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Continuous blood pressure 
prediction system using 
Conv‑LSTM network 
on hybrid latent features 
of photoplethysmogram (PPG) 
and electrocardiogram (ECG) 
signals
Bharindra Kamanditya 1, Yunendah Nur Fuadah 1,4, Nurul Qashri Mahardika T. 1 & 
Ki Moo Lim 1,2,3*

Continuous blood pressure (BP) monitoring is essential for managing cardiovascular disease. However, 
existing devices often require expert handling, highlighting the need for alternative methods to 
simplify the process. Researchers have developed various methods using physiological signals to 
address this issue. Yet, many of these methods either fall short in accuracy according to the BHS, 
AAMI, and IEEE standards for BP measurement devices or suffer from low computational efficiency 
due to the complexity of their models. To solve this problem, we developed a BP prediction system 
that merges extracted features of PPG and ECG from two pulses of both signals using convolutional 
and LSTM layers, followed by incorporating the R-to-R interval durations as additional features for 
predicting systolic (SBP) and diastolic (DBP) blood pressure. Our findings indicate that the prediction 
accuracies for SBP and DBP were 5.306 ± 7.248 mmHg with a 0.877 correlation coefficient and 
3.296 ± 4.764 mmHg with a 0.918 correlation coefficient, respectively. We found that our proposed 
model achieved a robust performance on the MIMIC III dataset with a minimum architectural design 
and high-level accuracy compared to existing methods. Thus, our method not only meets the passing 
category for BHS, AAMI, and IEEE guidelines but also stands out as the most rapidly accurate deep-
learning-based BP measurement device currently available.
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Monitoring BP is crucial in managing cardiovascular disease, particularly hypertension. This typically involves 
either invasive or non-invasive methods in clinical settings, each with unique challenges. Invasive arterial cannu-
lation offers continuous monitoring but requires specialized expertise due to its complexity1. The more common 
non-invasive cuff-based method, while easier to use, is prone to inaccuracies from factors like patient movement 
and improper cuff sizing2. These limitations have driven the exploration of alternative monitoring methods.

Advancements in BP monitoring have focused on associating BP with other physiological parameters, thereby 
reducing the reliance on traditional measurement methods. Techniques that establish mathematical relationships 
between BP and pulse arrival time (PAT), pulse wave velocity (PWV), and pulse transit time (PTT) using the 
Moens–Korteweg and Bramwell–Hill physical models show promise. However, they still require recalibration 
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for each individual, as noted in studies3–6. Bote et al.3 proposed a multivariate linear and inversely quadratic 
model for BP estimation, which incorporates heart rate variability to improve accuracy. Similarly, Gesche et al.6 
developed a BP estimation method that calculates PWV by multiplying the body correction factor with height, 
then dividing by the PTT, and includes adjustments for individual variations.

Recent research has explored the use of machine learning algorithms for BP prediction utilizing ECG and 
PPG signals, eliminating the need for PAT or PTT calibrations, as noted in studies7–10. Previous studies have 
shown the effectiveness of machine learning models using only PPG signals. For instance, Xie et al7 predicted 
SBP and DBP from 10-s PPG signals using a Random Forest model. Similarly, Ali and Marco8 used 8-s PPG 
waveforms and demonstrated that deep learning architectures can achieve SBP and DBP predictions with lower 
error metrics. Although these methods do not involve PAT and PTT, they mark a significant advancement in 
non-invasive BP monitoring.

Further research has integrated both PPG and ECG signals into deep learning models, achieving greater 
accuracy. Annunziata et al.9 used various neural network architectures to predict SBP and DBP, as well as entire 
BP waveforms, finding that the combination of PPG and ECG signals resulted in lower errors than using PPG 
alone. Mahmud et al.10 employed a deep autoencoder architecture with a large number of parameters (more than 
550,000) to extract features from ECG, PPG, and PPG derivatives for BP waveform prediction.

