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The oral microbiome is associated 
with HPA axis response 
to a psychosocial stressor
Eleftheria G. Charalambous  1,2,3,4, Sophie B. Mériaux 1, Pauline Guebels 1, Claude P. Muller 1, 
Fleur A. D. Leenen 1, Martha M. C. Elwenspoek 1, Ines Thiele 5,6,7,8, Johannes Hertel 2,9 & 
Jonathan D. Turner  1*

Intense psychosocial stress during early life has a detrimental effect on health-disease balance in 
later life. Simultaneously, despite its sensitivity to stress, the developing microbiome contributes 
to long-term health. Following stress exposure, HPA-axis activation regulates the “fight or flight” 
response with the release of glucose and cortisol. Here, we investigated the interaction between 
the oral microbiome and the stress response. We used a cohort of 115 adults, mean age 24, who 
either experienced institutionalisation and adoption (n = 40) or were non-adopted controls (n = 75). 
Glucose and cortisol measurements were taken from participants following an extended socially 
evaluated cold pressor test (seCPT) at multiple time points. The cohort´s oral microbiome was 
profiled via 16S-V4 sequencing on microbial DNA from saliva and buccal samples. Using mixed-effect 
linear regressions, we identified 12 genera that exhibited an interaction with host’s cortisol-glucose 
response to stress, strongly influencing intensity and clearance of cortisol and glucose following stress 
exposure. Particularly, the identified taxa influenced the glucose and cortisol release profiles and 
kinetics following seCPT exposure. In conclusion, our study provided evidence for the oral microbiome 
modifying the effect of stress on the HPA-axis and human metabolism, as shown in glucose-cortisol 
time series data.

Keywords  Early life adversity, Microbiome, Developmental origins of health and disease, Stress, HPA axis, 
Host-microbiome interactions

The physiological stress response is the body’s natural reaction to external stressors that causes physical, psy-
chological or emotional strain. The response to a psychosocial stressor is highly individual, and dependent on 
many environmental factors such as prior stress exposure and potentially the microbiome1. While the physi-
ological response to stressors is part of everyday life, there are periods of life during which we are particularly 
affected. Stressful events occurring very early in life are particularly harmful, and are intimately linked to health-
disease balance in later life2,3. In the mid-1980s, Barker and Osmond introduced the developmental origins of 
health and disease (DOHaD), where the environment in the first 1000 days was hypothesised to shapes health 
and disease profiles lifelong4. Although Barker and Osmond were initially interested in foetal nutrition, this 
has now expanded to cover almost all negative experiences in this 1000-day period, and has led to interest in 
early-life adversity (ELA). ELA is a rather diffuse concept, covering many different forms of potentially adverse 
environmental exposure within the first 1000 days. Many studies have subsequently investigated the molecular 
mechanisms linking ELA to psychobiological, behavioural, immunological and disease phenotypes5–15.

Upon exposure to a stressor, the autonomic nervous system and the hypothalamus pituitary adre-
nal (HPA) axis activates and coordinates the “fight or flight” response via the release of catecholamines and 
glucocorticoids5,16,17. In parallel, glucose is produced and released16. The current dogma is that this is a glucocor-
ticoid-mediated process. Exposure to ELA has lifelong effects on HPA axis regulation and glucocorticoid levels, 
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consequently dysregulating glucose release and metabolism dynamics5,8. However, it remains unclear exactly 
how these stress and metabolic processes are linked and regulate one another. Such psychochosocial stressors 
are readily modelled using paradigms such as the Trier Social Stress Test18 or the socially evaluated cold pressor 
test (seCPT)19 where the HPA axis is readily activated.

