Peguero et al. proposed a novel ECG criterion that outperformed Cornell’s
voltage criteria on sensitivity, 62% over 35%, respectively'®. Conversely, the previous study focusing on patients
over the age of 65 found Cornell’s Product criteria with improved performance, an AUC of 0.62, albeit yield-
ing suboptimal results?'. According to these pre-existing publications, the primary limitations of conventional
criteria have been identified as a disparity between sensitivity and specificity, as well as the exclusion of ECG
abnormalities that bear prognostic significance®**-**. To address these limitations, machine learning and deep
learning-based Al techniques have been employed, enabling the utilization of extensive ECG-LVH data and
highly applicable ECG features. The ability of AI algorithms to incorporate diverse types of input data, including
images and waveforms, has proven to be crucial. For example, Kwon et al. incorporated not only variables such
as the presence of atrial fibrillation or flutter, QT interval, QTc, QRS duration, R-wave axis, and T-wave axis as
input data but also raw ECG data in a two-dimensional numeric format®.

Our study incorporates several machine learning methods that have been previously developed and employed
in relevant research. For instance, Sparapani et al.’* devised the BART-LVH criteria for detecting LVH by
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Figure 3. Summary receiver operating characteristic (SROC) of the diagnostic accuracy of artificial intelligence
for the presence of LVH, compared with Sokolow-Lyon’s (a), and Cornell’s criteria (b).

leveraging BART, a machine-learning technique. They utilized patient characteristics such as demographics,
biometrics, and cardiovascular disease risk factors like blood pressure and body mass index. Additionally, De
la Garza-Salazar et al.!! employed logistic regression for data dimensionality reduction and subsequently con-
structed a decision tree model using the C5.0 algorithm. This decision tree model incorporated multiple ECG
measurements, including ST abnormalities, S wave voltage in lead V4, intrinsicoid deflection in lead V6 (qR
duration >0.05 s), negative deflection of P wave in lead V1, and R wave voltage in lead aVR. This approach

Comparison of SROC Curve (Bivariate Model) for Diagnostic Test Accuracy:
Al and Sokolow-Lyon Criteria in LVH Diagnosis

e
- —
o
— s
> <
_—

////
/ e

—e— Al

Sal=ed Sokolow-Lyon

T T T T T
0.0 0.1 02 0.3 0.4 0.5

False Positive Rate

Sokolow-Lyon Criteria

AUC: 0.676

Pooled sensitivity: 25% (95%Cl 18-32%)
Pooled Specificity: 92% (95%C| 88-94%)

Al
AUC: 0.87
Pooled sensitivity: 65% (95%CI 47-85%)

Pooled specificity: 87% (95%CI 76-94%) Comell Criteria

AUC: 0.602
Pooled sensitivity: 19% (95%Cl 7-41%)
Pooled specificity: 94% (95%Cl 81-98%)

Comparison of SROC Curve (Bivariate Model) for Diagnostic Test Accuracy:
Al and Cornell Criteria in LVH diagnosis

+

0.0 0.1 02 03 04 05

False Positive Rate

Scientific Reports |

(2024) 14:15882 |

https://doi.org/10.1038/s41598-024-66247-y

nature portfolio



www.nature.com/scientificreports/

Study Events Total Proportion 95%-Cl
Kokubo 367 1249 P 0.29 [0.27;0.32]
Kwon 1502 4353 Co 0.35 [0.33; 0.36)
Liu 45 173 —a— 0.26 [0.20; 0.33]
Sparapani 15 69 — 0.22 [0.13; 0.33]
Zhao 130 932 = P 0.14 [0.12; 0.16]
Common effect model 6776 o 0.30 [0.29; 0.31]
Random effects model — 0.25 [0.18; 0.32]
Heterogeneity: /% = 97%, v* = 0.1681, p < 0.01 ' ! ! J ! !

0 01 02 03 04 05

Sensitivity

Study Events Total Proportion 95%-ClI
Kokubo 5539 6309 - 0.88 [0.87; 0.89]
Kwon 15172 16933 0.90 [0.89; 0.90]
Liu 686 779 —— 0.88 [0.86; 0.90]
Sparapani 820 871 P —.— 0.94 [0.92; 0.96]
Zhao 894 931 . 0.96 [0.95; 0.97]
Random effects model 25823 ——camE— 0.92 [0.88; 0.94]

Heterogeneity: 12 = 95%, 1° = 0.2115, p < 0.01 ! ! ! J !