However, these studies have limitations. For example, Annunziata et al.9 used only 12 patients in their experi-
ments, and the autoencoder used by Mahmud et al.10 required high computational resources, which might not 
be readily available for small devices. Similarly, innovative models by Baker et al.11 and Jeong and Lim12, which 
utilize temporal convolution and LSTM layers to process raw PPG and ECG waveforms, demonstrated varying 
success. These models also faced limitations in adhering to established BP measurement guidelines and com-
putational efficiency. Baker et al.11 did not provide details on the parameter size of their deep model, while the 
model by Jeong and Lim12 was smaller in size, with only 38,370 parameters, but did not meet BP measurement 
guidelines due to the limited number of patients used in their experiments.

The use of PPG and ECG signals is appealing due to their non-invasive nature and user convenience. However, 
there is a lack of a BP prediction system with low computational time that meets the key standards of the the 
British Hypertension Society (BHS), the Association for the Advancement of Medical Instrumentation (AAMI), 
and the Institute of Electrical and Electronics Engineers Standards Association (IEEE-SA) while keeping its 
design simple. Our research aims to create a BP prediction system that fulfills these important criteria and has 
a streamlined, straightforward architecture.

Our approach merges features derived from two pulses of both ECG and PPG signals to predict SBP and 
DBP. By combining these signals, we aim to capture the PAT more accurately. We have optimized this method 
to reduce both the model size and computational time, thereby enhancing its efficiency and practicality. The 
results of our experiments demonstrate that our approach achieved high accuracy while maintaining robustness 
on the Medical Information Mart for Intensive Care (MIMIC) III dataset, offering a promising solution for BP 
monitoring challenges.

Arterial blood pressure prediction method
The blood pressure prediction system proposed in this study comprises three main components, as illustrated 
in Fig. 1: Preprocessing, the SBP Prediction Network, and the DBP Prediction Network. The MIMIC III dataset 
undergoes preprocessing to obtain segmented PPG, ECG, and Arterial Blood Pressure (ABP) signals. The SBP 
and DBP values, extracted from the ABP signal, serve as target labels for the respective SBP and DBP Prediction 
Networks. In contrast, the PPG and ECG signals are employed as input data.

Figure 1.   The flow diagram of our proposed method. The figure shows the process of predicting the systolic 
and diastolic blood pressure. Record files from the MIMIC-III dataset are passed to the preprocessing module. 
The output of the preprocessing module is three signals: PPG, ECG, and ABP. PPG and ECG signals are inputted 
to the DBP Prediction Network and SBP Prediction Network, whereas the ABP signal determines the target SBP 
and DBP values for training the Network.
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Dataset and preprocessing
In this study, we used the MIMIC III dataset13 obtained from Physionet https://​physi​onet.​org/​conte​nt/​mimic​iii 
to analyze the ABP, ECG, and PPG signals and determine the features for predicting SBP and DBP. The MIMIC 
III is an extensive dataset comprising various monitor trends of physiological measurements and waveforms, 
extending beyond ABP, PPG, and ECG, to include heart rate, respiratory rate, heart sounds, and numerous 
additional parameters. The dataset was collected from 38,597 patients at the Beth Israel Deaconess Medical 
Center in Boston, Massachusetts, encompassing their admissions exceeding 60 h in duration across five distinct 
Critical Care Units.

Figure 2 presents the preprocessing stages for physiological signals. The first step involves selecting record-
ings that simultaneously include PPG, ABP, and ECG signals (specifically leads I, II, or III). Our proposed BP 
prediction system extracts the hybrid features from ECG and PPG, similar to the derivation of PAT and PTT 
features. The SBP and DBP values are determined from the peak and trough of the ABP signal, respectively.

In the second and third steps, we eliminate PPG and ECG signals that show constant or missing values over 
an 8-s interval. These signals, sampled at 125 Hz from the MIMIC III dataset, often have errors due to issues 
like sensor disconnections. The signals resulting from these steps are displayed in the lower left section of Fig. 2.

Next, we apply a bandpass filter (0.5 Hz to 20 Hz for PPG and 2 Hz to 20 Hz for ECG) to reduce motion 
artifacts and baseline wandering in the signals. We utilize the Pan-Tompkins algorithm14 to identify R peaks 
in the ECG signal, which enables the segmentation of the 8-s signals based on two R-to-R interval cycles. Sub-
sequently, these segments are interpolated to a standard length of 200 points, ensuring consistent input for the 
prediction network.