The microbiome, seeded at birth, is also known to have a pivotal role on the establishment of an individu-
al’s long-term health trajectory. Furthermore, both the oral and gastro-intestinal microbiomes are shaped by 
ELA9–15,20,21. There has been a recent increase in interest in the oral microbiome (OM). After exposure to ELA, 
dysbiosis of the OM, with increased abundance of pathogenic taxa, leads to poor oral health. Poor oral health is 
part of the pathophysiological presentation of many ELA-associated diseases, including cardiometabolic, mental, 
autoimmune and allergic diseases. Furthermore, the paradigm of gut – brain – axis and oral – brain – axis is 
now more widely-studied, strengthening the evidence of a constant communication between the gut and oral 
microbial communities with their hosts17,22. Interestingly, the OM is not only sensitive to ELA, but is also sensi-
tive to both cortisol and glucose that may be dysregulated by ELA17,23,24. This raises the interesting hypothesis 
that dysbiosis in the microbiome interacts with the stress response. Moreover, this may represent a mechanism 
by which ELA alters the stress response (Fig. 1).

Here, we investigated the interplay between the OM and the psychosocial stress response. To do this, we take 
advantage of the variability in both the stress response and the two distinct OM (buccal and salivary communi-
ties) within our EpiPath cohort of ELA-exposed individuals and controls. Here, both the acute stress response and 
the OM were reshaped by early life psychosocial stress exposure5,8,20. The use of such a “natural experiment” that 
exaggerates inter-individual differences allowed us to gain a clear insight into the role of the OM in determining 
the host’s stress reaction after HPA axis activation using the seCPT.

Results
As previously reported, glucose and cortisol levels are raised by the seCPT in the EpiPath cohort5. The exposure 
to institutionalisation-adoption made subtle but statistically significant changes to the kinetic profile of the stress 
induced release of cortisol and glucose. Briefly, we saw a rise in glucose levels from 101.8 + /- 12.6 mg/dL to 
136 + /- 21.7 mg/dL and cortisol rose from 0.27 + /- 0.14 µg/dL to 0.55 + /- 0.29 µg/dL (Supplementary Table 1). 
Here, we took the two arms of the EpiPath cohort together, using the exposure to ELA as a source or variance in 
metabolic and hormonal responses to stress coupled with differences in the microbiome. In the combined arms of 
the cohort, both cortisol and glucose showed a clear stress-induced rise that eventually falls to time-appropriate 
background level (Supplementary Fig. 1A B and C). Analysing the cortisol and glucose time series via linear 
mixed effect regression models, we identified a total of 12 taxa, 10 that were present in the buccal and 2 in the 
salivary microbiome prior to the stress test, that subsequently interacted with either the cortisol or the glucose 
response to the seCPT. In addition, diversity and evenness metrics, Inverse Simpson index and Shannoneven 
index respectively interacted with both glucose and cortisol kinetics. Significant interactions are summarised in 
Table 1, and complete data are in Supplementary Tables S1- S8.

Glucose and cortisol kinetics associate with diversity and evenness indices
Following the clear indications that the taxonomic composition leads to a modified cortisol and glucose response 
to the seCPT, we hypothesized that diversity of the microbial composition also can modify the biological response 
to stress. Similar to the abundance analyses above, we used diversity indices scores from Inverse-Simpson diver-
sity index and Shannon evenness index as dimensional interaction terms together with plasma glucose and 
saliva cortisol levels. Interestingly, diversity and evenness of the buccal microbiome showed an interaction with 
glucose kinetics while salivary microbiome showed no interactivity (Supplementary Table 8A). To visualize 
the dimensional interaction terms, diversity and evenness scores were stratified according to tertiles. Increased 
Inverse-Simpson score (> 66 th percentile) was associated with delayed and lower glucose peak (Supplementary 
Fig. 2B, LR-test: p = 168E-02). Likewise, increased Shannon evenness score was also associated with delayed and 
lower glucose peak (Supplementary Fig. 2D, LR-test: p = 447E-04). Notably lower score (< 33th  percentile) in both 
diversity and evenness showed the highest glucose peak while for median (33 th-66 th percentile) diversity scores 
glucose peak was lower (Supplementary Fig. 2B, LR-test: p = 1,68E-02, Supplementary Fig. 2D, LR-test: p = 4,47E-
04). Intriguingly, only evenness score of the salivary composition and diversity score of the buccal composition 
exhibited an interaction with cortisol kinetics (Supplementary Table 8B). For the buccal microbiome, increased 
Inverse-Simpson score was associated delayed cortisol clearance (Supplementary Fig. 2F, LR-test: p = 119E-02). 
For the salivary microbiome, lower Shannon evenness score (< 33 th percentile) was associated delayed cortisol 
clearance (Supplementary Fig. 2F, LR-test: p = 3,33E-03).