08 08 09 095 1
Specificity

Figure 4. Forest plot of sensitivity and specificity of Sokolow-Lyon’s criteria for the presence of LVH.
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Figure 5. Forest plot of sensitivity and specificity of Cornell’s criteria for the presence of LVH.

holds promise for real-life applications due to its simplicity and utilization of basic parameters measured by
ECG machines.

Another successful example of a non-black box model in diagnosing echo-LVH, demonstrated by De la Garza-
Salazar et al., is the Cardiac Hypertrophy Computer-based Model (CHCM). This AI model achieved balanced
sensitivity and specificity, surpassing the accuracy of traditional criteria like Cornell and Sokolow-Lyon. By
integrating diverse types of input data, including ECG quantitative data and patient characteristics, Al algorithms

offer a promising avenue for improving LVH detection accuracy®.

The utilization of Al and black box models for diagnosing LVH holds promise for advancing ECG analyses.
However, a notable drawback of AI and machine learning is their lack of transparency regarding the reason-
ing behind their diagnoses, potentially leading to the loss of prognostic markers. For instance, while the strain

Scientific Reports |

(2024) 14:15882 |

https://doi.org/10.1038/s41598-024-66247-y

nature portfolio



Deek's Funnel Plot Asymmetry Test (p = 0.697)

1/root(Effective Study Size)
0.075 0.05 0.025

0.1

1 10 100 1000

Diagnostic Odds Ratio

Forest Plot

Author log DSL (95% CI)
F De La Garza-Salazar | =+ 2.30 (2.75 t0 1.85)
Kokubo - 1.90 (2.03 10 1.77)
Kwon iom 2.78 (2.87 10 2.69)
Liu (2022) i " 3.05 (3.18 t0 2.91)
Liu (2023) : —e=—  6.41(7.30 t0 5.53)
Sparapani | bt 1.97 (2.57 10 1.37)
Zhao " 1.04 (1.23 to 0.85)
Khurshid ] 252 (2.9210 2.13)
Summary (DSL) : e 2.65 (3.22t0 2.08)
012345678

Figure 6. Deek’s funnel plot of publication bias.

pattern in ECG is recognized as an important marker of LVH, it also serves as a prognostic indicator in various
clinical conditions, as demonstrated in studies such as the Framingham Heart Study and numerous cohorts?*-2%,

To strike a balance between diagnostic accuracy and clinical significance, one approach involves harnessing
non-black box Al models to extract and analyze a broader range of ECG parameters. By embracing interpretable
Al techniques, researchers can uncover insights into the relationships between ECG features and the prognosis
of LVH, thus ensuring a more comprehensive understanding of the diagnostic process and its implications for
patient care.

Study limitations
There are a few limitations in our meta-analysis. First, majorities of the included studies were observational.
Therefore, residual confounders were not completely excluded, deleteriously complicating the results. The
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utilization of Al in diagnosing conditions may lead to both overestimation and underestimation of its accuracy.
Second, the heterogeneity of this study was significant due to the inclusion of studies that featured various study
designs including types of AI methods, demographic data, individuals’ underlying diseases, and other factors
that could not be determined. Hence, the interpretation of this analysis must be cautiously utilized with the
appropriate and applicable contexts. Lastly, our study did not aim to specifically assess the accuracy of the LVH
detection algorithms. Instead, our primary objective was to offer an overview of the overall validity of the newly
developed LVH using Al

Conclusion

To the best of our knowledge, this is the most extensive study to date utilizing large-scale observational stud-
ies to evaluate the diagnostic accuracy of Al. Our findings indicate that the use of Al in detecting LVH may
help improve diagnostic performance compared to ECG. Nonetheless, given the limitations, further research is
necessary to explore the clinical implications, generalizability, and cost-benefit of using AI for LVH diagnosis.

Data availability
All data generated or analysed during this study are included in this published article.
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