Finally, we exclude PPG and ECG data if the corresponding ABP signal has SBP, DBP, or pulse pressure (PP) 
values outside normal ranges. PP is the difference between systolic and diastolic pressure. This exclusion applies 
to signals where SBP is above 200 mmHg or DBP is over 110 mmHg, indicating stage 3 hypertension, as well as 
signals with SBP below 90 mmHg and DBP below 50 mmHg. Additionally, we remove signals if the PP is above 
70 mmHg, suggesting high blood pressure, or below 20 mmHg, which might indicate signs of heart failure. The 
processed PPG and ECG signals can be observed on the right side of Fig. 2.

Design of the systolic and diastolic pressure prediction networks
We designed two identical deep-learning neural network architectures and trained them in a supervised manner 
to predict systolic and diastolic BP measurements. Both models used PPG and ECG signals, along with the 
duration of R-to-R intervals as input. Each respective model then calculates L as its error function, based on the 

Figure 2.   Preprocessing of the MIMIC III dataset used in our experiments. The figure shows the inside of the 
preprocessing module for extracting PPG and ECG signals. It consists of 7 consecutive blocks, with each block 
depicting a particular function.

https://physionet.org/content/mimiciii
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differences between the predicted SBP 
(
ŶSBP

)
 and DBP 

(
ŶDBP

)
 values with the true SBP (YSBP) and true DBP 

(YDBP) values. The error function of the SBP and DBP prediction models can be written as:

with f (•) denotes the non-linearity function of the model, XPPG,ECG,RRintervals
 represents the inputs, i.e., preproc-

essed PPG and ECG signals and the R-to-R time duration(s), W denotes all the weight parameters of the model, 
t  is the t-th data sample and m is the total number of samples.

The process of predicting the desired output from the input signals is depicted in Fig. 3. A pair of fixed-
length PPG and ECG signals are passed through four one-dimensional convolutional (Conv1D) layers. A single 
Conv1D layer slides several kernels across its input sequence to produce a 1D feature map per kernel. The 
number of kernels and the kernel size for each layer used in this network are as follows: (1st layer) 64 kernels 
with a size of 2, (2nd layer) 32 kernels with a size of 4, (3rd layer) 16 kernels with a size of 6, and (4th layer) 
16 kernels with a size of 4. For every Conv1D layer, we used no padding and a stride of 2, which produced an 
output sequence always shorter than the input sequence, followed by a batch normalization layer and an activa-
tion function of exponential linear unit (ELU)15. Next, the feature maps undergo max pooling, producing latent 
feature representations of the input signals as vectors. We then concatenated the latent features of ECG, denoted 
as ZECG =

(
zECG0 , zECG1 , . . . , zECGn−1

)
 and PPG denoted as ZPPG =

(
zPPG0 , zPPG1 , . . . , zPPGn−1

)
 signals, as follows:

with ++ operator denotes the concatenation operator that outputs a hybrid latent features vector 
Zhybrid =

(
zPPG0 , zPPG1 , . . . , zPPGn−1 , z

ECG
0 , zECG1 , . . . , zECGn−1

)
 with a length size of 2n.

The long hybrid latent features vector is processed in an n-unit layer of long short-term memory (LSTM)16 
cells following a batch normalization layer. A single LSTM cell functions as a network capable of detecting 
longer-term patterns in data by selectively retaining, accessing, and discarding information from the hybrid 
feature vector. The operation of the LSTM cell can be summarized, as follows:

With Z(t)
hybrid as the LSTM units’ current input, namely hybrid feature vector at time t  , Z(t) is defined as the LSTM 

output vector with a length of n . The symbols c(t−1) and h(t−1) represent the long-term and the short-term states 
from the previous time step, respectively. Hyperbolic tangent tanh(•) was selected as the activation function of 
the LSTM cell to mitigate the unstable gradients problem. The states at the current time step, c(t) and h(t) , where 
h(t) = Z(t) , utilize g(t) as the primary source of information and are regulated by three gates: the forget gate f(t) , 
the read gate r(t) , and the output gate o(t) . g(t), f(t), o(t), r(t) are generated by four separate fully connected networks 
from Z(t)

hybrid and h(t−1) , with Wo denoting the weight matrices of the network that produces o(t).