Cortisol response depends on the oral taxonomic profile
Here, we describe the results regarding the cortisol response. Our results revealed three taxa from the buccal 
community interacting with the salivary cortisol response to stress in the buccal community (Fig. 2, Supple-
mentary Tables 2 and 3). The presence of Absconditabacteriales, Clostridia UGC14 and Acinetobacter had no 
significant effect on the baseline levels of cortisol (Fig. 2A,C,E Absconditabacteriales: β = -0.03, 95%-confidence 
interval (95%-CI):  − 0.10 –0.04, p = 0.4; Clostridia UGC14: β = -− 0.04, 95%-CI: − 0.10–0.03, p = 0.29; Acineto-
bacter: β = 0.04, 95%-CI: -0.03–0.10, p = 0.3). Nevertheless, the presence of Absconditabacteriales and Clostridia 
UGC14 was associated with different cortisol biochemical dynamics, displaying a prolonged clearance of cortisol 
following stress (Fig. 2B,D Absconditabacteriales: likelihood ratio (LR) test: p = 1.89E-07, FDR < 0.05, Clostridia 
UGC14: LR-test: p = 3.34E-03, FDR < 0.05). In contrast, Acinetobacter presence, was associated with accelerated 
clearance of cortisol (Fig. 2F Acinetobacter: LR-test: p = 2.61E-03, FDR < 0.05). In addition, analyses of salivary 
communities showed two genera interacting with cortisol levels in saliva after the CP test, while none of the 
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genera had an effect on baseline cortisol levels after correction for multiple testing (see Supplementary Tables 2 
and 3). Neither Campylobacter nor Cardiobacterium presence was associated with baseline cortisol (Fig. 2G 
Campylobacter: β = -0.01, 95%-CI: -0.08—0.06, p = 0.8; Fig. 2J Cardiobacterium: β = 0.05, 95%-CI: − 0.02–0.12, 
p = 0.18). Yet, the presence of Campylobacter associated with a lower cortisol reaction to CP in general (Fig. 2H 
Campylobacter, LR-test: p = 3.43E-06, FDR < 0.05). Similarly, Cardiobacterium’s presence associated with a higher 
cortisol peak and faster clearance (Fig. 2I Cardiobacterium, LR-test: p = 3.96E-04, FDR < 0.05). Detailed summary 
statistics for both cortisol baseline levels and the overall time series are available in Supplementary Tables 2 and 
3 respectively. In conclusion, community composition both in the saliva as in the buccal microbiome interacted 
with the measured cortisol response to CP.