(1)L(
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1

m
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ŶDBP,YDBP

) =
1

m

m∑

t=1

(
f
(
XPPG,ECG,RRintervals

(t)|W
)
− Y

(t)
DBP

)2

(3)Z
(t)
hybrid = Z

(t)
PPG ++Z

(t)
ECG

(4)Z(t) =
(
o(t)|Z

(t)
hybrid, h(t−1),Wo

)
⊗ tanh

(
c(t)|Z

(t)
hybrid, c(t−1), h(t−1), f(t), g(t), r(t)

)

Figure 3.   The SBP and DBP Prediction Networks. For predicting SBP, real SBP data was used as the target 
value. For predicting DBP, real DBP data was used. The network consists of Conv1D layers that process the ECG 
signal, Conv1D layers that process the PPG signal, a concatenation layer that mixes the features of PPG and 
ECG, an LSTM layer, and lastly, a fully connected layer to predict either SBP or DBP.
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Assuming the hyperparameter ‘ n ’ in the SBP and DBP Prediction Networks is set to n = 32 , the hybrid feature 
vector of the ECG and PPG signals is then used as the input for the hidden layer to predict BP. The vector Z(t) 
and additional R-to-R duration intervals XRRintervals

=
(
xRR1 , xRR2

)
 were combined and subjected to a dropout 

rate of 0.2 before being input into a hidden layer comprising 16 neurons, followed by a single output neuron to 
predict Ŷ(t) . Finally, Ŷ(t) can be written as:

Here, Wh and Wout denote the weight matrices of the hidden and output layers, respectively. Similarly, the row 
vectors bh and bout represent the bias terms for each layer. Functions ELU(•) and softplus(•) represent the activa-
tion function of the hidden and output layers, respectively.

Experimental setups and standards of evaluation
We randomly selected 431 distinct subjects in the MIMIC III database and collected a total of 1,079,529 samples 
after the Preprocessing. We then divided the samples from each subject into two datasets: a training dataset 
containing 831,335 (77%) of the total samples, and a testing dataset comprising the remaining 248,194 (23%) 
samples. Figure 4 displays a histogram showing the distribution of subjects based on the total signal duration 
length in our experiments. Figure 5 depicts the distributions of SBP and DBP in panel (a), and PP distribution in 
panel (b) of the two datasets. Figure 5 panel (a) shows that for SBP predictions, the minimum and the maximum 
values of the distribution were 90 mmHg and 180 mmHg, respectively, with a mean of 119.00 ± 14.97 mmHg. For 
DBP predictions, the minimum and the maximum values of the distribution were 50 mmHg and 110 mmHg, 
respectively, with a mean of 65.43 ± 11.91 mmHg. Figure 5 panel (b) shows that the mean of the calculated PP 
distribution was 53.57 ± 11.91 mmHg. These wide range of BP values were used on both training dataset and 
testing dataset to prove the robustness of our proposed model architectures.

The experimental setup was designed to investigate the performance of LSTM cells and R-to-R duration 
intervals as features in predicting BP. The experiment involved training four different model architectures on 
the training dataset: layered-Conv1D with and without R-to-R duration features, and Conv1D-LSTM with and 
without R-to-R duration features. This was done twice, first using SBP as the target data, and then using DBP. 
The prediction performance of each model was then measured on the testing dataset for both types of target 
data. The training dataset was divided into 10 sub-datasets for tenfold cross-validation. Each model was trained 
using these sub-datasets, and the model demonstrating the best performance on the testing set was selected as 
the experimental result.

The proposed model was evaluated using five metric formulas: Pearson’s correlation coeeficient ( r ), the mean 
difference (MD), the mean absolute error (MAE), the standard deviation (SD) of the error, and the groups of 
cumulative percentages (CP) for calculated errors less than or equal to 5, 10, and 15 mmHg. The r , MD, MAE, 
SD, and CP can be written as:

(5)Ŷ(t) = softplus
(
ELU

((
Z(t) ++x

(t)
RR1

++x
(t)
RR2

)
Wh + bh

)
Wout + bout

)

(6)r =
1
∑m

t=1

(
Y(t) − Y

)(
Ŷ(t) − Ŷ

)