Figure 1.   Outline of our study hypothesis. Psychosocial stressors activate the HPA axis with release of CRF and 
ACTH leading to the adrenal gland releasing cortisol as part of the stress response (lowerbox). At the same time 
Cortisol induces a glucose response from the liver. There is then a crosstalk between the oral microbiome and 
central stress processes. Our question is how the oral microbiome interacts with the overall cortisol and glucose 
response to a psychosocial stressor.
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Glucose response depends on the oral taxonomic profile
Next, we explored the relation between the glucose response to the seCPT and oral microbiome. To this end, we 
conducted linear mixed regression modelling analyses in an analogous way as described above, utilizing however, 
the plasma glucose levels as response variable instead of the saliva cortisol concentrations (Fig. 3, Supplementary 
Tables 4 and 5). While the salivary microbiome showed no interactions, three taxa from the buccal community 
appeared to interact with glucose stress response despite showing no significant association with the baseline 
plasma glucose levels 5min before stress test (Fig. 3A Absconditabacteriales: β = 7.61, 95%-CI: -0.73 — 15.96, 
p = 0.07; Fig. 3C Oxalobacteraceae: β = 3.16, 95%-CI: -4.55 — 10.87, p = 0.41; Fig. 3E Sphingomonas: β = 0.97, 95%-
CI: -7.13 — 9.06, p = 0.81). In contrast to the baseline levels, the presence of Absconditabacteriales in the buccal 
microbiome was associated with muted plasma glucose response, while participants without Absconditabacteriales 
showed a clear stress-induced glucose response (Fig. 3B Absconditabacteriales, LR-test: p = 1.62E-04, FDR < 0.05). 
Moreover, Oxalobacteraceae and Sphingomonas were associated with a reduced glucose response globally (Fig. 3C 
Oxalobacteraceae, LR-test: p = 3.10E-03, FDR < 0.05; Fig. 3F Sphingomonas, LR-test: p = 3.49E-03, FDR < 0.05,). 
Notably, both species co-occurred with each other in the analyzed buccal microbiomes, showing therefore paral-
lel association patterns with plasma glucose levels (Fig. 3 C, E). Detailed summary statistics for glucose baseline 
levels available at the Supplementary Table 4 and for glucose time series at Supplementary Table 4.

Glucose clearance associates with a higher taxonomic abundance
While in the analyses above, we worked with dichotomized genus variables, in the next string of linear mixed 
regression models, we utilised dimensional interaction terms between the relative abundance values and the 
levels of plasma glucose and salivary cortisol, respectively. Neither the buccal, nor the saliva microbiome showed 
any significant interactions on the abundance level after correction for multiple testing with the saliva cortisol 
levels. However, for six genera in the buccal microbiome, the abundance was associated with modificiations of 
the glucose response (Fig. 4, Supplementary Table 6).

For visualization of the dimensional interaction terms, abundances were stratified in according to tertiles. 
High Bradyrhizobium abundance (> 66th percentile) was associated with delayed and lower peak, while show-
ing longer clearance in tendency (Fig. 4A Bradyrhizobium, LR-test: p = 9.25E-04 , FDR < 0.05). Abundances of 
Commamonadaceae, Flavobacterium and Sphingomonas showed a similar interaction where lower abundances 
0-33th percentile and 33th—66th percentile had a similar response, whereas individuals with abundance of these 
taxa > 66th percentile exhbited a muted glucose response with a less clear peak (Fig. 4B Commamonadaceae, LR-
test: p = 1.42E-04, FDR < 0.05; Fig. 4C Flavobacterium, LR-test: p = 5.99E-03, FDR < 0.05; Fig. 4D Sphingomonas, 
LR-test: p = 2.53E-04, FDR < 0.05). Furthermore, 0-33th percentile and 33th—66th percentile abundances of 
Methylobacterium-Methylorubrum showed a very similar response while the individuals with abundance higher 
than 66th percentile demonstrated a lesser glucose response with longer clearance (Fig. 4E Methylobacterium-
Methylorubrum, LR-test: p = 3.90E-03, FDR < 0.05). Lastly, Paucibacter abundance showed a different interaction 
with the glucose stress response. Individuals with less than 33th percentile of Paucibacter showed a clear glucose 
response to CP, while individuals with abundances in the two lower tertiles had a lower glucose response (Fig. 4E 
Paucibacter, LR-test: p = 4.13E-03, FDR < 0.05).

Table 1.   Results Summary.

Taxa Buccal microbiome Salivary microbiome Interaction analysis

Absconditabacteriales
Cortisol – Presence/absence

Glucose – Presence/absence

Acinetobacter Cortisol – Presence/absence

Clostridia UCG14 Cortisol – Presence/absence

Campylobacter – Cortisol Presence/absence

Cardiobacterium – Cortisol Presence/absence

Oxalobacteraceae Glucose – Presence/absence

Sphingomonas
Glucose – Presence/absence

Glucose – Abundance

Bradyrhizobium Glucose – Abundance

Comamonadaceae Glucose – Abundance

Flavobacterium Glucose – Abundance

Methylobacterium -Methylobrubrum Glucose – Abundance

Paucibacter Glucose – Abundance

Diversity Indices

Inverse Simpson Diversity Index
Cortisol – –

Glucose – –

Shannon Evenness Index Glucose Cortisol –
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Figure 2.   Cortisol response depends on the oral taxonomic profile FDR corrected significant. taxa with 
differential cortisol kinetics depending on presence absence of buccal and salivary microbiome Left panel (A, C, 
E, G, J). Violin plots for baseline cortisol measurement at 5 min before seCPT p values from linear regressions 
adjusted for age, sex, BMI and study group Right panel (B, D, F, H, I) time series of cortisol measurements in 
saliva with standard errors as the error bars.
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Discussion
In this study, we provided clear evidence for a link between the composition of the oral microbiome and both the 
hormonal and metabolic response to a laboratory psychosocial stressor. Our EpiPath cohort that were exposed 
to early-life adversity 20 years earlier had both a reshaped stress responses and microbiota, providing variance in 
both to enable us to identify interactions between bacterial taxa and the stress response. Within this paradigm, 
the stress-induced cortisol response was associated with 5 bacterial taxa originating from either the buccal or 
salivary microbiomes. Furthermore, 8 taxa from buccal microbiome when present, or present in increased abun-
dance interacted with the stress induced glucose response, determining the kinetics of glucose following seCPT 
exposure. Fascinatingly we also showed that it is not only the presence and abundance of particular taxa that 
interfere with the HPA-axis stress response but also the community as a unit in terms of diversity and evenness. 

Figure 3.   Glucose response depends on the oral taxonomic profile FDR corrected significant taxa with 
differential plasma glucose kinetics depending on presence absence of buccal microbiome Left panel (C, E). 
Violin plots for baseline cortisol measurement at 5 min before seCPT, p values from linear regressions adjusted 
for age, sex, BMI and study group Right panel (D, F) time series of plasma glucose measurements with standard 
errors as the error bars.
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In particular, in our study we observed an interaction of plasma glucose kinetics with both diversity and evenness 
of buccal composition. In contrast, salivary cortisol kinetics were found to be associated with only diversity of 
buccal composition whilst also associated with evenness of salivary composition. This highlights that individual 
taxa are equally important in host’s physiology and the dynamics of the microbial community. Overall our data 
demonstrate a clear interaction between the oral microbiome and both the hormonal and metabolic response 
to a psychosocial stressor. This builds on our previous report that buccal and salivary microbiome compositions 
are different, even in healthy controls20.

Many studies have linked ELA to a dysregulated HPA axis stress response25–27. Concurrently, numerous stud-
ies investigating gut-brain axis and/or oral-brain axis have reported that microbiota respond to host hormones 
resulting to change in bacterial gene expression17,28–33. In particular, evidence from the oral microbiome suggests 
that exposure to high cortisol levels results to upregulation of virulence factors (lipopolysaccharide, fimbriae or 
gingipains) in periodontitis associated taxa, Fusobacterium and Poprhymonas resulting to a global shift of the 
composition towards a pathogenic type17,28,29,34,35. This ability of the OM to react to the host’s hormonal response 
is part due to resilience mechanisms determining the community composition and driving homeostasis25,36. 
During the HPA activation and stress response, in addition to cortisol, catecholamines are also released. In vitro 
studies have shown that these can promote or inhibit the growth of OM taxa known to be associated with 
periodontitis and evidently lead to stress induced taxonomic shifts in the OM composition25,29,35,37. In a similar 
manner, our data suggest a clear interaction between the host’s stress hormones and the composition of the 
microbiome. However, the directionality of the interaction remains unclear. It is possible that the host’s stress 
response is modified by the microbiome. On the other hand, 24 years after institutionalisation, it is more probable 