√∑m
t=1

(
Y(t) − Y

)2
√

∑m
t=1

(
Ŷ(t) − Ŷ

)2

Figure 4.   Distribution of subjects based on the total signal duration for the Training and Testing Datasets. A 
clustered column plot with a y-axis showing total the number of subjects belonging to a time duration category 
and an x-axis showing the duration length categories.
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The evaluation metrics are used as grading criteria to meet the standards established by the BHS17, the 
AAMI18, and the IEEE-SA19 as illustrated in Table 1. The BHS grades the performance of the model into cat-
egories based on the obtained CP metrics: A grade if CPmmHg ≤ 5 ≥ 60%, CPmmHg ≤ 10 ≥ 85%, and CPm-
mHg ≤ 15 ≥ 95%, B grade if CPmmHg ≤ 5 ≥ 50%, CPmmHg ≤ 10 ≥ 75%, and CPmmHg ≤ 15 ≥ 90%, C grade if 
CPmmHg ≤ 5 ≥ 40%, CPmmHg ≤ 10 ≥ 65%, and CPmmHg ≤ 15 ≥ 85%, and a D grade if performed worse than 
C. The AAMI recommends that the MD and the SD shall be ≤ 5 mmHg and ≤ 8 mmHg, respectively. The IEEE 
standards grade the performance based on the obtained MAE metric value: A grade if MAE score ≤ 5 mmHg, B 
grade if MAE = 5–6 mmHg, C grade if MAE = 6–7 mmHg, D grade if MAE ≥ 7 mmHg.

(7)MD =
1

m

m∑

t=1

(
Ŷ(t) − Y(t)

)

(8)MAE =
1

m

m∑

t=1

∣∣∣Ŷ(t) − Y(t)

∣∣∣

(9)SD =

√√√√ 1

m

m∑

t=1

((
Ŷ(t) − Y(t)

)
−MD

)2

(10)CPmmHg≤[5,10,15] =
100%

m
×

m∑

t=1

∣∣∣Ŷ(t) − Y(t)

∣∣∣
≤[5,10,15]

Figure 5.   Distribution of blood pressure values in the Training and Testing datasets. The SBP and DBP 
distributions of the Training and Testing datasets are shown in panel (a), and the distributions of calculated PP 
for the Training and Testing datasets are shown in panel (b). The distributions are shown in a vertically stacking 
bar plot for both panels (a) and (b) with the y-axis showing the number of samples and the x-axis showing the 
blood pressure value in mmHg.

Table 1.   Grading criteria defined by the BHS, AAMI, and IEEE standards. Metrics include mean difference 
(MD), mean absolute error (MAE), standard deviation (SD), and cumulative percentage (CP).

BHS AAMI IEEE

Grade
CP 
Δx ≤ 5 mmHg

CP 
Δx ≤ 5 mmHg

CP 
Δx ≤ 5 mmHg% Grade MD (mmHg) SD (mmHg) Grade MAE (mmHg)

A 60% 85% 95%
Pass  ≤ 5  ≤ 8

A  ≤ 5

B 50% 75% 90% B 5–6

C 40% 65% 85%
Fail MD and/or SD higher than the 

Pass category
C 6–7

D Lower than C D  > 7
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Experimental results
Performance analysis
Tables 2 and 3 show the results of using Conv1D-LSTM and layered Conv1D models for predicting SBP and DBP, 
respectively. The Conv1D-LSTM model demonstrates lower errors and higher CP across all categories, includ-
ing MAE, SD, and CPmmHg ≤ 5, CPmmHg ≤ 10, and CPmmHg ≤ 15, compared to the layered Conv1D model. 
Table 2 reveals that the Conv1D-LSTM method, without incorporating R-to-R duration intervals in the hybrid 
latent features vector, achieved the lowest MAE and SD for SBP prediction–5.306 mmHg and 7.248 mmHg, 
respectively. This model attains 59.823%, 85.919%, and 94.925% in CPmmHg ≤ 5, CPmmHg ≤ 10, and CPm-
mHg ≤ 15, respectively. On the other hand, Table  3 indicates that for DBP prediction, the lowest MAE and SD 
scores–3.296 mmHg and 4.764 mmHg–are obtained by the Conv1D-LSTM method by incorporating R-to-R 
duration intervals in the hybrid latent features vector, with 80.041%, 95.418%, and 98.613% in CPmmHg ≤ 5, 
CPmmHg ≤ 5, and CPmmHg ≤ 15. According to our evaluation criteria, the top model configurations used in our 
experiments achieved a B grade for SBP predictions and an A grade for DBP predictions in the BHS guidelines, 
passed the AAMI recommendation, and received a B grade and an A grade in the IEEE-SA Standards for the 
SBP and DBP predictions, respectively.