Figure 4.   Glucose clearance associates on the oral taxonomic profile FDR corrected significant taxa with 
differential plasma glucose kinetics depending on taxonomic abundance of buccal microbiome Time series of 
plasma glucose measurements with standard errors as the error bars depending on the taxonomic abundance 
of (A) Bradyrhizobium (B) Comamonadaceae (C) Flavobacterium (D) Methylobacterium Methylorubrum (E) 
Sphingomonas (F) Paucibacter.
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that, as in vitro, the microbiome has established a new homeostasis based on the ELA-specific stress and meta-
bolic profile of the individual, with stress hormones and glucose promoting or inhibiting growth of specific taxa.

Glucose can be a substrate in pentose phosphate pathways for certain taxa to generate other energy sources. 
Other taxa such as Sphingomonas produce glucose through other metabolic pathways as their final energy 
source38–41. Additionally, in vitro studies suggest that glucose concentration affects bacterial mobility and more 
precisely the swimming – swarming behaviour42–46. Swarming is often observed in stress or disease state42. This is 
believed to occur through a glucose-dependent quorum sensing mechanism41,45,47. This process requires different 
carbon sources for carbon catabolite repression (CCR) which is broadly believed to be glucose41,48. Additional 
in vitro data suggest that glucose is the most accessible and preferred carbon source, driving faster bacterial 
growth40,47. CCR dependent quorum sensing contributes to an increase in virulence proteins41,48–50. In a similar 
manner, there is also preliminary evidence that several taxa within the human microbiome can also metabolise 
and use cortisol as a substrate51.

In this complex system where ELA and stressful events can lead to dysbiosis and a ruffled balance of health-
disease the light falls in the microbiome in order to understand underlying mechanisms of action. The micro-
biome and more importantly the oral communities have been showed to be involved in the modulation of 
neurological process, to shape behaviour and even cognition by interacting with the neuroendocrine system17. 
This modulation may, in part, be due to metabolites or other small molecules secreted by the microbiome and 
absorbed by the host. On the other hand, as saliva contains molecules with antimicrobial properties, the OM 
has also evolved to recognize and respond to such signals23,24,52–54. This re-enforces the idea that there is an 
equilibrium or homeostasis between the host’s stress response and the OM composition.

The OM possess a set of sociomicrobiological skills, scientifically known as quorum sensing (QS), a form of 
intra- and inter- species communication that allows the OM to sense and modulate the host environment17,55,56. 
QS mechanisms are the basis of how bacteria react and regulate stress that can ensure survival and homeostasis of 
a functional bacterial community17,57. Both cortisol and glucose are known to interact with QS whilst individual 
taxa are able to counteract by releasing particular autoinducer peptides, which often enhances their virulence 
and growth-speed56,58,59. Furthermore, some microbial metabolites can neutralise the action of the QS peptides 
aiming to promote homeostasis within the community, such metabolites are D-Galactose and D-arabinose60. 
These properties of the OM have ensured long-term stability, resilience and robustness for its communities61,62. 
Furthermore, it is the key on how oral taxa can drive oral inflammation and impact systemic health later on63. 
Overall these pre-existing evidence explain the observations of our study and strengthen our hypothesis that the 
OM interferes with HPA axis activation and glucose-cortisol stress response. Further mechanistic-focus studies 
are essential to explore exactly how each of these QS mechanisms and bacterial metabolic properties relate to 
this OM-HPA interaction. As such, it would be interesting in future studies to measure salivary QS molecules 
to examine their role in determining the microbiome stress interaction.

Gut-brain axis research provides indications of a bidirectional interaction between microbiome and HPA 
axis64. Microbial metabolites. Microbial metabolites contribute to downstream signaling and activation of the 
HPA axis stress response and release of corticosterones. Whilst a chronically activated HPA axis results to 
microbiome-related chronic inflammatory diseases such as irritable bowel syndrome (IBS) it also contributes to 
the pathogenesis and progression of e.g. diabetes, depression and neurodegenerative diseases65–72. In addition, 
long-term stress linked to impacted intestinal permeability and changes on the microbiome and concequently 
interfere with psychiatric phenotypes and medication65–69, leading us to conjecture that the oral microbiome is 
equally capable of promoting such interactions.