Including R-to-R duration intervals in the hybrid feature vector led to a reduced MAE for DBP prediction 
but a slight increase for SBP prediction in the Conv1D-LSTM model. Specifically, for SBP predictions, the MAE 
decreased by 0.099 mmHg in the layered Conv1D model and increased by 0.011 mmHg in the Conv-LSTM 
model. Whereas for DBP predictions, the MAE decreased by 0.032 mmHg in the layered Conv1D model and 
the Conv1D-LSTM model.

Figure 6 depicts the accuracy criteria for our experimental results, showing error distributions in histograms 
and Bland–Altman plots for SBP and DBP predictions using Conv1D-LSTM models, both without and with 
R-to-R duration intervals in the hybrid latent feature vector. In Fig. 6 panel (a), a histogram of SBP prediction 
errors is shown with a mean (µ) of − 0.50 and a 95% confidence interval (95%CI) ranging from − 0.56 to − 0.44. 
Figure 6 panel (b) displays a histogram of DBP prediction errors with a mean (µ) of − 0.16 and a 95%CI from 
− 0.20 to − 0.12. The reference grey dashed lines show the ± 5, ± 10, and ± 15 mmHg differences. Figures 6 panel 
(c) and panel (d) illustrate Bland–Altman plots of the differences between actual and predicted values against 
their mean values for SBP and DBP predictions, respectively. Figure 6 panel (c), corresponding to the best results 
in Table 2, shows that 59.82% of data points fall within ± 5 mmHg, 85.92% are within ± 10 mmHg, and 94.93% 
within ± 15 mmHg error lines. Figure 6 panel (d), aligning with the best results in Table 3, indicates that 80.04% 
of data points fall within ± 5 mmHg, 95.42% within ± 10 mmHg, and 98.61% within ± 15 mmHg error lines.

Figure 7 panel (a) displays a scatterplot of the actual versus predicted SBP values using Conv1D-LSTM with 
R-to-R duration intervals, while Fig. 7 panel (b) presents a scatterplot for the actual versus predicted DBP values 

Table 2.   Performances of SBP prediction networks used in our experiments. Various model architectures 
are measured using mean absolute error (MAE), standard deviation (SD), and cumulative percentages (CP) 
metrics and graded based on standards of evaluation by BHS, AAMI, and IEEE.

Model 
architecture

Blood pressure error (mmHg) Cumulative percentage (%) Standards of evaluation

MD MAE SD Δx ≤ 5 mmHg Δx ≤ 10 mmHg Δx ≤ 15 mmHg BHS grade AAMI grade IEEE grade

Conv1D 0.774 6.061 8.076 53.143 81.489 92.924 B Pass C

Conv1D with R-to-
R features 0.074 5.962 7.998 53.936 82.218 93.304 B Pass B

Conv1D-LSTM − 0.503 5.306 7.248 59.823 85.919 94.925 B Pass B

Conv1D-LSTM 
with R-to-R 
features

0.031 5.317 7.263 59.634 86.001 94.970 B Pass B

Table 3.   Performances of DBP prediction networks used in our experiments. The results of experiments in 
this table are evaluated the same way as in Table 2.

Model 
architecture

Blood pressure error 
(mmHg) Cumulative percentage (%) Standards of evaluation

MD MAE SD Δx ≤ 5 mmHg Δx ≤ 10 mmHg Δx ≤ 15 mmHg BHS grade AAMI grade IEEE grade

Conv1D − 0.132 3.812 5.397 74.117 93.649 98.073 A Pass A

Conv1D 
with R-to-R 
features

0.049 3.767 5.335 74.942 93.778 98.128 A Pass A

Conv1D-
LSTM − 0.186 3.328 4.809 79.632 95.213 98.576 A Pass A

Conv1D-
LSTM with 
R-to-R 
features

− 0.162 3.296 4.764 80.041 95.418 98.613 A Pass A
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from Conv1D-LSTM without R-to-R duration intervals. Each scatterplot includes a regression line–orange 
for SBP and purple for DBP–that overlays a dashed black line representing a perfect prediction. These plots 
demonstrate a strong positive Pearson’s correlation between actual and predicted values, with r = 0.877 for SBP 
predictions and r = 0.918 for DBP predictions.

Comparisons with previous works
The best Conv1D-LSTM models for predicting SBP and DBP, both without and with R-to-R duration intervals, 
were selected to compare our method’s performance with existing methods. Table 4 presents the performance 
of our method alongside other deep-learning-based blood pressure prediction methods tested on the MIMIC 
III dataset specifically for SBP and DBP. Notably, Baker et al.11 used PPG and ECG waveforms as input signals, 
similar to our approach, and achieved MAE scores of 4.41 ± 6.11 mmHg for SBP and 2.91 ± 4.23 mmHg for DBP. 
These are among the lowest scores compared to ours and other deep-learning methods that focused on a single 
waveform, such as ECG in the work of Miao et al.20 or PPG in the studies by Slapnicar et al.21, and Schrumpf 
et al.22 However, their SBP and DBP predictions are limited to only 90–130 mmHg and 60–90 mmHg, respec-
tively. Similarly, the lowest DBP prediction performance in T et al.[23]have only been validated with 55 subjects 
of the MIMIC III dataset. Our proposed method demonstrates the highest r metric for both SBP and DBP 
predictions, at 0.88 and 0.92, respectively. Furthermore, it achieved high performance with low MAE scores at 
4.15 ± 5.83 mmHg for SBP predictions and 2.33 ± 3.16 mmHg for DBP predictions. Additionally, our proposed 
algorithm has the smallest prediction model by size comparison, with only 37,265 in the number of parameters.

Figure 6.   Error distributions and the Bland–Altman plots of the predicted SBP and DBP by the proposed 
model: (a) Error histogram for SBP, (b) Error histogram for DBP, (c) Bland–Altman plot for SBP, and (d) Bland–
Altman plot for DBP. Figure panel (a) and (b) show an unimodal distribution of prediction error with the mean 
shown in bold-dashed lines. Panel (c) and (d) show scattered points of prediction data, shown in red color for 
SBP and blue color for DBP in the Bland–Altman plot, which shows the difference between the error of the 
predicted measurements against the averages of the error.
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Discussion
In this study, we proposed an algorithm that utilizes hybrid latent features from two pulses of PPG and ECG 
signals, as well as the R-to-R duration intervals. By using only short-length input signals, we can achieve a model 
that is small, fast, and computationally efficient. Compared to the previous work of Jeong and Lim12, where they 
merged the PPG and ECG signals by creating another signal, which is the difference between the two signals, 
we merged the features (not the raw signals) by concatenation and using Conv1D layers and LSTM cells. We 
observed that features derived from R-to-R duration intervals are particularly effective in enhancing SBP and 
DBP prediction using the Conv1D model. Furthermore, we examined the effectiveness of LSTM cells in process-
ing these hybrid latent features. The results of our experiments suggest that combining the latent features of PPG 
and ECG and processing them with LSTM cells, leads to improved performance in BP prediction.

Comparing the performance of previous studies in predicting BP is generally challenging for researchers due 
to the use of different datasets or subdatasets. For instance, Annunziata et al.9 conducted experiments on two 
distinct datasets: a subset of the MIMIC I dataset and a custom dataset. Their findings suggested that experi-
ments with fewer subjects tend to yield better performance. The MIMIC III dataset, being substantially larger 
and encompassing a wider variety of patient pathophysiologies, presents a more challenging environment for 
such predictions. Jeong and Lim12 and T et al.23 only used 48 subjects of MIMIC I and 55 subjects of MIMIC 
III, respectively. While having higher metric performances, the robustness of their method remains uncertain 
when compared to other methods that validate their performance on a dataset with a higher number of subjects. 