Our observation that host’s stress response can be altered based on the composition of the oral microbi-
ome brings opportunities for future research. Collection of oral swabs is widely performed in many research 
fields including psychobiology, lifestyle and other social to clinical research areas. Such samples are consisting 
a non-invasive, cost-effective and accurate diagnostic approach that is optimisable into personalized medicine 
strategies73,74. The plausible use of such samples can enlighten investigations on the interaction of host-microbe 
and the role of the microbiome in oral and systemic health.

Our study, like all others, has limitations. First, our study is observational in design, such that we were not able 
to identify the direction of the interaction between the stress reaction and changes in the microbiome. As such, 
the causal direction potentially underlying the effect modifications cannot be determined. However, our data 
can serve for informing later targeted mechanistic studies. Additionally, the glucose and cortisol measurements 
from the EpiPath cohort were only measured for a smaller set of participants based on the availability of the 
biosamples. Our EpiPath cohort was primarily conceived as an ELA study, and while its sample size is consider-
able for such a study. Nonetheless, such a sample size is considered to be small for a microbiome study, especially 
and given the inter-personal variability in stress-response, meaning that we were not able to model the effects 
of ELA on the microbiome-stress interaction. The small sample size also limited our possibilities to investigate 
rare taxa with high zero-inflation. Moreover, the limited quantity of saliva meant that 16S amplicon sequencing 
was used to ensure good-quality data, leading to limited taxonomic resolution, although this is counterbalance 
by the reduced risk of missing a particular genus20. In addition, due to the original scientific question that the 
EpiPath was conducted for, microbiome-specific metadata such as, diet habits and oral health status were not 
collected. Knowing that some of the taxa we identified to interact with the stress response including Acinetobac-
ter, Campylobacter and Sphingomonas, are associated with periodontitis and other systemic diseases67,71,72,75–80, 
information on the participants’ oral health would have strengthen the mechanistic potential of our dataset.
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Conclusion
Our data show a clear alteration of the host’s stress response as evidenced through the analyses of repeated glucose 
and cortisol measurements in relation to the taxonomic and structural composition of the oral microbiome. We 
have, for the first time, clearly shown from this observational study that there is a clear interaction between taxa 
from the oral microbiome and the host’s stress response. In the case of our EpiPath ELA cohort, it is most prob-
able that a dysregulated endocrine stress reaction is able to cause dysbiosis of the OM. This interaction between 
the two systems may play a role in re-establishing homeostasis of the OM following a stress trigger.

Materials and methods
Participants and bacterial abundance data
In this study we used previously published buccal and salivary microbiome abundance data from sequencing of 
the V4 region of the 16S gene in our EpiPath cohort20. EpiPath is a cohort of post-institutionalisation adults and 
immediate social circle control participants that were brought up by their biological parents6,8,81,82. Microbial 
abundance data were from buccal swabs and salimetrics oral swabs taken upon arrival at the clinical centre. 
A subset of the EpiPath cohort underwent a socially evaluated cold pressor test (seCPT;8), and were used in 
this study. These participants did not differen in any characteristic measured from the rest of the cohort8 (Sup-
plementary Table 1B). Median age at adoption was 4.3 months (IQR 0–15 months)81. EpiPath was approved by 
the Luxembourg National Research Ethics Committee (CNER, No 201303/10 v1.4) as well as the University 
of Luxembourg Ethics Review Panel (ERP, No 13–002). All participants provided written informed consent in 
compliance with the Declaration of Helsinki. All study participants received a small financial compensation for 
their time and inconvenience.