Figure 7.   Distribution of subjects based on the total signal duration for the Training and Testing Datasets. 
Panel (a) shows a scatterplot of actual versus predicted SBP values from Conv1D-LSTM without R-to-R 
intervals. Panel (b) shows a scatterplot of actual versus predicted DBP values from Conv1D-LSTM with R-to-R 
intervals. Each plot has a regression line, orange for SBP and purple for DBP. This line overlays a dashed black 
line indicating perfect predictions.

Table 4.   Comparative analysis of the proposed method against previous studies using the MIMIC III dataset. 
This table employs the same evaluation metrics and standards as outlined in Tables 2 and 3, with the addition 
of model size (defined by parameter count) and total subject count as comparative metrics. Significant values 
are in [bold]

Work of 
(Input)

Model 
parameters Total subjects

Target 
measurement 
(min–max)

Performance metrics Standards of evaluati

r MAE SD CP Δx ≤ 5 CP Δx ≤ 10 CP Δx ≤ 15 BHS grade AAMI grade IEEE grade

21 (PPG) Unspecified 510
SBP (70–200) – 9.43 – – – – – – –

DBP (30–115) – 6.88 – – – – – – –

20 (ECG) 404,520 428
SBP (80–180) 0.88 7.1 9.99 50.07 76.40 90.39 B Pass D

DBP (60–100) 0.71 4.61 6.29 65.66 89.77 96.63 A Pass A
11 (PPG & 
ECG) Unspecified 6,972

SBP (90–130) 0.80 4.41 6.11 67.66 89.82 96.82 A Pass –

DBP (60–90) 0.85 2.91 4.23 82.79 96.12 99.09 A Pass –

22 (PPG) Unspecified 750
SBP (75–165) – 7.7 – – – – – – –

DBP (40–80) – 4.4 – – – – – – –

22 (PPG) Unspecified 55
SBP (80–180) – 5.34 7.04 63.4 85.9 92.78 B Pass B

DBP (40–80) – 2.89 3.79 81.70 98.28 100 A Pass A

Ours (PPG & 
ECG) 37,625 431

SBP (90–180) 0.88 5.31 7.25 59.82 85.92 94.93 B Pass B

DBP (50–110) 0.92 3.30 4.76 80.04 95.42 98.61 A Pass A
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Additionally, the range limit of the blood pressure values, i.e., maximum and minimum SBP and maximum and 
minimum DBP, should be standardized for comparison. Baker et al.11 results may perform well significantly, 
maybe due to the small range of these values.

Our proposed method has demonstrated a robust performance of SBP and DBP predictions with low error 
metrics when compared with other studies using the MIMIC III dataset. However, our SBP prediction perfor-
mance had only nearly achieved the best category, i.e., an A grade, according to the BHS guideline. Additionally, 
according to the AAMI standards, BP devices should be evaluated using a broader range of values. This includes 
an SBP range with at least 10% of readings above 180 mmHg, whereas in our experimental data, we had only 
found a maximum BP value of 180 mmHg. Further experimentation and tweaking of the hyperparameters of 
this model may be necessary to surpass these limitations.

Conclusion
In this study, we developed a continuous non-invasive BP prediction system by integrating raw PPG, ECG, and 
R-to-R duration interval data. The experimental results indicate that the Conv1D-LSTM model achieves the low-
est error metrics for SBP and DBP prediction, both with and without the inclusion of R-to-R duration intervals 
in the hybrid latent feature vector. Compared to previous studies, our proposed system demonstrates superior 
performance with highest r metrics scores of 0.877 for SBP and 0.918 for DBP predictions, and low MAE scores 
of 4.15 ± 5.83 mmHg and 2.33 ± 3.16 mmHg for for SBP and DBP predictions, respectively. Tested on 431 patients 
from the MIMIC III dataset, our method successfully met the evaluation standards of BHS, AAMI, and IEEE. 
This experiment reveals that the use of hybrid latent features from PPG and ECG, along with R-to-R duration 
interval data and LSTM cells, enhances the accuracy of SBP and DBP predictions.

Data availability
The dataset used in this study can be accessed via the Physionet website at https://​physi​onet.​org/​conte​nt/​mimic​iii
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