Stress test: As previously reported, a subset of the cohort underwent an extended seCPT8. During the seCPT 
they were asked to place both feet into 2–3°C water for 3min while performing a mental arithmetic task83. Blood 
and saliva were collected using EDTA coated tubes and Salimetrics Oral Swabs respectively at − 120 min, − 5 
min, + 3 min (stress cessation), and then at 15, 30, 60, 120 and 180 min relative to T = 0 when the participant 
placed their feet in the water. EDTA tubes were centrifuged at 4°C for 15 min and plasma collected. Samples 
were stored at − 80°C prior to utilisation.

Cortisol and glucose measurements
Salivary cortisol data was available from 70 participants, measured using the Salimetrics Salivary Cortisol ELISA 
kit (CV: 7% intra-assay, 11% inter-assay, Salimetrics, Cambridgeshire, UK). Plasma glucose was measured from 
the subset of 42 participants that had fully completed the seCPT8. The reduced number of participants for which 
glucose data was available was limited by the availability of the complete seCPT time-series plasma samples. 
These were briefly vortexed and placed on a fresh Accu-Chek strip (Accu-Chek, Roche) to quantify the plasma 
glucose concentration as described by Seal et al.5.

Statistical analyses
For descriptive statistics, metric variables were expressed as means + /- standard deviations, categorical variables 
were expressed via proportions. A sample description can be found in Supplementary Table  1 For interaction 
analyses of the response to the CP with the oral microbiome, we utilised two types of analyses. First, for genera 
being present in 25–75% of all samples, we dichotomized the abundance of those genera (genus present vs. genus 
absent). Then, for each of these genera we generated linear mixed models for plasma glucose as well as salivary 
cortisol levels as the response variable. These mixed linear regression models included the age, sex, body mass 
index, and the time of measurement as fixed effect covariates and the individual as random effect variable. For 
plasma glucose, measurements from eight seCPT time points: − 120 min, − 5 min, + 3 min (stress cessation), 
and then at 15, 30, 60, 120 and 180 min relative to the onset of stress (T = 0) were available for each individual. 
Saliva cortisol measurements were available for a larger time-range -130, − 50, − 30 , − 20, − 5, 3, 10, 20, 40, 55, 
70, 85, 11, 145, 175 min relative to the onset of stress (T = 0). The time variable was treated in minutes with 
the onset of CP test being set to zero. Importantly, the time point of measurement was treated as a categorical 
variable to allow for the expected non-linear response over time to the CP test. We then introduced interaction 
terms between the categorical time point variable and the dichotomized species presence and tested the model 
including the interaction terms against a model including all named covariates plus the dichotomized genus 
abundance through likelihood ratio tests. The likelihood ratio tests effectively test, whether the saliva cortisol, 
respectively plasma glucose, response is the same for individuals having a certain genus vs. not having a certain 
genus in their oral microbiome. This string of mixed linear regression models was performed for both the oral 
and the buccal microbiome.

Second, for genera being present in more than 50% of the samples, we performed analogous interaction 
analyses, utilising however the metric abundance variable instead of the dichotomized variable. Once again, 
significance was determined by likelihood ratio test of the model including covariates, main effects and time-
point genus abundance interactions terms vs. the model only including covariates and main effects. Finally, we 
analysed metrics of microbial diversity for both compartments in analogous linear mixed effect regressions, 
determining significant time-diversity interactions on the glucose and cortisol response as before by likelihood 
ratio tests as before.

All reported p-values are two-tailed. Statistical analyses was performed with STATA 16/MP and the mixed 
models were performed using the “xtreg” command with the option “mle” to specify maximum likelihood esti-
mation. We corrected for multiple testing using the false discovery rate (FDR) and an FDR < 0.05 was considered 
to be significant. Where available, effect sizes (β) are reported. Summary statistics of the performed association 
analyses can be found in Supplementary Tables S1–S6.
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Data availability
All data are available from the corresponding author (JDT) upon reasonable request under the condition that 
a suitable EU General Data Protection Regulation – compliant data sharing and processing agreement can be 
reached.
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